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We study the process of bound state formation in a D-brane collision. We consider two mechanisms for

bound state formation. The first, operative at weak coupling in the worldvolume gauge theory, is pair

creation of W-bosons. The second, operative at strong coupling, corresponds to formation of a large black

hole in the dual supergravity. These two processes agree qualitatively at intermediate coupling, in accord

with the correspondence principle of Horowitz and Polchinski. We show that the size of the bound state

and time scale for formation of a bound state agree at the correspondence point. The time scale involves

matching a parametric resonance in the gauge theory to a quasinormal mode in supergravity.
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I. INTRODUCTION AND SUMMARY

Understanding black hole microstates from a D-brane or
fundamental string perspective is a long-standing theme in
string theory. The original observation that vibrating
strings qualitatively resemble a black hole [1,2] was fol-
lowed by a quantitative worldvolume derivation of black
hole entropy for certain Bogomol’nyi-Prasad-Sommerfeld
states [3]. This relationship eventually became a funda-
mental aspect of the holographic duality between gauge
and gravity degrees of freedom [4]. According to this
duality, microstates of a black hole are in one-to-one
correspondence with microstates of a strongly coupled
gauge theory. This duality also applies to time-dependent
processes such as black hole formation and evaporation,
leading to the viewpoint that these processes should be
unitary, contrary to [5].

To gain insight into black hole formation, and a better
understanding of the microstructure of the resulting black
hole, in this paper we study the process of bound state
formation from two perspectives: perturbative gauge the-
ory and supergravity. In perturbative gauge theory a
D-brane bound state can be formed through a process of
open string creation. In supergravity we will see that open
string creation is not possible, and one instead forms a
bound state through the gravitational or closed-string pro-
cess of black hole formation.

The perturbative gauge theory and supergravity calcu-
lations of bound state formation do not have an overlapping
range of validity. But we will show that they agree quali-
tatively at an intermediate value of the coupling, in accord
with the correspondence principle introduced by Horowitz

and Polchinski [6]. This suggests that there is a smooth
transition between the process of open string creation at
weak coupling and black hole formation at strong
coupling.
As a first test of these ideas, in Sec. II we study bound

state formation in D0-brane collisions and show that the
sizes of the bound states match at the correspondence
point. In Sec. III we extend this analysis to general
Dp-branes.
Next we consider the time development of the bound

states after they have formed. In Sec. IV we show that the
weakly coupled gauge theory has a parametric resonance
which exponentially amplifies the number of open strings
present, and we identify the time scale for the production of
additional open strings at weak coupling. In the gravita-
tional description, a perturbed black hole approaches equi-
librium on a time scale determined by the quasinormal
frequencies. In Sec. V we compare these two time scales
and show that they agree at the correspondence point.
In Sec. VI we compare properties of the bound state as

initially formed to equilibrium properties of the black hole,
and show that at the correspondence point the bound state
is created in a state of near-equilibrium. In Sec. VII we
study a different initial configuration, in which a bound
state is formed by collapse of a spherical shell of
D0-branes, and show that the picture of a smooth transition
between open string production and black hole formation
continues to hold. We conclude in Sec. VIII.
The present work is related to several studies in the

literature. In gauge–gravity duality, a black hole on the
gravity side is dual to a thermal state of the gauge theory,
where all OðN2Þ degrees of freedom are excited [7,8].
There have been many studies of 0-brane black hole micro-
states from matrix quantum mechanics, along with their
associated thermalization process. Some previous studies
of 0-brane black holes from matrix quantum mechanics
include [9–15]. Also see [16,17] for studies of black hole
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formation from the gravity perspective, and [18–23] for
studies from the gauge theory perspective. In particular
parametric resonance has been discussed in relation to
thermalization in the closely related work [21]. Open string
production has been studied as a mechanism for trapping
moduli at enhanced symmetry points in [24], while open
string production in relativistic D-brane collisions has been
studied in [25].

II. BOUND STATE FORMATION
IN 0-BRANE COLLISIONS

Consider colliding two clusters of 0-branes as shown in
Fig. 1. We would like to understand whether a bound state
is formed during the collision. Two mechanisms for bound
state formation have been discussed in the literature:

(1) In a perturbative description of D-brane dynamics,
open strings can be produced and lead to formation
of a bound state. This occurs for impact parameters

b &
ffiffiffiffiffiffiffiffi
v�0p

[26]. This can be understood as the con-
dition for violating the adiabatic approximation. For
a review of the calculation see the Appendix.

(2) At large N and strong coupling the D-brane system
has a dual gravitational description [27]. In this
description, according to the hoop conjecture of
Thorne [28–30], a black hole should form if the
two D-brane clusters are contained within their
own Schwarzschild radius.

Our goal is to understand in what regimes these two
mechanisms for bound state formation are operative, and
whether they are connected in any way.

It will be convenient to work in terms of a radial
coordinate U with units of energy, U ¼ r=�0. Here r is

the distance between the clusters, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ v2t2

p
. The

’t Hooft coupling of the M(atrix) quantum mechanics is
� ¼ g2YMN, which in string and M-theory units can be
expressed as

� ¼ gsN=‘3s ¼ R3N=‘611: (1)

Here gs is the string coupling, ‘s is the string length, R is
the radius of the M-theory circle, and ‘11 is the M-theory
Planck length. The mass of a single D0-brane is

m0 ¼ 1

gs‘s
¼ 1

R
: (2)

A. Perturbative string production

We work in the center of mass frame, with momenta

p1 ¼ N1

R
v1; p2 ¼ N2

R
v2; p1 þ p2 ¼ 0: (3)

We consider a fixed total energy E, which determines the
asymptotic relative velocity v:

1

2

N1

R
v2
1 þ

1

2

N2

R
v2
2 ¼ E;

) v ¼ v1 � v2 �
�
NER

N1N2

�
1=2 ¼

�
�El4s
N1N2

�
1=2

: (4)

In terms of the U coordinate, the asymptotic relative
velocity is

_U ¼
�
�E

N1N2

�
1=2

: (5)

As reviewed in the Appendix, open string production sets
in when

U�
ffiffiffiffi
_U

p
¼
�
�E

N1N2

�
1=4

: (6)

Note that the radius at which open strings are produced
depends on how we split the total D-brane charge. The
radius is minimized when N1 ¼ N2 ¼ N=2, which gives
the minimum radius for open string production as

U0 �
�
�E

N2

�
1=4

: (7)

This is the case which is interesting for matching to
supergravity.
There are some checks we should perform to make sure

this perturbative result is valid. As discussed in [31], the
effective action has a double expansion in �=U3 and
_U2=U4. The expansion in powers of �=U3 is the Yang-

Mills loop expansion, which is valid provided U0 > �1=3.
From (7) this requires

E> N2�1=3: (8)

At the critical point where the loop expansion breaks down,

U0 � �1=3, the inequality (8) is saturated.
The expansion in powers of _U2=U4 is the derivative

expansion, which is valid when _U2 <U4. Note that the
derivative expansion breaks down at the point where open

strings are produced. Up to this point, i.e. forU >
ffiffiffiffi
_U

p
, one

can trust the two-derivative terms in the effective action,
which means the asymptotic velocity (4) is a good approxi-
mation to the actual velocity.1 So the only condition for
the validity of the perturbative description of open string
production is (8).

1

N2

v
2

v
1

N

FIG. 1. Colliding stacks of 0-branes with relative velocity v
and impact parameter b. 1As we will see, this is not the case in the supergravity regime.
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B. Bound state formation in gravity

At large N the M(atrix) quantum mechanics has a dual
gravitational description at strong coupling, meaning for

U < �1=3. So let us imagine the 0-brane clusters approach
to within this distance, and study whether a bound state
can form.

At first, one might think a bound state could form via
open string production. As noted in [27], the metric factors
cancel out of the Nambu-Goto action, and even in the
supergravity regime the mass of an open string connecting
the two clusters of D-branes is mW �U. The adiabatic
approximation breaks down, and these open strings should
be produced, if _U=U2 > 1. However this velocity cannot
be attained in the regime where supergravity is valid, since
it violates the causality bound [32,33]. This can be seen in
the probe approximation, where the Dirac-Born-Infeld
(DBI) action for a probe is (see, for example, [9])

S ¼ 1

g2YM

Z
dt

U7

�

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� � _U2

U7

s 1
A: (9)

Thus causality bounds the velocity of the probe,

� _U2

U7
< 1: (10)

Rather remarkably, the probe has to slow down signifi-
cantly asU ! 0. In any case, in the supergravity regimewe

have
_U2

U4 <
U3

� , and since U3

� < 1 at strong coupling, open

strings can never be produced.
This means black hole formation is the only way to form

a bound state in the supergravity regime. Since open string
production is ruled out, we reach the sensible conclusion
that the formation of a horizon is a purely gravitational
closed-string process. The hoop conjecture states that a
black hole will form if the energy E is contained within its
own Schwarzschild radius. For a ten-dimensional black
hole with N units of 0-brane charge, the Schwarzschild
radius is

U0 ¼
�
�2E

N2

�
1=7

: (11)

This 10-D supergravity description is only valid if the
curvature and string coupling are small at the horizon,
which requires

�1=3N�4=21 <U0 < �1=3: (12)

For smaller U0 one must lift to M-theory; for larger U0 the
M(atrix) quantum mechanics is weakly coupled. At the
outer radius where the supergravity approximation breaks

down, U0 � �1=3, Eq. (11) tells us that E� N2�1=3.

C. Correspondence point

We have found that open string production is only
possible at weak coupling, while black hole formation

can only occur within the bubble where supergravity is
valid. One could ask if the two phenomena are smoothly
connected. Is there a correspondence point where both
descriptions are valid?
From the perturbative point of view, the transition hap-

pens when the condition (8) is saturated, E ¼ N2�1=3.

In this case open strings are produced, but at a radius U0 �
�1=3 where the system is just becoming strongly coupled.
From the supergravity point of view, the transition hap-

pens when the energy of the black hole is E ¼ N2�1=3,

corresponding to a Schwarzschild radiusU0 � �1=3. In this
case the black hole fills the entire region where supergrav-
ity is valid.
This suggests that open string production and black hole

formation are indeed continuously connected. Since the
transition between the two descriptions happens when the
curvature at the horizon is of order string scale,

�0R� ð�=U3Þ�1=2 � 1; (13)

this is an example of the correspondence principle of
Horowitz and Polchinski [6]. Note that for a given black
hole energy, one can view the condition of being at the

correspondence point, E ¼ N2�1=3, as fixing the total
0-brane charge,

N ¼
�
E3‘3s
gs

�
1=7

: (14)

III. Dp-BRANE COLLISIONS

In this section we generalize our 0-brane results and
consider Dp-branes wrapped on a p-torus of volume Vp.

We first record some general formulas then analyze
particular cases.

The Yang-Mills coupling is g2YM ¼ gs=‘
3�p
s and the ’t

Hooft coupling is � ¼ g2YMN. In terms of U ¼ r=�0, the
effective dimensionless ’t Hooft coupling is

�eff ¼ �

U3�p
: (15)

The Yang-Mills theory is weakly coupled when �eff < 1.
It has a dual gravitational description at large N when
�eff > 1 [27].
Imagine colliding two stacks of wrapped Dp-branes at

weak coupling, with a fixed energy density � as measured
in the Yang-Mills theory. The mass of a wrapped p-brane is

Vp=gs‘
pþ1
s , so in the center of mass frame the relative

velocity is

_U ¼
�

��

N1N2

�
1=2

: (16)

Open string production sets in when

U�
ffiffiffiffi
_U

p
�
�

��

N1N2

�
1=4

: (17)
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The radius at which open strings are produced depends on
how we divide the total D-brane charge. The radius is
minimized by setting N1 ¼ N2 ¼ N=2, which gives the
minimum radius for open string production as

U0 �
�
��

N2

�
1=4

: (18)

This is the case which is interesting for comparison to
supergravity.

Just as for 0-branes, open string production is not pos-
sible in the supergravity regime. The DBI action for a
probe brane is

S ¼ 1

g2YM

Z
dpþ1x

U7�p

�

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� � _U2

U7�p

s 1
A: (19)

Thus the causality bound is _U2=U4 <U3�p=� ¼ 1=�eff

[32], which rules out open string production (at least in
the probe approximation). Instead we have the process

of black hole formation, with a horizon radius U0 ¼
ðg4YM�Þ1=ð7�pÞ [27].

Further analysis depends on the dimension of the branes.
p ¼ 0, 1, 2.—For p < 3 the Yang-Mills theory is weakly

coupled when U > �1=ð3�pÞ and has a dual gravitational

description when U < �1=ð3�pÞ. Thus open string produc-
tion is possible at large distances, while black hole for-
mation is possible at small distances. The correspondence
point, where the two descriptions match on to each other,
occurs when

� ¼ N2�
1þp
3�p U0 ¼ �1=ð3�pÞ:

At this energy density open string production occurs just
as the Yang-Mills theory is becoming strongly coupled.
From the supergravity perspective, the resulting black
brane fills the entire region in which supergravity is valid.

p ¼ 3.—In this case the Yang-Mills theory is conformal
and dual to AdS5 � S5 [4]. The ’t Hooft coupling is di-
mensionless. For � & 1 open string production is possible,
while for � * 1 black holes can form. The two descriptions
match on to each other at the correspondence point � ¼ 1.
Note that, unlike other values of p, the correspondence
point is independent of the energy density �.

As a test of this idea, note that the radius at which open
strings form is

U0 ¼ ð��=N2Þ1=4 (20)

while for p ¼ 3 the horizon radius is

U0 ¼ ðg4YM�Þ1=4: (21)

These two expressions for U0 agree when � ¼ 1. This
suggests that the process of open string production for � &
1 smoothly matches on to black hole formation for � * 1.

p ¼ 4, 5, 6.—For p > 3 the Yang-Mills theory is
strongly coupled in the UV and has a dual supergravity
description (modulo some subtleties described in [27]). In
the IR the Yang-Mills theory is weakly coupled. Black hole
production is possible in the supergravity regime, where

U > �1=ð3�pÞ, while open string production is possible for

U < �1=ð3�pÞ. The correspondence point where the two
descriptions match is at

� ¼ N2�
1þp
3�p (22)

U0 ¼ �1=ð3�pÞ: (23)

IV. PARAMETRIC RESONANCE IN
PERTURBATIVE SYM

In this section we study the evolution of a bound state
formed at weak coupling by open string creation. We show
that the number of open strings increases exponentially
with time due to a parametric resonance in the gauge
theory. For simplicity we consider 0-brane collisions; the
generalization to Dp-branes is straightforward and will be
mentioned in Sec. VB.
Suppose a cluster of N1 incoming 0-branes collides with

a stack of N2 coincident 0-branes at rest. We assume weak
coupling but do not require large N. In the collision sup-
pose n open strings are produced. These open strings
produce a linear confining potential, so the system will
begin to oscillate. The conserved total energy is

E ¼ 1

2
mv2 þ n�x: (24)

Here we are adopting a nonrelativistic description, appro-
priate to the form of the D0-brane quantum mechanics,
while m is the mass of the incoming 0-branes, v is their
velocity, n is the number of open strings created, � ¼
1=2��0 is the fundamental string tension, and x is the
length of the open strings. The period of oscillation is

�t ¼ 4

�
m

2

�
1=2 Z E=n�

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� n�x

p �
ffiffiffiffiffiffiffiffi
mE

p
n�

: (25)

So up to numerical factors, the frequency of oscillation is

� ¼ n�ffiffiffiffiffiffiffiffi
mE

p (26)

while the amplitude of oscillation (the maximum value
of x) is

L ¼ E

n�
: (27)

We introduce this as a classical M(atrix) background by
setting Xi ¼ Xi

cl þ xi where

X1
cl ¼

L sin�t1N1
0

0 0

 !
X2
cl ¼ � � � ¼ X9

cl ¼ 0: (28)
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We have decomposed the N � N matrix into blocks; 1N1
is

the N1 � N1 unit matrix. Expanding to quadratic order in
the fluctuations, the M(atrix) Lagrangian2

LYM ¼ 1

2g2YM
Tr

�
_Xi _Xi þ 1

2
½Xi; Xj�½Xi; Xj�

�
(29)

reduces to

LYM ¼ 1

2g2YM
Trð _x1 _x1Þ

þ 1

2g2YM

X9
i¼2

Trð _xi _xi þ ½xi; X1
cl�½xi; X1

cl�Þ: (30)

Note that the potential for x1 vanishes. We also have the
Gauss constraint associated with setting A0 ¼ 0, namelyX

i

½Xi; _Xi� ¼ 0: (31)

To quadratic order this reduces to ½X1
cl; _x

1� ¼ ½ _X1
cl; x

1�
which only constrains x1. The simplest solution is to set
x1 ¼ 0.

To study the remaining degrees of freedom we
decompose

xi ¼ ai biy

bi ci

 !
; (32)

where ai is an N1 � N1 matrix, bi is an N1 � N2 rectan-
gular matrix and ci is an N2 � N2 matrix. We will often
suppress the index i ¼ 2; . . . ; 9. To quadratic order the a
and c entries have trivial dynamics, since ½xi; X1

cl� does not
involve a and c. On the other hand, the equation of motion
for b is

€bþ L2sin 2ð�tÞb ¼ 0: (33)

Defining s ¼ �t this reduces to Mathieu’s equation,

d2b

ds2
þ ða� 2q cos 2sÞb ¼ 0 (34)

with the particular values a ¼ 2q ¼ L2=2�2. Mathieu’s
equation admits Floquet solutions

bðtÞ ¼ ei��tPð�tÞ; (35)

where Pð�Þ is a periodic function with period �. As a
function of a and q there are intervals where � has a
negative imaginary part and the solution grows exponen-
tially. These intervals correspond to band gaps in the Bloch
interpretation of Mathieu’s equation. The imaginary part of
� is plotted as a function of a ¼ 2q in Fig. 2. There are
clearly many intervals where the solution is unstable, with
a typical exponent jIm�j � 0:25.

This instability corresponds to an exponential growth in
the number of open strings present. Note that in our case3

a ¼ 2q�mE3=n4: (36)

After the initial collision the energy E in the oscillating
background will decrease as the system begins to thermal-
ize, while the number n of open strings gets larger. So we
expect the value of a to decrease with time. This means the
system will scan across the different instability bands
available to it.
To summarize, we have found that the oscillating back-

ground resulting from a 0-brane collision is unstable. The
16N1N2 real degrees of freedom contained in bi for
i ¼ 2; . . . ; 9 behave as parametrically driven oscillators.
Their amplitude grows exponentially, on a time scale

tYM � 1=�� ffiffiffiffiffiffiffiffi
mE

p
=n�: (37)

Here m is the mass of the N1 incoming 0-branes, E is the
total energy of the system, n is the number of open strings
present in the off-diagonal block b and � is the fundamen-
tal string tension.

V. COMPARISON OF TIME SCALES

We compare the time scale associated with parametric
resonance to the quasinormal modes of a black hole. We
consider parametric resonance for D0-branes in Sec. VA,
generalize to Dp-branes in Sec. VB, and compare to
quasinormal modes in Sec. VC.

A. 0-brane parametric resonance

As we saw in Sec. IV, the time scale for parametric
resonance is determined by the period of oscillation. In a
0-brane collision this is given by

tYM � 1=�� ffiffiffiffiffiffiffiffi
mE

p
=n�: (38)

For N1 incoming D0-branes the mass is m ¼ N1=R, where
R ¼ gsls is the radius of the M-theory circle. Also E is
the total energy of the system, n is the number of open
strings and �� 1=l2s is string tension. We consider the case
N1 � N2 � N, with N large to compare to supergravity.
Then the off-diagonal block b containsOðN2Þ elements, so
as shown in the Appendix OðN2Þ open strings are created
by parametric resonance.

20 40 60 80 100
a 2 q

0.05

0.10

0.15

0.20

0.25

Im

FIG. 2 (color online). The imaginary part of the Mathieu
characteristic exponent as a function of a ¼ 2q.

2We are setting 2��0 ¼ 1 and A0 ¼ 0.
3Restoring units, we would have L2 ! L2�2 in (33) and a ¼

2q�mE3=n4�2 in (36).
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Using R ¼ gs‘s, �� 1=‘2s , n� N2 and gs � g2YM‘
3
s we

obtain

tYM �
ffiffiffiffiffiffiffiffi
NE

R

s
1

n�
�

ffiffiffiffi
E

p

�1=2N
: (39)

At the correspondence point

E� N2�1=3 (40)

which means

tYM � ��1=3: (41)

At the correspondence point the time scale for parametric
resonance is independent of N and is set by the ’t Hooft
scale. As we will see in Sec. VC, the same holds true for
the quasinormal frequencies of a black hole at the corre-
spondence point.

B. p-brane parametric resonance

It is straightforward to extend this result to Dp-branes.
First, the mass of a single D0-brane in the previous section
is replaced by the mass of Dp-brane wrapped on a volume
Vp. So we should replace

1=R ! Vp=gsl
pþ1
s : (42)

The energy of the incoming Dp-branes is related to the
energy density � by

E ¼ �Vp: (43)

The tension of the strings is the same, �� 1=‘2s . So for
Dp-branes, in place of (38), the oscillation time scale is

tYM �
ffiffiffiffiffiffiffiffi
mE

p
n�

! Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�

gsl
pþ1
s

s
1

n�
: (44)

The number of open strings n is modified. As shown in the
Appendix, for N1 � N2 and p � 3, the number density of
open strings at the correspondence point is set by the ’t
Hooft scale. Thus

n� N2Vp�
p

3�p: (45)

Using this together with gsN ¼ g2YMN‘3�p
s ¼ �‘3�p

s we
obtain

tYM � Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�

gs‘
pþ1
s

s
1

n�
� �� p

3�p
ffiffiffi
�

p
�1=2N

: (46)

From (22) the energy density at the correspondence point is

�� N2�
1þp
3�p (47)

so the time scale is

tYM � �� 1
3�p: (48)

Just as for 0-branes, the time scale for parametric reso-
nance is independent of N and set by the ’t Hooft scale.

3-branes are a special case since the ’t Hooft coupling is
dimensionless. The correspondence point is defined by
�� 1. As shown in the Appendix, for N1 � N2 the number
of open strings at the correspondence point is

n� N2V3U
3
0; (49)

where U0 is the horizon radius of the black brane. The
energy density at the correspondence point is �� N2U4

0, so

the parametric resonance time scale is

tYM � Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�

gs‘
pþ1
s

s
1

n�
� 1

U0

: (50)

Thus for D3-branes the parametric resonance time scale is
1=U0, which also happens to be the inverse temperature of
the black brane.

C. Comparison to quasinormal modes

Quasinormal modes for nonextremal Dp-branes were
studied in [34,35] following earlier work on
AdS-Schwarzschild black holes [36]. The basic idea is to
solve the scalar wave equation in the near-horizon geome-
try of N coincident nonextremal Dp-branes, with a
Dirichlet boundary condition at infinity and purely ingoing
waves at the future horizon. This gives rise to a discrete set
of complex quasinormal frequencies, whose imaginary
parts govern the decay of scalar perturbations of the black
hole. It was found that the quasinormal frequencies are
proportional to the temperature, with a coefficient of pro-
portionality that was found numerically in [34].
Recall that the temperature, energy density and entropy

density of these black branes are related to their horizon
radius U0 by [27,34]

T � 1ffiffiffiffi
�

p Uð5�pÞ=2
0 ; �� N2

�2
U7�p

0 ;

s� N2

�3=2
Uð9�pÞ=2

0 :

Assuming p � 3, at the correspondence point we have

U0 � �1=ð3�pÞ so that

T � �
1

3�p; �� N2�
pþ1
3�p; s� N2�

p
3�p:

These quantities all obey the expected large-N counting,
and since the ’t Hooft coupling � has units of ðenergyÞ3�p,
these results could have been guessed on dimensional
grounds. In the special case p ¼ 3 the ’t Hooft coupling
is dimensionless and the correspondence point is defined
by � ¼ 1. At the correspondence point the horizon radius
U0 remains arbitrary, with

T ¼ U0; � ¼ N2U4
0; s ¼ N2U3

0:

Again these results could have been guessed on dimen-
sional grounds.
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As we saw in Secs. VA and VB the time scale for
parametric resonance is

tYM �
(
��1=ð3�pÞ for p � 3

1=U0 for p ¼ 3:
(51)

For all p this matches the inverse temperature of the black
brane, tYM � 1=T. Thus at the correspondence point the
time scale for parametric resonance matches the time scale
for the decay of quasinormal excitations of the black brane.

VI. COMPARISON TO EQUILIBRIUM
PROPERTIES

It is interesting to compare the properties of the bound
state as initially formed to the equilibrium properties of the
black hole. This will show us that, at the correspondence
point, very little additional evolution is required to reach
equilibrium—perhaps just a few e-foldings of parametric
resonance will suffice.

First, in a 0-brane collision, note that the total number of
open strings produced is�N1N2. With equal chargesN1 ¼
N2 ¼ N=2 the number of open strings is OðN2Þ. At the
correspondence point these strings have a mass ��1=3, so
the total energy and entropy in open strings is

E� N2�1=3; S� N2:

This matches the equilibrium energy and entropy of the
black hole, suggesting that black hole formation at the
correspondence point is a simple one-step procedure, in
which the open strings that are formed in the initial colli-
sion essentially account for the equilibrium properties of
the black hole. The analogous result for p-branes is that the
number of open strings at the correspondence point is,
for p � 3,

n� N2Vp�
p

3�p; (52)

where we have used (A2) and the fact that U� �
1

3�p. Since
the open strings have a mass �U, this corresponds to a
total energy and entropy in open strings

E� N2Vp�
pþ1
3�p; S� N2Vp�

p
3�p

which again matches the equilibrium energy and entropy
of the black brane. This again suggests that the black hole
is essentially fully formed in the initial collision, with very
little additional evolution required to reach equilibrium.4

Another quantity we can compare at the correspondence
point is the size of the bound state. At weak coupling, after
n open strings have been formed, the amplitude of oscil-
lation of the resulting bound state is, from (27),

L ¼ E

n�
: (53)

At the correspondence point for general p we have

E� N2VpU
pþ1
0 (54)

while the initial number of open strings created is

n� N2VpU
p
0 : (55)

Thus the initial amplitude of oscillation as measured in the
U coordinate is

L=‘2s ¼ E=n�U0: (56)

In other words, the initial oscillation amplitude matches
the equilibrium horizon radius of the black brane. Again
this suggests that after the initial collision, only a small
amount of additional evolution is required to reach
equilibrium.

FIG. 3. A collapsing shell of 0-branes. Initially the 0-branes
are spread uniformly over an S8 with velocities toward the
center.

8

S
7

U

θ
W

S

boson

FIG. 4 (color online). The 0-branes are spread over an S8 of
radius U. The green S7 has radius U sin � and the red W boson
has length 2U sin�=2.

4When p ¼ 3 the matching is n� N2V3U
3
0 , E� N2V3U

4
0 ,

S� N2V3U
3
0.
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VII. SHELL COLLAPSE

So far we have studied bound state formation in a
collision between two clusters of D-branes, in the geome-
try shown in Fig. 1. Here we study a different initial
configuration, in which N D0-branes are uniformly distrib-
uted over a collapsing spherical shell as in Fig. 3. We will
see that the correspondence principle applies and a similar
outcome is obtained in this case.

We consider an initial configuration in which the
0-branes are uniformly spread over an S8 of radius U in
nine spatial dimensions. The 0-branes are localized but
uniformly distributed over the sphere, with velocities di-
rected toward the center. Intuitively we argue as follows.
Since the total volume of the sphere scales as U8, each
0-brane occupies a volume �U8=N, and the distance be-

tween nearest-neighbor 0-branes scales as U=N1=8. This
means virtual open strings connecting nearest-neighbor

0-branes are quite light, with a mass�U=N1=8 that goes to
zero at large N. However the typical open string is much
heavier, with amass�U that is independent ofN.We expect
these typical open strings to dominate the bound-state for-
mation process, and therefore expect to have a well-defined
correspondence point at large N.

To argue this in more detail, it is useful to consider a
0-brane located at the south pole and study the number of
virtual open strings as a function of the angle � to the other
0-brane. See Fig. 4. The number of distinct open strings dn
in the interval ð�; �þ d�Þ is

dn ¼ N
32�4U8

105

� �4

3
ðU sin �Þ7 �Ud�: (57)

The first factor N=ð32�4U8

105 Þ is the number density of

0-branes on the S8, the second factor �4

3 ðU sin �Þ7 is the

volume of an S7 located at an angle � from the south pole.
Thus the number density of open strings is

dn

d�
¼ 35

32
Nsin 7�: (58)

We can also find the mass density of open strings dm
d� . Since

an open string subtending an angle � has a mass
2U sin�=2, this is given by

dm

d�
¼ dn

d�
� 2U sin

�

2
¼ 35

16
NUsin 7� sin

�

2
: (59)

The W-boson number density 1
N

dn
d� and mass density 1

NU
dm
d�

are plotted in Fig. 5.
As can be seen in the figure, there are light open strings

at large N. However the number of these strings is tiny,
since dn

d� � �7 at small angles.5 Most of the W-bosons are

concentrated around � ¼ �=2. Therefore a spherical shell
is basically the same as having W-bosons distributed in the
interval �0 < �< �� �0, where �0 is determined by the
fraction of 0-branes pairs we neglect. For example, if we
neglect dn

d� � 10�7N, then �0 � 0:1. Since the masses of

the W-bosons near � ¼ �=2 are all OðUÞ, we can simply
approximate the entire W-boson spectrum by taking
mW �U.
We now consider what happens when we give the shell

of 0-branes some velocity toward the origin. The analysis
is almost identical to the colliding clusters considered in
Sec. II. Given N D0-branes with total energy E, the
asymptotic relative velocity is

E�mass� v2 � N

R
v2 ) v�

�
ER

N

�
1=2 ¼

�
E�l4s
N2

�
1=2

:

(60)

In terms of the U coordinate, this becomes

_U ¼
�
E�

N2

�
1=2

: (61)

This matches the result in Sec. II for N1 ¼ N2 � N. Since
the W-boson masses are concentrated around mW �U,
open string production again sets in when

0

0.2

0.4

0.6

0.8

1.0

1

N

0

0.5

1.0

1.5

1

N U

6 3 2
2
3

5
6 6 3 2

2
3

5
6

FIG. 5 (color online). On the left, the W-boson number density 1
N

dn
d� . On the right, the W-boson mass density 1

NU
dm
d� .

5This is due to the fact that the 0-branes are spread on an S8.
The distribution would be less sharply peaked in lower dimen-
sions, with dn

d� � �d�1 on an Sd.

IIZUKA et al. PHYSICAL REVIEW D 87, 126010 (2013)

126010-8



U�
ffiffiffiffi
_U

p
�
�
E�

N2

�
1=4

: (62)

At the correspondence point, where the effective gauge
coupling becomes order one, we have

U� �1=3 (63)

and therefore

E� N2�1=3: (64)

Just as in Sec. II, this matches the radius and energy of a
black hole at the correspondence point.

VIII. CONCLUSIONS

In this paper we studied D-brane collisions. We argued
that the process of open string creation, which leads to
formation of a D-brane bound state at weak coupling,
smoothly matches on to a process at strong coupling,
namely black hole formation in the dual supergravity.
The transition happens at an intermediate value of the
coupling, given by the correspondence principle of
Horowitz and Polchinski. The size of the bound state, the
time scale for approaching equilibrium, and the thermody-
namic properties of the bound state all agree between the
two descriptions. The latter agreement happens quickly,
which suggests that the bound state is formed by the initial
collision in a near-equilibrium configuration.

We considered two types of initial configurations,
namely colliding clusters of wrapped Dp-branes and a
collapsing shell of D0-branes. The main difference
between the two configurations was that the shell had a
tail of light open strings which we argued could be
neglected. In fact, this distinction between the two con-
figurations is somewhat artificial, since with somewhat
more generic initial conditions the 0-branes which make
up the clusters could have some small random relative
velocities. One would then expect a bit of open string
production within the clusters, which would put the two
examples on much the same footing.

In the examples we studied the powers of N were fixed
by large-N counting, so at the correspondence point there
was essentially only a single length scale in the problem,
namely the ’t Hooft scale (for p � 3) or the horizon radius
(when p ¼ 3). In a sense this guaranteed the matching
between perturbative gauge theory and gravity results,
just on dimensional grounds. To explore this further it
would be interesting to study multicharged black holes,
or to deform the background in a way which introduces
another length scale, and ask whether there is still a simple
transition between perturbative worldvolume dynamics
and black hole formation.

A step in this direction would be to consider 0-brane
collisions but with N1 � N2. In this case, as we saw in
Sec. VI, the matching between perturbative gauge and
gravity results must be more complicated, because the

energy and entropy in open strings that are created in the
initial collision do not match the equilibrium energy and
entropy of the black hole. This means further dynamical
evolution is required before the bound state reaches equi-
librium. It would be interesting to study this, perhaps by
going beyond the linearized approximation made when
studying parametric resonance in Sec. IV. There are several
related interesting examples to consider, for example a
situation in which several concentric layers of shells are
collapsing.
Another direction would be to use the present results to

better understand the microstructure of black holes. The
picture that emerges, that a black hole is a thermal bound
state of D-branes and open strings, is reminiscent of the
fuzzball proposal [37]. However the real question, relevant
for understanding firewalls [38] or the energetic curtains of
[39], is whether this thermal state could be a dual descrip-
tion of the interior geometry of the black hole.
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APPENDIX: STRING PRODUCTION IN
A D-BRANE COLLISION

We review the process of open string production in a
D-brane collision, following [26,40].
Consider colliding two 0-branes with relative velocity v

and impact parameter b. Setting 2��0 ¼ 1, the virtual
open strings connecting the two 0-branes have an energy

or frequency! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2t2 þ b2

p
. As long as this frequency is

changing adiabatically open strings will not be produced.
The adiabatic approximation breaks down when _!=!2*1.
The peak value of this quantity is _!=!2 � v=b2 when
vt� b, so (restoring units) open strings are produced for

b &
ffiffiffiffiffiffiffiffi
v�0p

. In terms of the radial coordinate U ¼ r=�0,
where r is the distance between 0-branes, the energy of an
open string is mW ¼ U=2�. So the adiabatic approxima-
tion breaks down and open strings are produced when
_U=U2 � 1.6

Now consider colliding two p-branes wrapped on a torus
of volume Vp, with relative velocity v and impact parame-

ter b in the transverse dimensions. Consider a virtual open
string that connects the two p-branes and has momentum k

6In principle we should distinguish between the asymptotic
relative velocity _U ¼ v=�0 and the actual time-dependent value
_U ¼ v

�0
vtffiffiffiffiffiffiffiffiffiffiffiffiffi

b2þv2t2
p . But at vt� b this distinction can be ignored.
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along the p-brane worldvolumes. Setting 2��0 ¼ 1, this
virtual open string has an energy or frequency

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ v2t2 þ b2

p
:

If k ¼ 0 then the condition for open string production is
just what it was for 0-branes, b &

ffiffiffi
v

p
. Having nonzero k

increases ! and suppresses open string production.
Effectively there is a cutoff, that open strings are produced
up to a maximum momentum k� b� ffiffiffi

v
p

. Restoring

units, the maximum momentum is k� ffiffiffiffiffiffiffiffiffiffiffi
v=�0p ¼ _U1=2.

This cutoff corresponds to a number density of open strings
on the p-brane worldvolume,

#open strings

volume
� _Up=2:

Again these open strings are produced when _U=U2 � 1.
If we collide two stacks of Dp-branes with charges N1

and N2 respectively, it is easy to estimate the total number
of open strings that are produced. At weak coupling the
individual brane collisions are independent events. So for
0-branes the total number of open strings produced is

n� N1N2

while for p-branes the total number of open strings pro-
duced is

n� N1N2Vp
_Up=2 (A1)

or equivalently, in terms of the radius at which open string
production takes place

n� N1N2VpU
p: (A2)

There is, however, an important consistency check on
this result: we need to make sure the incoming D-branes
have enough kinetic energy to produce this number of open
strings. Equivalently, we need to make sure that the back-
reaction of open string production on the velocities of the
D-branes is under control. Given the number of open
strings (A2), the energy in open strings is

Estring ¼ nU ¼ N1N2Vp

�
��

N1N2

�pþ1
4
;

where we have used (17). On the other hand the kinetic
energy of the incoming branes is

E ¼ �Vp:

Thus the ratio

Estring

E
¼ �

�
��

N1N2

�p�3
4

(A3)

and the consistency condition Estring=E < 1 is equivalent to

�Up�3 < 1:

This is nothing but the condition �eff < 1. Thus at weak
coupling energy conservation does not limit the number of
open strings that are produced and the simple estimate (A2)
can be trusted.
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