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We investigate a holographic description of k-strings in higher representations via D5-branes with

world volume fluxes. The D-brane configurations are embedded in supergravity backgrounds dual to

confining field theories in three and four dimensions. We compute the tensions and find qualitative

agreement for the totally symmetric and totally antisymmetric representations with the results of other

methods such as lattice as well as the Hamiltonian approach of Karabali and Nair. A one-loop computation

on the D-brane configurations yields the Lüscher term and allows us to confirm a previously proposed

universal expression following from holography.
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I. INTRODUCTION

The AdS/CFT correspondence has provided a powerful
window into the strong coupling dynamics of gauge theo-
ries by proposing an alternative description in terms of
supergravity theories [1–4]. A particularly hopeful enter-
prize has been the search for models with properties re-
sembling those of quantum chromodynamics (QCD).
Important supergravity models dual to confining gauge
theories have been constructed and shown to produce
interesting strong coupling properties. The best-known
examples are dual to field theories in three and four
dimensions and they include: the Klebanov and
Strassler model (KS) [5], the Maldacena-Núñez’s (MN)
interpretation [6] of Chamsedine-Volkov [7] background,
Maldacena-Nastase (MNa) [8], and Cvetič, Gibbons, Lü,
and Pope (CGLP) [9].

An important QCD configuration are k-strings: colorless
combinations of quark-antiquark pairs stretched a distance
L which is much larger than the spatial separation "
between the individual pairs. The energy of this configura-
tion is proportional to L and the coefficient of proportion-
ality is the k-string tension (see [10] for a review). In the
holographic context the study of these configurations was
initiated in [11,12]; subsequent works include [13–16].

Conformal field theories also have configurations analo-
gous to k-strings in confining field theories. Important and
clarifying aspects of these configurations were worked out
for their analogues in the context of N ¼ 4 supersym-
metric Yang-Mills/IIB string theory on AdS5 � S5 duality.
In this context the k-string configurations are interpreted as
Wilson loops in higher representations. For example, the
authors of [17] proposed that the best description ofWilson
loops in higher representations is achieved, on the dual
gravity side, by D-branes with electric flux on their world
volumes. A solid proof of the identification of Wilson
loops in higher representations with D-branes with flux

in their world volume was provided in [18,19] who con-
cluded that Wilson loops in the fundamental representation
are best described by a fundamental string, while the
symmetric representation is described by a D3-brane, and
the antisymmetric by a D5-brane. More general represen-
tations are, in principle, described by a set of D3-branes or
a set of D5-branes. Recently, the one-loop effective actions
of Wilson loops in higher representations have been inves-
tigated in the holographic context of D-branes with fluxes
in AdS5 � S5 [20,21].
One of our goals is to extend the rigorous results of the

conformal case to the realm of confining theories and to
ultimately connect our results with those of other approaches.
In [14], we compared k-strings in two different gauge/

gravity dual theories, one of D4-branes in the CGLP back-
ground and the other of D3-branes in the MNa background.
In this work we find that a D5-brane embedded in either the
MNa or the MN background has a solution whose tension
exhibits k-ality and approximates a Casimir law. This
result is in stark contrast with the case of D3-branes on
these backgrounds which yield exact sine laws. It is also
interesting that the MN is dual to a 4D k-string and the
MNa is dual to a 3D k-string, and that they both yield the
exact same tensions. In this paper we continue our program
of holographic studies of k-strings by providing a unified
treatment of D5-branes with world volume flux in two
supergravity backgrounds MNa [6] and MN [8].
One of the lessons we learned from the conformal case

[18,19] is that D5 probe branes in a D5 generated super-
gravity background describe objects in the totally symmet-
ric representation. When applied to our case, this fact is
reflected in the D5 probe yielding a new tension law with
values higher than both the Casimir and the sine laws. This
interpretation is confirmed in the context of k-strings in
2þ 1 theories where we can compare with data from
lattice gauge theories and Hamiltonian methods.
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Finally, the quantum treatment of the branes yields the
quantum correction to the k-string energy known as the
Lüscher term, which fits into a general formula for all other
brane configurations we have computed. This provides
further evidence for the universality class that these super-
gravity configurations form for k-strings.

This paper is organized as follows. In Sec. II we present
the classical solution of a D5-brane with electric flux
embedded in the MN and MNa backgrounds. We find the
exact same tension law for both embeddings. The formula
looks similar to a Casimir law but it is more complicated.
In Sec. III we compare this new tension result to other
brane embeddings that have been investigated [11,12] as
well as lattice [22–24] and Hamiltonian results [25]. In
Sec. IV we show that the quantum D5-brane analysis
agrees with all of our previous analyses for the Lüscher
term and they all fit in an encompassing formula (4.24).
Section V contains our conclusions. We relegate various
technical aspects of the quadratic fluctuations around the
classical solutions to the Appendix.

II. THE CLASSICAL D5-BRANE IN
MN/MNa BACKGROUNDS

A. The Dp-brane action

The 10D bosonic backgrounds consists of a metric
which is sourced by a Neveu-Scharz form, Ramond-
Ramond forms, the dilaton and classically no fermion
contributions:

ds210 ¼ G��dX
�dX�; H3 ¼ dB2;

Fnþ1 ¼ dCn; �:
(2.1)

We embed a probe Dp-brane at bosonic coordinates X� ¼
X�ð�aÞ with world volume coordinates �a. We denote the
brane’s Uð1Þ gauge field as

F ab ¼ Bab þ 2��0Fab: (2.2)

Here Bab is the pullback of B��,

Bab ¼ B��

@X�

@�a

@X�

@�b
; (2.3)

and Fab is a Uð1Þ gauge field on the brane

Fab ¼ @Aa

@�b
� @Ab

@�a : (2.4)

The Dp-brane action, for the approximation we consider is
composed of a Born-Infeld (BI) and a Chern-Simons (CS)
term:

Sp ¼ SðBIÞp þ SðCSÞp : (2.5)

The BI piece of the action is

SðBIÞp ¼ ��p

Z
dpþ1�e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detMab

p
; (2.6)

where

Mab � gab þF ab; M � � det ðMabÞ;
�p ¼ ð2�Þ�pð�0Þ�ðpþ1Þ=2;

(2.7)

and gab ¼ gabðXð�ÞÞ is the pullback of the 10D metric
G�� ¼ G��ðXð�ÞÞ,

gab ¼ G��

@X�

@�a

@X�

@�b
: (2.8)

The Chern-Simons action is written as

SðCSÞp ¼�p

Z X
n

eF ^Cn

¼�p

Z �
Cpþ1þF ^Cp�1þ1

2
F ^F ^Cp�3þ���

�
;

(2.9)

where the Cn are understood as the pullbacks of the
Ramond-Ramond forms,

Ca1...an ¼ C�1...�n

@X�1

@�a1
� � � @X

�n

@�an
: (2.10)

The sum over n is dependent on the specific Sugra theory.
Type IIB has n ¼ 0, 2, 4, 6, 8 and type IIA has n ¼ 1, 3, 5,
7, 9. Our action defines a classical field theory of scalar
fields, X� ¼ X�ð�Þ and Uð1Þ gauge fields, Aa ¼ Aað�Þ on
the Dp-brane. This is, in fact, precisely one of the two
parameters that we use to describe our Lüscher term for-
mula (4.24). Namely, p, which is the spatial dimension of
the Dp-brane world volume. The other parameter we used
is d, which is the space-time dimension of the effective
dual field theory.

B. The MN/MNa backgrounds and source forms

It is well known from the works of [26,27], that the point
� ¼ 0 corresponds to the confining region in the dual
gauge theory. The effective fundamental tension is given
by T ¼ g00ðrmin Þ=ð2��0Þ.
The original discussion of k-strings in 3þ 1 and 2þ 1

dimensions used this crucial fact to simplify the con-
struction of holographically dual configurations [11,12].
Namely, the D-brane configurations were localized pre-
cisely at this confining point in the bulk. Exploiting this
insight, we construct solutions that are localized in the
confining region. Since we also discuss the one-loop
properties of the D-brane configurations in Sec. IV, we
present the MN/MNa solutions including up to second
order in an expansion of � about � ¼ 0, the confining
point.

BUTTON et al. PHYSICAL REVIEW D 87, 126005 (2013)

126005-2



The backgrounds take the form

ds2 ¼ e�
�
dx2d þN�0

�
d�2 þR2d�2

6�d þ
1

4
ð!a �AaÞ2

��
; (2.11)

e� ¼ e�0ð1þ c1�
2Þ þOð�3Þ; R2 ¼ �2 þOð�3Þ; (2.12)

F3 ¼ dC2 ¼ �N

4
ð!1 � A1Þ ^ ð!2 � A2Þ ^ ð!3 � A3Þ þ N

4

X
a

Fa ^ ð!a � AaÞ2 þ c2
N

16
Oð�4Þ; (2.13)

where

�aAa ¼ �1að�Þd�1 þ �2að�Þ sin�1d�1 þ �3bð�Þ cos ð�1Þd�1;

!1 þ i!2 ¼ e2i�2ðd�2 þ sin�2d�2Þ; !3 ¼ �2d�2 þ cos ð�2Þd�2;

að�Þ ¼ 1þ a2�
2 þOð�3Þ; bð�Þ ¼ 1þ b2�

2 þOð�3Þ;
(2.14)

where �a are the Pauli matrices. The values of the parameters for the MN background fields defined above are
given by

d¼ 4; c1 ¼ 4

9
; c2 ¼ 0; a2 ¼�2

3
; b2 ¼ 0;

and the MNa parameters are

d ¼ 3; c1 ¼ 7

24
; c2 ¼ 1; a2 ¼ b2 ¼ � 1

6
:

We also choose the gauge for the Ramond-Ramond two form as

C2 ¼ N�0

4
½að�Þ cos ð2�2Þd�1 ^ d�2 þ 2�2bð�Þ sin ð�1Þd�1 ^ d�1 � að�Þ sin ð�2Þ sin ð2�2Þd�1 ^ d�2

� að�Þ sin�1 sin ð2�2Þd�2 ^ d�1 þ 2�2 sin ð�2Þd�2 ^ d�2 þ 2b0ð�Þ�2 cos ð�1Þd�1 ^ d�

þ ðbð�Þ cos ð�1Þ cos ð�2Þ þ að�Þ cos ð2�2Þ sin�1 sin�2Þd�1 ^ d�2�: (2.15)

C. The k-string tension law

Let us briefly summarize our results and place them in
the bigger frame of the k-string literature. We now embed a
D5-brane probe in the MN and MNa type IIB SUGRA
backgrounds, and extract the tension from its classical
energy. The embedding is different for each background
but we show that the Hamiltonians, and thus the string
tensions, are identical. The solution corresponds to a non-
trivial embedding and its world volume topology is
R1;1 � I � S3, where I is an interval of R1. This topology
contrasts with those investigated in [11,12] which were
R1;1 � S2 and R1;1 � S3, respectively. We integrate out the
angular degrees of freedom to obtain an effective
string. For the purpose of string tensions, we pass to the
Hamiltonian formalism via Legendre transformation.
Solving for the conjugate momentum in terms of a constant
electric flux on the brane, substituting the expression back
into the Hamiltonian and then extremizing with respect to a
background parameter present on the D5-brane leads to the
brane tension which we interpret as the field theory k-string
tension.

Recall that k-strings are open strings with their ends
fixed on the boundary. Here, however, we focus on the
portion of the string localized at � ¼ 0 because the part of

the action coming from the extension to the boundary
where the field theory lives is interpreted as describing
the infinite mass of external quarks [28]; we thus regular-
ized the tension by subtracting that piece.
The holographic configuration that best captures the

properties of k-strings is constructed as follows. First, as
a string in the dual field theory, we expect it to be extended
along one spatial dimension, that is, to live in ðt; xÞ.
Further, as follows from previous analysis we want to
include a Uð1Þ gauge field in the world volume of the
brane that represents the number of fundamental strings
dissolved in the world volume [29,30]. The k-string tension
is identified with the classical tension on the D-brane
configuration. As a consistency check we verify that
the resulting tension satisfies the k-ality condition as dic-
tated by the representation theory of the field theory
configuration.

1. Tension from the MN/MNa backgrounds

The first step is to consider the pullback of the MN/MNa
backgrounds to the D5-brane world volume in the limit in
which the holographic coordinate to zero, �, goes to
zero. We note that while the MN background is dual to
3þ 1-dimensional field theory and the MNa background is
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dual to a 2þ 1-dimensional one, our solutions produce the
exact same tension law. Below is the MN calculation. The
MNa background calculation is completely analogous to
the MN case with only a slightly difference embedding
map and metric. Referring to the metric, for the MN case
assume a constant mapping solution of �2 on the brane,
with explicit coordinate mappings below. The D5-brane
parametrization is initially given by

�a ¼ ðt; x; �1; �2; 	1; 	2Þ: (2.16)

As we will illustrate below, it is important to choose an
embedding that guarantees that the world volume metric is
nondegenerate. This criterion requires that X2 in the MNa
case and X3 in the MN case be suitable functions of the
angles �1, �2, 	1, and 	2 in the embeddings. For example,
an embedding which has X3 ¼ X3

0 , where X
3
0 is a constant

as in

X
�
MN ¼ ðX0; X1; X2; X3;�1;�2;�1;�2;�2; �Þ

¼ ðt; x; 0; X3
0 ; �1; �2; 	1; 	2; c 20 ; 0Þ; (2.17)

will yield a metric whose determinate is proportional to R2.
From Eq. (2.12) one sees that as � ! 0, the determinate
will vanish.

Examples of embeddings that induce finite volume D5
branes at � ¼ 0 are given below. It will be instructive to
consider two cases:

(1)

X
�
MN ¼ ðX0; X1; X2; X3;�1;�2;�1;�2;�2; �Þ

¼ ðt; x;0; X3
0ð	þ þ	�Þ; �1; �2;	1;	2; c 20 ; 0Þ

(2.18)

and

X�
MNa ¼ ðX0;X1;X2;�1;�1;�2;�1;�2;�2;�Þ

¼ ðt; x;X2
0ð	þþ	�Þ;0;�1;�2;	1;	2;c 20 ;0Þ;

(2.19)

which gives a metric with finite volume at � ¼ 0 of

Vol1D5 ¼ 4�2ðN�0Þ32 exp ð3�0ÞXi
0 sin ð2c 20Þ

for both the MN and MNa cases. Here i ¼ 2, 3 for
the MNa and MN cases, respectively.

(2) The case we will explore throughout this work uses
the embedding,

X
�
MN ¼ ðX0; X1; X2; X3;�1;�2;�1;�2;�2; �Þ

¼ ðt; x; 0;�X3
0 cos ð�þÞ cos ð��Þ;

�þ; ��; 	1; 	2; c 20 ; 0Þ (2.20)

and

X
�
MNa ¼ ðX0; X1; X2;�1;�1;�2;�1;�2;�2; �Þ

¼ ðt; x;�X2
0 cos ð�þÞ cos ð��Þ; 0; �þ; ��; 	1;

	2; c 20 ; 0Þ; (2.21)

where above we have denoted

�þ ¼ �1 þ �2
2

; �� ¼ �1 � �2
2

:

For this case, the induced world volume is

Vol2D5 ¼ �2ðN�0Þ32 exp ð3�0ÞXi
0 cos ð2c 20Þ

for the same interpretation of Xi. In this case the
nontrivial embedding of the brane in the X2 coor-
dinate for MNa and X3 for MN is a mapping into a
segment on the D5-brane.

In both cases the constant c 20 is an extremized value for

�2. The values that minimize the Hamiltonian via

@�2
H ð�2Þjc 20

¼ 0 (2.22)

are c min
20

¼ �ðnþ 1
4Þ for case 1 above and c min

20
¼�ðnþ 1

2Þ
for case 2.
Interestingly enough, both of these examples will give

the same tension laws. Let us restrict our attention to case
2 from here on out. Then the pullback of the metric on the
D5-brane for both MN and MNa backgrounds is

ds2MN¼
1

8
e�0ð2N�0ðd�21þd	2

1�2d	1d	2cosð�1Þþd	2
2Þ

�8dt2þ8dx2þ2ðX3
0Þ2ðsin�1d�1þsin�2d�2Þ2Þ

(2.23)

and

ds2MNa¼
1

8
e�0ð2N�0ðd�21þd	2

1�2d	1d	2cosð�1Þþd	2
2Þ

�8dt2þ8dx2þ2ðX2
0Þ2ðsin�1d�1þsin�2d�2Þ2Þ:

(2.24)

Both world volume induced metrics have world volume
forms given by

dV ¼ r4effective sin ð�1Þ sin ð�2Þdx dt d�1d�2d	1d	2;

(2.25)

where the effective radii, reffective, for the respective back-
grounds are given by

r4MN ¼ 1

16
ðN�0Þ3=2e3�0X3

0 cos ð2c 20Þ;

r4MNa ¼
1

16
ðN�0Þ3=2e3�0X2

0 cos ð2c 20Þ:
(2.26)

Both the MN and MNa have induced geometries with a
scalar curvature given by
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R ¼ 6

N�0 e
��0 ; (2.27)

which is small in the limit of parameters that we choose for
the solution and attests to the validity of the supergravity
background and Born-Infeld action in the given approx-
imations. From the above we calculate the D5-brane action
below. Consider the action

SðfullÞ5 ¼ ��5

Z
d6�e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detMab

p
þ�5

Z �1
2
F ^F ^ C2

�
(2.28)

where,

M ab � gab þF ab (2.29)

with the only nonvanishing components of F ab being
F 10 ¼ �F 01 ¼ 2��0E; we also assumed C6 ¼ 0 in the
background we consider although it can be nonzero in the
theory.
In the above E is the electric field. The D5-brane

Lagrangian density reduces to

L ¼ �N3=2e�0ðXi
0Þ sin ð�1Þ sin ð�2Þ cos ð2c 20Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�0 � 4�2E2�02p

512�5�03=2 ; (2.30)

where the subindex i takes values i ¼ 2 for MNa and i ¼ 3
for MN. For our purposes we integrate out the angular
degrees of freedom. This choice is available to us due to
our judicious choice electric field and dilaton evaluated at
the holographic coordinate � ¼ 0. We next perform a
Legendre transformation in order to obtain the D5-brane
Hamiltonian

H ¼ E
@L

@ _A
�L: (2.31)

We equate the conjugate momentum to a constant � by
definition such that @L

@ _A
� �, with _A ¼ E. We interpret this

transformation along the lines of [31,32] and find

� ¼ EN3=2e�0Xi
0

ffiffiffiffiffi
�0p

cos ð2c 20Þ
8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�0 � 4�2E2�02p : (2.32)

Since E has mass dimensions ½E� ¼ Mass2 and �0 has
dimensions ½�0� ¼ 1=Mass2, and ½Xi

0� ¼ 1=Mass, we see
that � is dimensionless. Using the conjugate momentum
defined in the previous line, we solve for the electric field
in terms of the conjugate momentum which has both
positive and negative roots. Note that there exists a distinct
Hamiltonian for each root. We solve for each root solution
for the electric field and substitute back the solution in the
Hamiltonian. Thus we have

H�¼ e�0ðN3e2�0ðXi
0Þ2cos2ð2c 20Þ�256�4�2�0Þ

32�3�03=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
256�4�2�0þN3e2�0ðXi

0Þ2cos2ð2c 20Þ
q :

(2.33)

While for the positive electric field solution we have

Hþ ¼ e�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
256�4�2�0 þ N3e2�0ðXi

0Þ2cos 2ð2c 20Þ
q

32�3�03=2 :

(2.34)

It is clear that Hþ has a minimum only when
cos ð2c 20Þ vanishes. But as one can see in Eq. (2.26),

such a minimum is singular as the value of the metric
determinant on the D5 world volume vanishes. Therefore
we focus on theH� solution where one can show that this
solution exhibits k-ality and can be identified with funda-
mental charge dissolved on the 5-brane world volume
[31,32]. We wish to minimize H� with respect to c 20

in order to solve for the string tension in terms of an
extremized value of c 20 consistent with Eq. (2.22). This

yields a family of solutions of the form

c 20 ¼
�

2
n for n 2 Z: (2.35)

Note that taking n ! nþ 1 leaves the volume form invari-
ant but has the effect of exchanging �1 $ �2.

2. The tension law

Inserting the solution in Eq. (2.35) back into the
Hamiltonian, Eq. (2.33) yields the tension on the D5-brane:

Ti ¼ e�0ðN3e2�0ðXi
0Þ2 � 256�4�2�0Þ

32�3�3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
256�4�2�0 þ N3e2�0ðXi

0Þ2
q ; (2.36)

with the label i ¼ 2 for MNa and i ¼ 3 for MN. We see
that the form of the 5-brane tension is the same for either
background, the only difference being the value of the bulk
fields Xi

0 on the brane.

Since the Euler-Lagrange equations require the conju-
gate momentum to be a constant and anticipating a solution
that enjoys N-ality, we write the quantization condition
� ¼ k. Then with this, the correct choice in the pullback

parameter, Xi
0, that ensures N-ality is Xi

0 ¼ 16�2e��0

ffiffiffiffi
�0
N

q
.

From Eq. (2.36) one can see that this choice for Xi
0 will give

zero tension when k ¼ N. Upon substitution of these val-
ues back into their respective tension laws we obtain the
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exact same D5-brane tensions for both MN and MNa
backgrounds

TMN=MNa ¼ e�0ðN � kÞðkþ NÞ
2��0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ N2
p : (2.37)

We rescale k ! 2k0 � N which allows us to come to the
final D5-brane tension,

TD5 ¼
ffiffiffi
2

p
e�0k0ðN � k0Þ

��0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ ðN � k0Þ2

q : (2.38)

As puzzling as the shift might seem, note that expression
(2.37) would correspond to an object with nonzero ten-
sion even for k ¼ 0; the shift, therefore, could be seen as
a shift in the ground state energy of the corresponding
configuration. We have, following equation (2.38), iden-
tified the energy of the configuration with a k-string
tension. Figures 1 and 2 show that this tension exhibits
N-ality, and is larger than both the Casimir and sine
laws. Comparing to the data from Table I, we see that
this aligns qualitatively with the identification as
D5-branes being the symmetric representation and
D3-branes being the antisymmetric representation in
the case of MNa.

In what follows we present holographic results for the
k-string tension that follow from the present work and all
from our previous investigations [13–16]. In all we present
the k-string tensions in 2þ 1- and 3þ 1-dimensional field
theories using probe D3, D4, and D5 branes.

In Fig. 1, we present the holographic k-string tension
computed for 2þ 1 field theories using a D5-brane in
the MNa solutions (this work), D3 in the MNa solutions,
and a D4 in the CGLP solutions which was computed
[12]; we have also plotted the Casimir law to orient the
reader.

In Fig. 2 we consider the results for 3þ 1-dimensional
theories. We have included the results of a D5-brane in the
MN background (this work), a D3-brane in the MN solu-
tion yielding precisely a sine law; we also consider the D3
probe brane in the Klebanov-Strassler background pre-
sented in [11]. Finally, we have also plotted the Casimir
law to guide the reader.
In the next section we put our results in the context of

higher representations and compare them to results pro-
vided by other methods, when available.

1 2 3 4 5 6
k

0.5

1.0

1.5

2.0

Tk Tk 1

k string Tension,

d 2 1, N 6

CGLP D4

Casimir

MNa D3 Sine

MNa D5

FIG. 1 (color online). The N ¼ 6, d ¼ 2þ 1 k-string tension
for various gauge/gravity models compared to the Casimir and
sine laws. Clearly, the MNa D5 representation is the highest
energy representation of all of these models, just as in the N ¼ 4
case.

1 2 3 4 5 6
k

0.5

1.0

1.5

2.0

Tk Tk 1

k string Tension,

d 3 1, N 6

Casimir

KS D3

MN D3 Sine

MN D5

FIG. 2 (color online). The N ¼ 6, d ¼ 3þ 1 k-string tension
for various gauge/gravity models compared to the Casimir and
sine laws. Clearly, the MNa D5 representation is the highest
energy representation of all of these models. Comparing with
recent lattice data [44], we see that the MNa D5-brane is acting
more like the symmetric representation, whereas the KS
D3-brane is acting more like the symmetric representation.
The MN D3-brane, which is a precise sine law, is in between.

TABLE I. Comparison of 2þ 1 k-string tensions from various
methods. The values quoted are Tk=T1, where Tk is the k-string
tension, and T1 ¼ Tk¼1 is the k ¼ 1 string tension.

Tk=T1 from Various Methods in 2þ 1
S ¼ symmetric, A ¼ antisymmetric, M ¼ mixed

Group k CGLP [12] MNa BT [22–24] KN [25]

SUð4Þ 2 1.310(A) 1.414(A) 1.353(A) 1.333(A)

1.491(S) 2.139(S) 2.400(S)

SUð5Þ 2 1.466(A) 1.618(A) 1.529(A) 1.5(A)

1.715(S)

SUð6Þ 2 1.562(A) 1.732(A) 1.617(A) 1.6(A)

1.824(S) 2.190(S) 2.286(S)

3 1.744(A) 2.0(A) 1.808(A) 1.800(A)

2.163(S) 3.721(S) 3.859(S)

2.710(M) 2.830(M)

SUð8Þ 2 1.674(A) 1.848(A) 1.752(A) 1.714(A)

1.917(S)

3 2.060(A) 2.414(A) 2.174(A) 2.143(A)

2.599(S)

4 2.194(A) 2.613(A) 2.366(A) 2.286(A)

2.857(S)
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III. TENSIONS FROM VARIOUS MODELS

In this section we compare the results of k-string ten-
sions from holographic computations with those obtained
using various other approaches.

Computations of k-string tensions have been performed
in various frameworks. In the context of lattice gauge
theories we quote the most recent results due to
Bringoltz and Teper [24]. For other methods it is quite
challenging to address the question of k-string tensions. In
a very interesting work, [33], Douglas and Shenker found a
sine law for k-strings in the context of Seiberg-Witten
theories (see also [34] for a more comprehensive discus-
sion, and [10] for a general review). General results for
confining QCD-like theories are in general lacking. One
beautiful exception is the work of Karabali and Nair who
used a Hamiltonian approach to compute k-string tensions
in 2þ 1-dimensional Yang-Mills theory [25]. Their full
answer states the k-string tension follows precisely a
Casimir law. Couplings of Yang-Mills to matter in this
framework have been also presented in [35–37]. An inter-
esting work using different methods but extending the 3D
Yang-Mills calculation to 3D Yang-Mills with adjoint
matter was recently presented by Armoni-Dorigoni-
Veneziano [38]. The paper uses the Eguchi-Kawai volume
reduction to calculate the tension of k-strings in the
theories with adjoint fermions and obtains a sine law,
Tk ¼ N sin ð�k=NÞ.

Following the discussion of Gomis and Passerini
[18,19], we identified a probe D5 in the Maldacena limit
of D3 background as configurations in the antisymmetric
representation. Similarly, a D3-brane in the Maldacena
limit of a D3-brane background or a D5-brane in the
Maldacena limit of a D5 background corresponds to the
symmetric representation. This very general conclusion is
based on the analysis of Dp=Dq-brane bound states dis-
cussed in Polchinski’s string theory monography [39] and
was explicitly spelled out in [18,19].

Let us conclude this section by addressing an important
question.1 It is believed that in a confining theory
the tension of the k-symmetric string and the
k-antisymmetric strings are the same. Screening turns the
symmetric source into an antisymmetric. This view is
defended, for example, in [40]. What transpire from
Figs. 1 and 2 is that the k-symmetric representation de-
scribed holographically byMND5 andMNa D5 has higher
tension. Presumably these D5 configurations, having
higher energy, will convert themselves dynamically into
D3 configurations.

Such classical solutions, if they exist, are rather compli-
cated and will require methods beyond the scope of this
paper. For example, the solutions should be time dependent
and interpolate between one brane as t ! �1 and another

as t ! 1; note that the boundary conditions involved are
different in dimensionality. The situation then suggests that
it is logically possible that the holographic configurations
described in this manuscript that correspond to
k-symmetric strings in the dual field theory are metastable.
It is worth restating that the holographic calculation is

valid at large N, namely, in the limit with N ! 1, with

 ¼ g2YMN fixed. Our intuition of screening can be very
different in this limit. For example, the adjoint string
discussed [40] cannot break in this limit. If we borrow
some intuition from the AdS/CFT correspondence in the
case of N ¼ 4 supersymmetric Yang-Mills theory where
the corresponding configurations are Wilson loops in the
appropriate representations with N ! 1 and k=N fixed,
we conclude that each configuration is, at least, metastable
in the ’t Hooft limit.

IV. THE QUANTUM D5-BRANE IN
MN/MNa BACKGROUNDS

In this section we discuss aspects of the quantum fluc-
tuations for the classical D-brane configurations corre-
sponding to k-strings in the dual field theories.

A. The geometry of the minimized solution

The aforementioned values of c 20 , that is, c 20 ¼ �
2 n,

allows us to recast the minimized D5-brane metric into an
R1;1 � I � S3 geometry, where I is an interval manifold.
The coordinates ðx; t; yÞ chart the M3 ¼ R1;1 � I , while
the S3 is charted with Hopf coordinates ð�;	þ; 	�Þ.
Consider the coordinate transformation on the D5
given by

�a ¼ ðt; x; �1; �2; 	1; 	2Þ ! �0a ¼ ðt; x; y; �;	þ; 	�Þ;
(4.1)

where

�2 ! � arccos ð2y� cos ð2�ÞÞ; �1 ! 2�;

	1 ! 	þ �	�; 	2 ! 	þ þ	�:
(4.2)

The domain of the new coordinates is then ð�1 � y � 1Þ;
ð0 � � � �

2Þ; ð0 � 	þ � �Þ, and ð�2 � 	� � �
2Þ. These

are the Hopf coordinates on S3, modulo the phase shift of
	� ! 	� þ �

2 . Then the metric can be easily seen to have

M3 � S3 geometry,

ds2 ¼ e�0ðdx2�dt2þðXj
0dyÞ2Þ

þ2N�0e�0ðd�2þ sin2�d	2þþcos2�d	2�Þ: (4.3)

Here Xj
0 ¼ 8

ffiffiffiffi
�0p
N �2 exp ð��0Þ, for both the MN and MNa

cases. The minimal D5 volume form is then

1We are indebted to Adi Armoni for raising this question and
the interesting discussion that ensued.
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dVmin ¼ ð2N�0Þ3=2 exp ð3�0Þ
� Xj

0 cos � sin �dxdydt d� d	þd	�: (4.4)

The k-string tension, Eq. (2.38), and scalar curvature,
Eq. (2.27), remain the same. This simplification of the
metric will be useful for finding explicit solutions to the
perturbations as seen in the Appendix.

B. Quadratic fluctuations

The stability of the configuration as well as features
such as the Lüscher term require that we examine the
quadratic fluctuations of the k-string configuration
about its classical solution. Using the coordinates, �0,
defined by Eq. (4.1), we fluctuate about the classical
solution as

X�
MN ¼ ðX0; X1; X2; X3;�1;�2;�1;�2;�2; �Þ

¼
�
t; x; 
�X2ð�0Þ;�X3

0yþ 
�X3ð�0Þ; �� 1

2
arccos ð2y� cos ð2�ÞÞ þ 
��1ð�0Þ; �þ 1

2
arccos ð2y� cos ð2�ÞÞ

þ 
��2ð�0Þ; 	þ �	� þ 
��1ð�0Þ; 	þ þ	� þ 
��2ð�0Þ;c 20 þ 
��2ð�0Þ; 
��ð�0Þ
�

(4.5)

and

X
�
MNa ¼ ðX0; X1; X2;�1;�1;�2;�1;�2;�2; �Þ

¼
�
t; x;�X2

0yþ 
�X2ð�Þ; 
��1ð�0Þ; �� 1

2
arccos ð2y� cos ð2�ÞÞ þ 
��1ð�0Þ; �

þ 1

2
arccos ð2y� cos ð2�ÞÞ þ 
��2ð�0Þ; 	þ �	� þ 
��þð�0Þ; 	þ þ	� þ 
���ð�0Þ; c 20

þ 
��2ð�0Þ; 
��ð�0Þ
�
; (4.6)

with the gauge field fluctuations given by

A� ¼
�
� 1

2
Exþ 
�At;

1

2
Etþ 
�Ax; 
�Ay; 
�A�; 
�A	þ ; 
�A	�

�
(4.7)

in both backgrounds, where 
 is an infinitesimal formal
parameter to keep track of the order in perturbation theory.
These fluctuations will produce an effective Lagrangian at
order 
2. The first order in 
 contribution should vanish,
upon imposing the classical equations of motion, and up to
total derivatives; any nontrivial contributions at this order
represent further constraints on the perturbative fields.

C. Effective Lagrangian

In both, the MN and MNa, cases the first-order
Lagrangian is a total derivative except for the term

L 1st

 ¼ 2 cos ð2�Þ@�ð�AyÞ: (4.8)

This constrains �Ay to either be a constant or to be sym-

metric in the interval ð0 � � � �Þ, in order to avoid a
magnetic flux in the classical configuration. This linear
variation appears in problems where fluctuations are re-
stricted to a state within the given flux sector, particular
instance was thoroughly discussed in [41] and a key ele-
ment in demonstrating the stability of certain flux configu-
rations. At second order in 
, the variations of ��1ð�Þ and
��2ð�Þ for both cases only contribute to total derivatives.
We may use the diffeomorphism invariance to set the
fluctuations ��þð�Þ, ���ð�Þ, and ��2ð�Þ to zero. If we

choose to include their fluctuations, these fields serve as
Lagrange multiplier fields that demand that the magnetic
fields, Fy	� ¼ 0. These constraints can be satisfied when

�Ay vanishes.

With this, at order 
2, the fluctuations induce an effec-
tive metric on the D5-brane. By choosing c 20 ¼ �

2 for the

MN case and c 20 ¼ 0 for the MNa case, their effective

metrics take the same form, in the coordinates �0 ¼
ðx; y; t; �;	þ; 	�Þ,

gab ¼

g11 0 0 0 0 0

0 g22 0 0 0

0 0 �g11 0 0 0

0 0 0 g23 0 0

0 0 0 0 g23 sin ð�Þ2 0

0 0 0 0 0 g23 cos ð�Þ2

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

(4.9)

with

g11 ¼ e�0N2

k2þN2
; g22 ¼ 1

N
64e��0�4�0; g23 ¼ e�0N�0:

(4.10)
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The differential volume form is dV ¼
4�2 ffiffiffiffiffiffiffi

g11
p

N�02 sin ð2�Þdxdydtd�d	þd	�. Now we re-

scale the ðx; y; tÞ coordinates on M3 by writing ðx !ffiffiffiffiffiffiffi
g11

p
x; y ! ffiffiffiffiffiffiffi

g22
p

y; t ! ffiffiffiffiffiffiffi
g11

p
tÞ. This rescaling allows us

to write the metric as

gab ¼

1 0 0 0 0 0

0 1 0 0 0

0 0 �1 0 0 0

0 0 0 g23 0 0

0 0 0 0 g23 sin ð�Þ2 0

0 0 0 0 0 g23 cos ð�Þ2

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

(4.11)

viz,

ds2 ¼ ð�dt2 þ dx2 þ dy2Þ
þ g23ðd�2 þ sin �2d	2þ þ cos�2d	2�Þ: (4.12)

For the MN case, the effective Lagrangian density is

LMN

2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðk2 þ N2Þp
64N�5�03

�
ðra�X2Þra�X

2

þ ððra��Þra��þm2
���

2Þ � 1

2
�Fab�Fab

�
� N

16�3
sin ð2�Þ�ijk�Ai@j�Ak; (4.13)

where the indices ða; bÞ span the full D5 coordinates,
ðx; y; t; �; 	þ; 	�Þ, while ði; j; kÞ span only the M3 com-
ponent described by ðx; y; tÞ. With the exception of the
massless field �X2 and the relative sign between the
Chern-Simons term and the Yang-Mills term, the MNa
effective Lagrangian are the same

LMNa

2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðk2 þ N2Þp
64N�5�03

�
ððra��Þra��þm2

���
2Þ

� 1

2
�Fab�Fab

�
þ N

16�3
sin ð2�Þ�ijk�Ai@j�Ak:

(4.14)

Due to the Chern-Simons term, both Lagrangians are
gauge invariant only up to gauge parameters,�, that vanish
on the boundary of R2 � I .

The field equations for the MN case are

rara�X
2 ¼ 0; rara���m2

��� ¼ 0;

ra�Fab ¼ 4�JCSb :
(4.15)

Here the effective mass of the �� field is m�
2 ¼

e��0 8k2þ13N2

9N3�0 and the current JCSa arising from the Chern-

Simons term is

JCSi ¼ 2e��0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 þ N2Þ

q �0

N
�ijk@j�Ak; (4.16)

for the R2 � I coordinates and zero otherwise.
Similarly the MNa field equations are

rara���m�
2�� ¼ 0; (4.17)

ra�Fab ¼ �4�JCSb ; (4.18)

where here the renormalized mass of the �� field ism�
2 ¼

e��0 28k2þN2ð32þ�2Þ
48N�0ðk2þN2Þ and the current JCSa is the same as the

MN case. We will give an explicit solution in the
Appendix. A full discussion of the quadratic fluctuations
will require more work. For the purpose of determining the
Lüscher term it will suffice to make qualitative arguments
for the relevant modes of propagation that enter into the
Lüscher term. We make those arguments presently.

D. Massless modes and Lüscher term

The Lüscher term is the long range, Coulombic contri-
bution to the potential that arises from quantum corrections
in the k-string. Therefore the massless modes are the only
modes that can contribute to the Lüscher term. In the case
of the D5-brane described here, the geometry of the mini-
mized manifold contains a 3-sphere so will carry a
Laplacian that suggests that it is convenient to expand
the fields in terms of hyperspherical harmonics functions,

T ð
;m�;mþÞð�;	þ; 	�Þ. Since we are interested in the mass-

less modes of this theory, we expect them to correspond to
the lowest lying modes of the 3-sphere. One way to quickly
extract this information is to consider the fields to be
dependent only of the ðx; tÞ parameters on the full D5-
brane. Then we may integrate out the angular and y de-
pendence in the field equations to recover the effective 2D
equations of motion. This is similar to integrating the
angular variables to build an effective Lagrangian as in
[14]. Thus we can get an effective 2D k-string, and seek the
number of massless modes in that part of the Lagrangian
that is quadratic in the fluctuations. These 2D quadratic
Lagrangians, up to total derivatives, are for MN,

LMN
2D / ½cMN

X ra�X
2ra�X2 þ cMN

F �Fab�F
ab

þ cMN
� ra�A�ra�A� þ cMN

y ra�Ayra�Ay

þ cMN
	 rf�A	i

raf�A	i
þ cMN

� ðra��ra��

þm2
���

2Þ�; (4.19)

and for MNa,

LMNa
2D / ½cMNa

F �Fab�F
ab þ cMNa

� ra
f�A�raf�A�

þ cMNa
y ra�Ayra�Ay þ cMNa

	 rf�A	i
raf�A	i

þ cMNa
� ðra��ra��þm2

���
2Þ�; (4.20)
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where in both cases i ¼ þ, � sums over the residual
scalars from the original full 6 component gauge field of
the parent 6D theory. In these Lagrangians, the various
cMN’s and cMNa’s are constants. The metric is 2D
Minkowski, and the tilded fields are the field strength
renormalizations of the untilded fields, for instance,

f�A�i ¼ Zi�A�i ðno sumÞ: (4.21)

Also, m2
� is the effective mass of the �� field, given by

m2
� ¼

8<:
8k2þ13N2

9N�0ðk2þN2Þ MN

28k2þN2ð32þ�2Þ
48N�0ðk2þN2Þ MNa

: (4.22)

From the Lagrangians, we count six massless modes for
MN: one from the 2D gauge field which has 2 degrees of
freedom, minus the Gauss law constraint, and five massless

scalars �Ay, �A�, f�A	i
, and �X2. For MNa, we have the

same counting, minus the �X2 field. From an analysis
parallel to that of our previous ones [13,14], we conclude
that the Lüscher term fits that of our previous formulas

�E ¼ �ðdþ p� 3Þ�
24L

þ �; (4.23)

where� is a renormalizeable constant. This lends credence
to our belief that these solutions form a universality class
for k-strings. It is interesting to note that this formula,
which keeps appearing in all of our analyses of branes
acting as k-strings, differs from Lüscher’s formula [42,43]
by a number of degrees of freedom pþ 1 that is precisely
the dimension of the Dp-brane world volume.

E. Lüscher term universality

More explicitly, we find from all our previous brane
analyses [13–16] as well as the current one, the succinct
formula for the Lüscher term

VL€uscher ¼ �ðdþ p� 3Þ�
24L

; (4.24)

where d is the spatial dimension of the field theory and p is
the spatial dimension of the corresponding Dp brane real-
izing the configuration. It is worth emphasizing that the
above formula is valid in the large L length limit of the
k-string.

This is in contrast to the formula which fits the lattice
data well [44,45] at large L:

VL€uscher ¼ �ðd� 2Þ�
6L

: (4.25)

However, clearly, by a judicious choice of p, one can
acquire the same numerical value for the Lüscher term
that is found in lattice gauge theory

p ¼ 3d� 5; (4.26)

and this condition was satisfied in the classical analysis
original due to Herzog [12] from which we later proved the
form of the Lüscher potential with the quantum corrections
we computed in [14].
It is important to note that the lattice calculations are

done with flux tubes that are tori [44,45]. As our Dp brane
world volumes are not tori along the length of the k-string
direction, in our regularization procedure [13–16], we
chose periodic boundary conditions. This also makes it
easier to extract results from the regularization procedure.
Are the k-string representations of D-branes in a larger
universality class of which the lattice gauge theory SUðNÞ
results a subset? This is an interesting question which we
hope to pursue more in the future.
Let us finish our discussion of the Lüscher term by

confronting the expectations from field theory to the results
of holography. First, in field theory it is expected that the
k-string Lüscher term be independent of k. Our result
presented in Eq. (4.24) is, indeed, independent of k. The
holographic formula has a p dependence which could be
troubling to the field theorist as its interpretation as a field
theory parameter is not immediate. Note, however, that
holographically p is present on very general grounds and
has to do with the counting of massless excitations above
the classical configurations; those are precisely the quan-
tum fluctuations that contribute to the Lüscher term.
Another way of seeing this term from the field theory point
of view is simply to think of it as shifting the effective
dimension where the excitations of the confining k-string
live.

V. CONCLUSIONS

In this paper we have considered k-string configurations
in strongly coupled, confining field theories by studying
their dual D5-brane configurations. We have also com-
puted the Lüscher term which requires a one-loop compu-
tation on the D-brane side. We have applied some of the
developments of the AdS/CFT correspondence in its
conformal realization [18,19] to clarify the question of
the precise representations described by the D-brane
configurations.
Arguably, our main result is summarized in Table I

where we have obtained qualitative agreement with other
approaches to the problem of tension of k-strings such as
the Hamiltonian approach in 2þ 1 dimensions pioneered
by Karabali and Nair and the lattice approach as articulated
by Teper and collaborators [24,44]. It is worth noting that
the holographic approach provides answers that await for
comparison with other methods. For example, the lattice
approach has not yet arrived at a conclusion in the case of
some k-strings in the totally symmetric representation.
Analogously, the Hamiltonian approach of Karabali-Nair
is not developed enough to produce results in 3þ
1-dimensional field theories. Less we forget that the an-
swer of holographic methods requires a large N limit,
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namely, N ! 1 with k=N held fixed. All in all, the
interaction of various approaches to the tensions of
k-strings seems to be a fertile ground for cross-field
fertilization.

One important result of our calculations is a universal
formula for the Lüscher term in holographic models of k
strings. It will be interesting to check our formula against
lattice calculations now that improved computational
methods allow for precision calculation of the Lüscher
term.
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APPENDIX: EXPLICIT SOLUTION

Here we exhibit examples of explicit solutions to the
k-string fluctuations. This solution displays some peculiar-
ities associated with the geometry one of which is the
apparent spin 3

2 modes locked on the S3.

1. Spin zero fields

In both the MN and MNa cases, the spin-zero bosonic
fields satisfy the field equations given by the
d’Alembertian on M3 ¼ R2 � I � S3,

rara��M2� ¼ 0; (A1)

where M can be zero. For spin zero fields, the
d’Alembertian decouples into a d’Alembertian operator
on M3 and the Laplacian operator on S3

r2 ¼ r2
M3 þ 1

exp ð��0ÞN�0 r2
S3 :

Then a suitable ansatz for � is

�ðx;y; t;�;	þ;	�Þ¼�M3ðx;y; tÞ�S3ð�;	þ;	�Þ: (A2)

The eigenstate for the rM3 operator may be written as

�
px;py;!

M3 ðx; y; tÞ ¼ exp ðipx þ ipyy� i!tÞ�0; (A3)

while �S3ð�;	þ; 	�Þ are eigenstates of r2
S3 the hyper-

spherical harmonics T ð
;m�;mþÞð�;	þ; 	�Þ satisfying

r2
S3T ð
;m�;mþÞð�;	þ; 	�Þ
¼ �
ð2þ 
ÞT ð
;m�;mþÞð�;	þ; 	�Þ (A4)

for positive integers 
, and mþ; m� ¼ � k
2 ; . . . ;

k
2 . They

have ð
þ 1Þ2 degeneracy for a given 
. With this we
explicitly write that

�ðx; y; t; �;	þ; 	�Þ ¼
X

Cpx;py;pz�
px;py;!

M3 ðx; y; tÞ

��jð
;mþ;m�Þ
S3

ð�;	þ; 	�Þ; (A5)

with the two hyperspherical harmonics corresponding to
j ¼ 1, 2 given by

�1ð
;mþ;m�Þ
S3

ð�;	þ; 	�Þ
¼ eðimþ	þþim�	Þi�ðmþþm�Þcos�ðmþþm�Þ

� 2F1

�
�
�



2
þmþ

2
þm�

2

�
;

�



2
�mþ

2
�m�

2

�
;

1�mþ �m�; cos 2ð�Þ
�
; (A6)

�2ð
;mþ;m�Þ
S3

ð�;	þ; 	�Þ
¼ eðimþ	þþim�	Þiðmþþm�Þcos ðmþþm�Þ

� 2F1

�
�
�



2
�mþ

2
�m�

2

�
;

�



2
þmþ

2
þm�

2
þ 1;

1þmþ þm�; cos 2ð�Þ
�
: (A7)

The 2F1 are hypergeometric functions of the second kind
and the energies, !, are given by

! ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e��0ð
ð2þ 
Þ þ e�0ðp2

x þ p2
y þM2ÞN�0Þ

q
N�0 :

(A8)

2. Vector bosons

The field equations (4.18) and (4.15) are identical for
both the MN and MNa up to a sign in the CS current,

raFab ¼ rara�Ab �rbra�Aa � Rcb�A
c ¼ 4�JCSb :

(A9)

Now the Ricci tensor is

Reffective
ab ¼ 2 exp ð��0Þ

N�0 gab for ða; bÞ ¼ ð�;	þ; 	�Þ
and zero otherwise. Furthermore JCSa is nontrivial only in
the M3 component. The Lorentz gauge, ra�Aa ¼ 0, pro-
vides a convenient gauge choice as the field components
ð�Ax; �Ay; �AtÞ decouple from ð�A�; �A	þ ; �A	�Þ. Below
we give two solutions. The second solution is interesting
because it exhibits an interesting spin 3

2 behavior on the S3

component.
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a. Solution 1

In this solution, five of the fields propagate while
A� ¼ 0. We write

Axð�Þ ¼ Ax
0pxe

ið�!0tþpxxþpyyþm0	�þn0þ	þÞaxð�Þ;
Ayð�Þ ¼ Ax

0pye
ið�!0tþpxxþpyyþm0	�þn0þ	þÞaxð�Þ;

Atð�Þ ¼ �Ax
0!eið�!0tþpxxþpyyþm0	�þn0þ	þÞaxð�Þ;

A	þð�Þ ¼ Aþ0eið�!þtþqxxþqyyþm1	�Þa	þð�Þ;
A	�ð�Þ ¼ A�0eið�!�tþrxxþryyþn1	þÞa	�ð�Þ; (A10)

where

!þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e��0
2þ þ q2xN�0 þ q2yN�0

N�0

s
;

!� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e��0
2� þ r2xN�0 þ r2yN�0

N�0

s
;

(A11)

with 
� integers. Here ~p, ~q, and ~r are momenta on M3.
The �-dependent fields satisfying hypergeometric differ-
ential equations are given by

axð�Þ ¼ sec ð�Þcos 2ð�Þ12�m
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin 2ð�Þp ð�sin 2ð�ÞÞ12�n
2 �

�
c2ð�1Þmcos 2ð�Þm2F1

�
m� n

2
;
1

2
ðm� nþ 2Þ;mþ 1; cos 2ð�Þ

�
þ c12F1

�
1

2
ð�m� nÞ; 1

2
ð�m� nþ 2Þ; 1�m; cos 2ð�Þ

��
; (A12)

a	�ð�Þ ¼ c1i
�n1sin 2ð�Þ�n1

2
2F1

�
�
�

2
� n1

2
;

�
2

� n1
2
; 1� n1; sin

2ð�Þ
�

(A13)

þc2i
n1 sin 2ð�Þn12 2F1

�
n1
2
� 
�

2
;

�
2

þ n1
2
; n1 þ 1; sin 2ð�Þ

�
; (A14)

and

a	þð�Þ ¼ c1i
�m1cos�m1ð�Þ2F1

�
�
þ

2
�m1

2
;

þ
2

�m1

2
; 1�m1; cos

2ð�Þ
�

(A15)

þc2i
m1cos m1ð�Þ2F1

�
m1

2
� 
þ

2
;

þ
2

þm1

2
;m1 þ 1; cos 2ð�Þ

�
: (A16)

b. Solution 2

There are four cases that constitute these solutions where A� is nontrivial on the S3, These solutions are determined by
the parameters ðs1; s2Þ. The four cases correspond to the four pairs for ðs1; s2Þ given by ð1; 1Þ, ð1;�1Þ, ð�1; 1Þ, and
ð�1;�1Þ. We write this covariantly divergence free solution as

Aað�Þ ¼
X

Cðpx; py; !;mþ; m�; 
ÞAC
a ð�Þ; (A17)

where the C’s are constants and the components of AC
a are

Axð�;px; py; !;mþ; m�Þ ¼ i1�mþpxA
0
xe

�iðpxxþpyy�!tþmþ	þþm�	�Þ � sin ð�Þ�mþW ðmþ; m�; �Þ; (A18)

Ayð�;px; py; !;mþ; m�Þ ¼ i1�mþpyA
0
xe

�iðpxxþpyy�!tþmþ	þþm�	�Þ � sin ð�Þ�mþW ðmþ; m�; �Þ; (A19)

Atð�;px; py; !;mþ; m�Þ ¼ �i1�mþ!A0
xe

�iðpxxþpyy�!tþmþ	þþm�	�Þ � sin ð�Þ�mþW ðmþ; m�; �Þ; (A20)

A�ð�;p0
x; p

0
y; !

0Þ ¼ s1
3

2
A0
	þe

iðp0
xxþp0

y�1
3!

0tþ2
3s2ð	þþs1	�Þ sin ð2�Þ13

1� cos ð4�Þ ; (A21)

A	þð�;p0
x; p

0
y; !

0Þ ¼ 1

2
A0
	þe

iðp0
xxþp0

yy�1
3!

0tÞQ1ð�; s1; s2Þ; (A22)

A	�ð�;px; py;!Þ ¼ �A0
	þe

iðp0
xxþp0

y�1
3!

0tÞQ2ð�; s1; s2Þ; (A23)

with
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W ðmþ; m�; �Þ ¼ ð�1Þ1�mþ cos ð�Þ�m�ðC12F1

��m� �mþ
2

;
2�m� �mþ

2
; 1�m�; cos ð�Þ2

�
þ ð�1Þm�C2 sin ð�Þ�mþ cos ð�Þ2m�

2F1

�
m� �mþ

2
;
2þm� �mþ

2
; 1þm�; cos ð�Þ2

��
; (A24)

and the frequencies are given through

! ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
; !0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e��0

9 þ ððp0
xÞ2 þ ðp0

yÞ2ÞN�0

N�0

s
:

Two Meijer functions are contained in the Q1ð�Þ and Q2ð�Þ. Explicitly these are

Q1ð�Þ ¼ 2c2G
2;0
2;2 cos 2ð�Þj

2
3 ;

4
3

0; 0

 !
þ 2c12F1

�
� 1

3
;
1

3
; 1; cos 2ð�Þ

�
� s1s23i sin ð2�Þ13 cot ð�Þe2

3ið	�þs1	þÞ; (A25)

Q2ð�Þ ¼ 2c3G
2;0
2;2 cos 2ð�Þj

2
3 ;

4
3

0; 1

 !
� 2A	�c4cos

2ð�Þ2F1

�
2

3
;
4

3
; 2; cos 2ð�Þ

�
þ s23iA	þ sin ð2�Þ

1
3 tan ð�Þe2

3ið	�þs1	þÞ:

(A26)

Notice that in Eqs. (A25) and (A26) the 	 angles must be rotated by 3� in order to return to their initial value. This
suggests that this solution has spin 3

2 features on the S3 component.
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