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In this paper we study the three-point correlation functions of two scalar operators with large conformal

dimensions and the R-current or stress-energy tensor at strong coupling with the help of the AdS4=CFT3

correspondence. The scalar operators are dual to semiclassical strings in AdS4 � CP3, which are pointlike

in AdS. We establish thorough concordance between string theory results at large coupling constant

and general predictions coming from Ward identities in the dual three-dimensional superconformal

gauge theory.
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I. INTRODUCTION

One of the active areas of research in theoretical high-
energy physics in recent years has been the correspon-
dence between gauge and string theories. Following the
impressive conjecture made by Maldacena [1] that type-
IIB string theory on AdS5 � S5 is dual to N ¼ 4 super-
Yang-Mills theory with a large number of colors, an
explicit realization of the AdS/CFT correspondence was
provided in [2]. After that many convincing results have
been achieved, paving the way for the subject to become
an indispensable tool in probing such diverse areas as the
dynamics of quark-gluon plasma and high-temperature
superconductivity.

A key feature of the duality is the connection between
planar correlation functions of conformal primary operators
in the gauge theory and correlators of corresponding vertex
operators of closed strings with S2 world sheet topology.
Recently, some progress was accomplished in the study of
three- and four-point correlation functions with two and
three vertex operators with large quantum numbers at strong
coupling. The remaining operators were chosen to be vari-
ous supergravity states with quantum numbers and dimen-

sions of order one. It was shown that the large
ffiffiffiffi
�

p
behavior

of such correlators is fixed by a semiclassical string trajec-
tory governed by the heavy operator insertions, and with
sources provided by the vertex operators of the light states.

Initially this approach was utilized in the computation of
two-point functions of heavy operators in [3–7]. More
recently, the above procedure was extended to certain
three-point correlators in [8–10]. A method based on
heavy vertex operators was proposed in [11]. Further
developments in the calculation of correlators with two
string states are presented in [12]. The main goal of these
investigations is elucidation of the structure of three-point
functions of three semiclassical operators [13].

Inspired by these studies, in the present paper we
consider correlation functions of two massive states with
large charges and a conserved current (R-current or

stress-energy tensor) in the bosonic sector of Aharony-
Bergman-Jafferis-Maldacena (ABJM) theory from the
point of view of strings in AdS4 � CP3. Our approach is
mostly based on the previous works of [9,14]. We also
check the validity of our results by comparison with related
field theory Ward identities.
The paper is organized as follows. In the next section we

give a detailed derivation of the three-point function of two
scalar operators with large charges and the R-current. The
relevant structure constant complies with a Ward identity
calculation. In Sec. III we present the three-point correlator
of two arbitrary string states and the stress-energy tensor.
In the Conclusion we discuss the results and make some
general remarks.

II. THREE-POINT CORRELATOR OF TWO
STRING STATES AND R-CURRENT

The correlation functions with R-symmetry current have
attracted the interest of researchers of the AdS/CFT corre-
spondence from the very inception of the duality. The corre-
lator of three R-current states was calculated at strong
coupling via type-IIB supergravity, and the result was in
concordance with field theory results [15,16]. Correlation
functions of R-symmetry current and two Bogomol’nyi-
Prasad-Sommerfield operators were also studied [15], and
oncemore therewas amatch between supergravity and field-
theoretic findings with the help of particular Ward identities.
The cases considered before dealt only with

Bogomol’nyi-Prasad-Sommerfield states, because one
could work only in the supergravity approximation. In
this section we calculate the three-point correlator of an
R-current candidate along with two semiclassical operators
corresponding to string solutions. Our results at large
’t Hooft coupling are perfectly compatible with a Ward
identity in the dual conformal theory, which is yet another
successful confirmation of the AdS/CFT correspondence.

A. Form of correlator and Ward identity

We adopt the following conventions: capital letters like
XM, M ¼ 0; . . . ; 9 denote ten-dimensional coordinates,*dlarnaudov@phys.uni-sofia.bg
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while the lowercase, x for example, describe four-
dimensional ones and points in the dual three-dimensional
field theory. Unless stated otherwise lengths between
points jx� yj are assumed to be for the three-dimensional
theory. Greek letters � ¼ 0; . . . ; 3 will serve as indices of
AdS directions, while Latin ones i ¼ 0, 1, 2 will denote
boundary ones. Moreover, we will work in the Euclidean
continuation of AdS4.

The general form of the three-point function of a scalar
operator O� with conformal dimension �, its conjugate
�O�, and a vector Vi is completely fixed by conformal
symmetry. It is given in three dimensions by [17]

hViðxÞO�ðx1Þ �O�ðx2Þi ¼ C123ð�Þ
x2��1
12 jx1 � xjjx2 � xjE

x
i ðx1; x2Þ;

x12 � jx1 � x2j;

Ex
i ðx1; x2Þ ¼

ðx1 � xÞi
ðx1 � xÞ2 �

ðx2 � xÞi
ðx2 � xÞ2 : (1)

We are interested in the case of Vi being the R-symmetry
current jRi . We also assume that O� has R-charge, which
leads to the following Ward identity for (1):

h@ijRi ðxÞO�ðx1Þ �O�ðx2Þi ¼ �3ðx1 � xÞh�O�ðx1Þ �O�ðx2Þi
þ �3ðx2 � xÞhO�ðx1Þ� �O�ðx2Þi

¼ J½�3ðx1 � xÞ � �3ðx2 � xÞ�
� hO�ðx1Þ �O�ðx2Þi; (2)

where J is the R-charge of O� and we assume that two-
point functions are unit normalized. We take the derivative
of (1) and obtain

@ihViðxÞO�ðx1Þ �O�ðx2Þi
¼ �4�C123ð�Þ½�3ðx1 � xÞ � �3ðx2 � xÞ� 1

x2�12
: (3)

Combining (2) and (3) one gets

C123ð�Þ ¼ � J

4�
: (4)

This equation gives an all-loop expression for the fusion
coefficient C123ð�Þ. In the following subsection we will
show that string theory provides correctly both the
space-time behavior of the correlator (1) and the expres-
sion in (4).

B. Holographic calculation of hj�RðxÞO�ðx1Þ �O�ðx2Þi
The present subsection is devoted to the computation of

the three-point function of two heavy scalar operators and
the R-current via the AdS/CFT correspondence. The sca-
lars are dual to semiclassical strings, which are pointlike in
AdS and rotate in CP3 in a general way. First, we need to
find the bulk supergravity field that corresponds to the
R-current. Gaining intuition from [18] one can deduce

that the dual field includes the fluctuations of the bulk
metric h�a with one AdS4 index and a CP

3 index; together

with various components of RR-potentials, which do not
contribute to our results according to [9] because we are
working in the leading semiclassical approximation, i.e.,
at strong coupling. The metric can be expanded in the
components of CP3 Killing vectors

h�a ¼X
I

HI
�ðxÞYI

að�Þ: (5)

We choose the following representation of CP3 in terms of
angles ð�; �1; �2; c ; ’1; ’2Þ:

ds2
CP3 ¼ d�2 þ cos 2�sin 2�

�
dc þ 1

2
cos�1d’1

� 1

2
cos�2d’2

�
2 þ 1

4
cos 2�ðd�21 þ sin 2�1d’

2
1Þ

þ 1

4
sin 2�ðd�22 þ sin 2�2d’

2
2Þ: (6)

Let us choose for concreteness dynamics only in the plane
with c as polar angle. Then the relevant Killing vector will
be the corresponding R-current which acts as the generator
of rotations in the plane. The Killing vector and its unique
covariant component assume the form

Y½c � ¼ @

@c
; Y½c �

c ¼ cos 2�sin 2�: (7)

Following [9] the three-point correlation function has
the schematic evaluation

hj½c �
i ðxÞO�ðx1Þ �O�ðx2Þi
hO�ðx1Þ �O�ðx2Þi
¼
�
H½c �

i ðx;x3¼0Þ 1

Zstr

Z
DXe�Sstr½X;��

�
bulk

; (8)

where � labels all the relevant supergravity fields. The

field H½c �ðx; x3 ¼ 0Þ has much smaller conformal dimen-
sion than that of the string states. Therefore, the string can
be treated in semiclassical approximation via Polyakov
action, while the supergravity fields should conform to
the supergravity approximation, i.e., the string action can
be expanded in powers of h�a,

Sstr ¼
ffiffiffiffi
~�

p

4�

Z
d2�

ffiffiffi
g

p
g�	@�X

M@	X
NGMN þ fermions;

(9)

�Sstr
�h�aðXÞ ¼

ffiffiffiffi
~�

p

2�

Z
d2�ð@
X�@
X

a þ @�X
�@�X

aÞ: (10)

The relation between ~� and the ’t Hooft coupling � is
~�2 ¼ 32�2�2. After substituting (10) in (8) and retaining
only the linear in h�a term we obtain
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hj½c �
i ðxÞO�ðx1Þ �O�ðx2Þi
hO�ðx1Þ �O�ðx2Þi
¼ �

�
Hiðx; x3 ¼ 0Þ�Sstr½X;� ¼ 0�

�h�aðZÞ h�aðZÞ
�
bulk

¼ �
ffiffiffiffi
~�

p

2�

Z
d2�ð@
Z�@
Z

a þ @�Z
�@�Z

aÞ

� hHiðx; x3 ¼ 0ÞH�ðzÞibulkY½c �
a ð�Þ: (11)

At this point a few comments are in order. The path
integral in (8) is evaluated by saddle-point approxima-
tion on the classical solution describing a string that
goes from the boundary and back. The expression
hHiðx; x3 ¼ 0ÞH�ðzÞibulk in (11) is actually the bulk-to-

boundary propagator of two vector supergravity fields [15]

G�iðz; x; x3 ¼ 0Þ

¼ 2

�2

z3
½z23 þ ðz� xÞ2�2

�
��i �

2ðz� xÞ�ðz� xÞi
z23 þ ðz� xÞ2

�
:

(12)

In order to calculate the three-point function we need
only to choose an appropriate solution to the string equa-
tions of motion dual to the massive states in the correlators.
We are interested solely in the dynamics in AdS, because
only it enters (11). Moreover, we have already specified
that the string is rotating along the c direction of CP3. In
AdS the solution is purely pointlike. It has the following
form in Euclidean Poincare coordinates [8]:

z0 ¼ x12
2

tanh ð�
Þ; z3 ¼ x12
2 cosh ð�
Þ ; (13)

where we have assumed that the insertion points of the
heavy operators are symmetric with respect to the origin of
the coordinate system. Also, without loss of generality we
have constrained the boundary heavy operators to lie on the
Euclidean time direction: x12 � jx01 � x02j. We would like

to point out that our considerations are applicable to
generic string solutions with arbitrary charges in CP3.

Substituting all above in (11), we get for the three-point
correlator

hj½c �
i ðxÞO�ðx1Þ �O�ðx2Þi
hO�ðx1Þ �O�ðx2Þi

¼ � 2

�2

� ffiffiffiffi
~�

p

2�

Z 2�

0
d�cos 2�sin 2�@
c

�
I i ¼ � 2J

�2
I i;

(14)

I i ¼
Z 1

�1
d


z3@
z0
½z23 þ ðz� xÞ2�2

�
�0i þ 2x0ðz� xÞi

z23 þ ðz� xÞ2
�

¼ �

8

x12E
x
i ðx1; x2Þ

jx1 � xjjx2 � xj ; (15)

where we have used in the last equation that x1 þ x2 ¼ 0.
Finally we obtain for the three-point function

hj½c �
i ðxÞO�ðx1Þ �O�ðx2Þi ¼ � J

4�

Ex
i ðx1; x2Þ

x2��1
12 jx1 � xjjx2 � xj ;

(16)

which exactly coincides with (1) provided that

C123ð� � 1Þ ¼ � J

4�
; (17)

i.e., we also have complete agreement with the all-loop
prediction (4).

III. THREE-POINT CORRELATOR WITH
STRESS-ENERGY TENSOR

The present section is devoted to evaluation of the
three-point function of two semiclassical scalar operators
dual to string states and the stress-energy tensor.
Correlation functions with the stress-energy tensor have
been studied before, especially considering the conformal
anomaly [19–22].

A. Space-time dependence of correlator
and Ward identity

The correlation function of any tensor Vij and two

scalars with definite conformal dimension is almost
completely fixed by conformal symmetry, excluding the
structure constant

hVijðxÞO�ðx1Þ �O�ðx2Þi¼ C123ð�Þ
x2��1
12 jx1�xjjx2�xjFijðx;x1;x2Þ;

Fijðx;x1;x2Þ¼Ex
i ðx1;x2ÞEx

jðx1;x2Þ

��ij

3

x212
ðx1�xÞ2ðx2�xÞ2 : (18)

When Vij ¼ Tij, the following Ward identity concerning

the conservation of Tij is satisfied,

@ihTijðxÞOðx1Þ �Oðx2Þi¼hOðxÞ �Oðx1Þi@j�3ðx�x2Þ
þhOðxÞ �Oðx2Þi@j�3ðx�x1Þ: (19)

This equation can be integrated by x, which gives via
Gauss’s theorem

C123ð�Þ ¼ � 3

8�
�ð�Þ: (20)

This result is an all-loop prediction which we are striving to
reproduce at large coupling constant in Sec. III B.

B. Calculation of hTijðxÞO�ðx1Þ �O�ðx2Þi
The present problem is solved analogously to the case in

the previous section. The stress-energy tensor Tij is dual to
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the fluctuations of the metric h�� ¼ g�� � gAdS�� of AdS4.

Consequently,

hTijðxÞO�ðx1Þ �O�ðx2Þi ¼ hĥijðxÞO�ðx1Þ �O�ðx2Þi: (21)

We will need below the bulk-to-boundary propagator for
gravitons, which can be extracted from the solution to the
linearized equations of motion in de Donder gauge [22,23],

h��ðx; x3Þ ¼ 8

�2

Z
d3yKðx; x3; yÞji�ðx� yÞjj�ðx� yÞ

� Eij;klĥ
klðyÞ; (22)

where

Kðx; x3; yÞ ¼ x33
½x23 þ ðx� yÞ2�3 ;

ji�ðxÞ ¼ �i
� � 2x�x

i

x23 þ x2
;

Eij;kl ¼
�ik�jl þ �il�jk

2
� �ij�kl

3
:

In order to calculate the three-point function at strong
coupling we will proceed in a similar way as before,

hĥijðxÞO�ðx1Þ �O�ðx2Þi
hO�ðx1Þ �O�ðx2Þi

¼ �
�
ĥijðx; x3 ¼ 0Þ�Sstr½X;� ¼ 0�

�h��ðZÞ h��ðZÞ
�
bulk

¼ �
ffiffiffiffi
~�

p

2�

Z
d2�ð@
Z�@
Z� þ @�Z

�@�Z�Þhĥijðx; x3 ¼ 0Þh��ðzÞibulk: (23)

The relevant string solution is again (13) with arbitrary dynamics in CP3. We obtain

hĥijðxÞO�ðx1Þ �O�ðx2Þi
hO�ðx1Þ �O�ðx2Þi

¼ � 8
ffiffiffiffi
~�

p

�2

Z 1

�1
d


z33@
Z
�@
Z�j

k
�ðz� xÞj�l ðz� xÞEkl;ij

½z23 þ ðz� xÞ2�3

¼ � 8
ffiffiffiffi
~�

p

�2

Z 1

�1
d


z3ð@
z0Þ2
½z23 þ ðz� xÞ2�3

 
�0i�0j �

�ij

3
þ

2x0
h
�0iðz� xÞj þ �0jðz� xÞi � 2�ijðz�xÞ0

3

i
z23 þ ðz� xÞ2

þ 4x20½ðz� xÞiðz� xÞj � �ij

3 ðz� xÞ2�
½z23 þ ðz� xÞ2�2

!
; (24)

where in the second line we have done all the necessary
contractions using the explicit form of the solution (13).
After tedious but straightforward calculations we get

hĥijðxÞO�ðx1Þ �O�ðx2Þi
hO�ðx1Þ �O�ðx2Þi

¼ � 3�
ffiffiffiffi
~�

p

8�

x12Fijðx; x1; x2Þ
jx1 � xjjx2 � xj ;

(25)

which looks exactly like (18) if

C123ð� � 1Þ ¼ � 3�
ffiffiffiffi
~�

p

8�
¼ � 3E

8�
; (26)

where E is the string energy. The last equation obviously
conforms to the result (20) following from a Ward
identity, because according to the AdS/CFT dictionary
E ¼ �ð�Þ.

IV. CONCLUSION

The AdS/CFT correspondence was subject to many
significant developments in recent years. One of the active
areas of research has been the holographic calculation of
three-point functions at strong coupling. The correlation

function of three massive string states escapes full com-
prehension so far [13], but we have uncovered almost all
features of correlators containing two heavy and one light
states in the semiclassical approximation [9–11].
The present paper continues this line of investigations by

considering string theory onAdS4 � CP3 dual to the three-

dimensional ABJM theory and computing leading three-

point functions at large coupling constant, applying the

ideas of [9]. We examine the method in the case of

two scalar operators with large charges and a conserved

current (either an R-symmetry current or the stress-energy

tensor). We reproduce the correct space-time behavior of

correlators and verify that the structure constants we have

obtained at strong coupling are in perfect agreement with

corresponding field theory derivations based onWard iden-

tities. Our study extends the results presented in [14] to the

AdS4=CFT3 case.
One of the future directions for exploration may be the

connection of our work to recent developments in the

calculation of correlators with heavy states based on inte-

grability methods inN ¼ 4 SYM [24] and, which is more

relevant, ABJM theory [25].
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