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We find a regime in which a strongly coupled striped superconductor features a superconducting dome.

This regime is signified by i) a modulating chemical potential that averages to zero, and ii) a super-

conducting order parameter that has a scaling dimension 3=2<� � 3. We also find that in this regime,

the order parameter exhibits a mild dependence on the modulation wavelength of the stripes.
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I. INTRODUCTION

Quantum many-body physics lacks a general mathe-
matical framework that can deal with strongly coupled
fermions at finite density. In an effort to remedy this
problem, recently, there has been a flurry of activities
applying gauge/gravity duality to study strongly coupled
condensed matter systems (for a review, see, e.g., Ref. [1]).
A large portion of these activities revolves around under-
standing high-temperature (high-Tc) superconductors,
such as cuprates and iron pnictides. One of the many
challenges in adopting this approach is to reproduce the
phase diagrams of the high-Tc superconductors. The prob-
lem is that it is not clear how one should introduce the
effect of doping into the holographic model.

Being strongly coupled, the normal states of high-Tc

superconductors are highly correlated, and thus exhibit
other low-temperature orders which interact with super-
conductivity in an intricate way. One of the prominent
orders is the unidirectional charge density wave or ‘‘stripe’’
order [2–5]. However, the complication that comes from
the existence of these coexisting orders might also be the
key toward reconstructing the phase diagrams of high-
temperature superconductors. In particular, a very impor-
tant hint comes from the observation that in the hole-doped
cuprates, in particular Bi2�yPbySr2�zLazCuO6þx, near the

superconducting regime the modulation wave number is a
monotonically increasing function of doping [5,6], which
is presumably valid in both the underdoped and overdoped
regimes. Because of this, the qualitative behavior of the
critical temperature viewed as a function of either doping
or the modulation wave number should be similar.
Therefore, as a step toward realizing a realistic holographic
model of cuprates, it is crucial to show that indeed there
exists a regime in the parameter space in which the holo-
graphic striped superconductor exhibits a superconducting
dome.

II. SETUP

In order to achieve the goal set in the previous section,
following Ref. [7], we consider an Einstein-Maxwell scalar
system on a (3þ 1)–dimensional spacetime with a nega-
tive cosmological constant � ¼ �3=L2 as a holographic
model of a (2þ 1)–dimensional strongly coupled striped
superconductor. The bulk scalar field is dual to the super-
conducting order parameter, while the bulk Uð1Þ gauge
field is dual to the four-current in the strongly coupled
system. For simplicity, we shall adopt units in which L¼1,
16�G ¼ 1. We introduce the stripe order phenomenolog-
ically by introducing a modulating chemical potential,

�ðxÞ ¼ �ð1� �Þ þ�� cosQx; (1)

which is identified as the boundary value of the bulk
electrostatic potential. We are interested in a black hole
solution with this boundary condition, and the supercon-
ducting transition temperature will then be given by the
critical temperature below which the black hole forms
scalar hair.
It has been shown that if the average value of the

chemical potential does not vanish (� � 1), then the criti-
cal temperature will have a long power-law tail at large Q.
This is true both at the mean field level1 [8] and when
fluctuations are turned on2 [7]. A similar result is also
obtained when � ¼ 1, and the scaling dimension of the
order parameter satisfies 1=2< � � 3=2. This is an un-
wanted feature, since to obtain a superconducting dome,
we need to have a critical modulation wave number
Q� > 0, above which the critical temperature vanishes.
At the mean field level, it was shown in Ref. [8] that the
� ¼ 1 and 3=2<� � 3 case results in such a feature.
Another hint we obtained from our previous work is that

in the � � 1, and the � ¼ 1, 1=2< � � 3=2 cases, fluc-
tuations cause a significant drop in the critical temperature
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1This is equivalent to the probe limit in the gravity picture,
where the backreaction of the Uð1Þ field and the scalar field on
the spacetime geometry is neglected.

2Equivalently, when backreaction is included.
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at small Q [7]. Combining the above, we expect that when
the chemical potential averages to zero (� ¼ 1) and the
scaling dimension of the order parameter satisfies 3=2<
� � 3, the superconducting regime is capped at larger
values of Q, while when the fluctuations are turned on, it
is capped at the smaller values of Q, thus resulting in a
superconducting dome. We will show that indeed this
expectation is correct.

The equations of motion consist of the Einstein
equations

Rab � 1

2
gabR� 3gab ¼ 1

2
Tab; (2)

the Maxwell equations

1
ffiffiffiffiffiffiffi�g

p @bð ffiffiffiffiffiffiffi�g
p

FabÞ ¼ Ja; (3)

and the Klein-Gordon equation for the scalar field

�Dað ffiffiffiffiffiffiffi�g
p

gabDb�Þ= ffiffiffiffiffiffiffi�g
p þm2� ¼ 0: (4)

Here, Tab is the stress-energy tensor, the Uð1Þ current is
Ja ¼ �i½��Da�� c:c:�, the covariant derivative is Da ¼
@a � iqAa, the Uð1Þ field strength is Fab ¼ @aAb � @bAa,
and a, b 2 ft; z; x; yg. Furthermore, q is the charge of the
scalar field, which is related to the central charge of the
conformal field theory describing the critical point, and m
is the mass, which is related to the scaling dimension � by
m2 ¼ �ð�� 3Þ.

III. SUPERCONDUCTING DOME

We solve the equations of motion by doing an expansion
in 1=q2, where taking q ! 1 while keeping q� fixed
corresponds to the probe limit. In the normal state, where
the order parameter vanishes, and therefore � ¼ 0, the
solution for the metric for arbitrary � is given in Ref. [7].
Up to Oð1=q2Þ, the solution for � ¼ 1 is then given by

ds2 ¼ r2þ
z2

�

�h

�

1� �

q2

�

dt2 þ 1þ �=q2

r2þh
dz2 þ d~x2

�

; (5)

where the boundary is at z ¼ 0 and the horizon is at z ¼ 1.

Here, h ¼ 1� z3 and � ¼ �ð0ÞðzÞ þ �ð2ÞðzÞ cos 2Qx,
where

�ð0Þ ¼ z3

8h

Z 1

z

�

ð@z0A0Þ2 �Q2A2
0

r2þh

�

dz0 (6)

and �ð2Þ satisfies

�ð2Þ0 �
�

3

z
� 2Q2zþ r2þh0

r2þh

�

�ð2Þ

þ z3ðQ2A2
0 þ r2þhA02

0 Þ
8r2þh2

¼ 0: (7)

The prime (0) denotes a derivative with respect to z. The
temperature is given by

T ¼ 3rþ
4�

�

1� 1

q2
A02

0

24

�

�

�

�

�

�

�

�z¼1

�

: (8)

The electrostatic potential is given by At ¼ ðA0 þ
A1=q

2Þ cosQx, where A0 and A1 satisfy

A0
00 � Q2

r2þh
A0 ¼ 0;

A1
00 � Q2

r2þh
A1 ¼ Q2

r2þh
�ð0ÞA0:

(9)

As we lower the temperature, � ¼ 0 becomes an un-
stable solution to the scalar equation of motion [Eq. (4)],
which takes the form

X

i¼z;x

1
ffiffiffiffiffiffiffi�g

p @ið ffiffiffiffiffiffiffi�g
p

gii@i�Þ þ ðq2gtt A2
t � m2Þ� ¼ 0:

(10)

To solve this, we expand � in a Fourier series,

�ðz; xÞ ¼ hO�iz�
ffiffiffi

2
p

r�þ

X

FðnÞðzÞ cosnQx; (11)

where hO�i is the superconducting order parameter. We
evaluate the critical temperature numerically, and a typical
result can be seen in Fig. 1.
Turning on fluctuations is equivalent to decreasing the

value of q2, and this results in the critical temperature
decreasing at small Q. The discontinuous behavior exhib-
ited atQ ! 0 is an artifact of the first-order contribution to
the perturbative expansion of the solutions of the Einstein-
Maxwell equations. We expect that as we include higher
orders in perturbation, the graph will become smoother.
In the regime of validity of the 1=q2 expansion, we are

not able to crank up the fluctuations to reach vanishing
critical temperature at Q ¼ 0. However, as the exact solu-
tion at Q ¼ 0 is known, we expect this to happen at [9]

q2 ¼ 3

4
þ �ð�� 3Þ

2
: (12)
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FIG. 1 (color online). The critical temperature as a function of
modulation wave number. Here, � ¼ 3, and the black, red and
green lines (from top to bottom) correspond to q2 ¼ 1, 10 and 5,
respectively.
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It would be interesting to extend our calculations down to
zero temperature. This would require going beyond first
order in the perturbative expansion. To this end, it may be
advantageous to apply new numerical techniques such as
those that have been recently developed in Ref. [10].

Unlike the cases considered in Ref. [7], here we see that
there is a critical modulation wave number Q�, above
which the critical temperature vanishes. The value Q�
can be estimated analytically by considering the large-
modulation wave number regime where Q � Tc. In this
regime, we can see from the numerics that the effects of
backreaction are suppressed. Furthermore, the higher
modes are suppressed. This behavior should be contrasted
with the behavior of the homogeneous system (Q ¼ 0).
In that case, the critical temperature is lowered from its
probe limit value by decreasing q, and backreaction plays a
crucial role. As one increases Q, the effects of the back-
reaction decrease, and for a fixed q the critical temperature
decreases, eventually reaching zero. Thus, zero critical
temperature can be approached by keeping Q fixed and
decreasing q (i.e., increasing backreaction), or by keeping
q (i.e., backreaction) fixed and increasing Q.

For an explicit calculation of the critical value Q�, using
the perturbative method of Ref. [8], we have

r2þc

q2�2
¼ 1

2�� 3

�

~acð1Þ �
�2ð�3Þ
�ð2�3 Þ

�ð2ð3��Þ
3 Þ

�2ð3��
3 Þ acð1Þ

�

; (13)

where

acð1Þ ¼ 1

22�
r2��1þc

Q2��1
�ð2�� 1Þ; ~acð1Þ ¼ r2þc

8Q2
: (14)

Here, rþc is the value of rþ at the critical temperature.
Therefore,

r2��3þc

ðq�Þ2��3
¼ 22�ð2�� 3Þ

�ð2�� 1Þ
�ð2�3 Þ
�2ð�3Þ

�2ð3��
3 Þ

�ð2ð3��Þ
3 Þ

Q2��1

ðq�Þ2��1

�
�

1

8ð2�� 3Þ
q2�2

Q2
� 1

�

; (15)

which means that above

�

Q�
q�

�

2 ¼ 1

8ð2�� 3Þ ; (16)

we have no instability, and Tc ¼ 0.
We can improve upon this approximation by iteratively

solving the equation of motion

@2~zF
ð0Þ þ 2ð�� 1Þ

~z
@~zF

ð0Þ þ �e�~zFð0Þ ¼ 0; (17)

where ~z ¼ zrþ=ð2QÞ and � ¼ q2�2=ð8Q2�Þ. We would like
to evaluate this in the interval ~z 2 ½0;1Þ, with the bound-

ary condition Fð0Þ ! 0 as ~z ! 1. This differential equa-
tion can be solved exactly for � ¼ 2, but for other values

3=2< � � 3, we can estimate � by iteration. To do so, let
us rewrite Eq. (17) as an integral equation:

Fð0Þð~zÞ ¼ 1� �

2�� 3

Z ~z

0
dwwe�w Fð0ÞðwÞ

þ �

ð2�� 3Þ~z2��3

Z ~z

0
dww2��2e�wFð0ÞðwÞ: (18)

Solving this iteratively, we reproduce Eq. (16) at zeroth
order, while a first-order correction results in
�

Q�
q�

�

2 ¼ 3� 4�

32
þ ð�� 1Þð�� 2Þ

4

�
�

c

�

5

2
� �

�

� c ð3��Þ þ 2�

sin 2��

�

: (19)

Here, c denotes the digamma function. Despite appearan-
ces, as we can see in Fig. 2, this is a smooth function of � in
the interval ð3=2; 3Þ (the two expressions above have almost
indistinguishable graphs). Furthermore, at� ! 3�, we have
Q�
q� � 0:158, in good agreement with our numerical results.

By comparing the information concerning the end points
of the dome, Q ¼ 0 and Q ¼ Q�, with experiment, we can
then in principle extract the value of �. This is because the
Q ¼ 0 point gives us the information on q, and upon
substituting it into Eq. (19), we obtain �.
Another method to extract the realistic value of � is by

calculating the anisotropy of the optical conductivity akin
to the calculation done in Ref. [11] (see also Ref. [12]) and
comparing its scaling behavior with the observed behavior
in cuprates [13]. Work in this direction is in progress.

IV. GAP BEHAVIOR

Now that we have understood the behavior of the system
at the critical temperature, we can go to a temperature T
below Tc and study the behavior of the order parameter.
Limiting ourselves to the case where the bulk scalar field
can be considered as a small perturbation to the solution at
critical temperature, we obtain the gap at fixed T=Tc as
plotted in Fig. 3. This corresponds to the temperature
below but near Tc.
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FIG. 2 (color online). The end point of the superconducting
dome as a function of the scaling dimension of the order
parameter.
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We see that deep under the superconducting dome, the
gap shows a mild dependence on Q. Interestingly, mea-
surement of the gap at fixed low temperatures also showed
mild dependence on Q [14]. We are hopeful that gap
measurements near Tc from STM will be available to be
compared with our prediction in Fig. 3 in the near future.

The ratio hO�i1=�=T deep under the superconducting
dome as a function of � is plotted in Fig. 4. The value is
about 8–10, which is the same order of magnitude as the
measured value of 29 [5]. We would like to note that the
measurement is done at T=Tc � 0:2, which is beyond
the regime of validity of our approximation. However,
considering that in some holographic models, the ratio of
gap over temperature can go as high as Oð103Þ (see for
example Ref. [15]), our result is encouraging.

The result at the far end of the dome Q � Q� can be
understood analytically by again using the perturbative
method of Ref. [8]. We have

r2þ
q2�2

¼ 1

2�� 3

�

~að1Þ � �2ð�3Þ
�ð2�3 Þ

�ð2ð3��Þ
3 Þ

�2ð3��
3 Þ að1Þ

�

; (20)

where

aðzÞ ¼
Z z

0

dz0

z02�2�
Fð0Þ A0

h
Fð0Þ;

~aðzÞ ¼
Z z

0

dz0

z02�2�
~Fð0Þ A0

h
Fð0Þ:

(21)

Here,

Fð0Þ ¼ 2F1

�

�

3
;
�

3
;
2�

3
; z3

�

;

~Fð0Þ ¼ z3�2�
2F1

�

3��

3
;
3� �

3
;
2ð3� �Þ

3
; z3

�

;

(22)

and

A0 ¼ e�2Qz=rþ

2

�

1� z2��1

ð2�� 1ÞQ
hO�ið0Þ2
r2��1þ

�

: (23)

We note that by setting the order parameter to zero
in Eq. (23), we obtain the value for r2þc=ðq2�2Þ from
Eq. (20), which is given by Eq. (13). Then, by dividing
Eq. (20) with Eq. (13), after some algebra we obtain

hO�ið0Þ2
T2�
c

¼ 2

�

�

4�

3

�

2��3 �2ð�3Þ
�ð2�3 Þ

�ð2ð3��Þ
3 Þ

�2ð3��
3 Þ

�

Q

Tc

�

3

�
�

1 �
�

T

Tc

�

2��3
�

: (24)

We see that asQ ! Q�, that even though the gap vanishes,
the ratio of the gap to critical temperature diverges as

T�3=ð2�Þ
c . It is interesting that we found a regime in which

the value of hO�i1=�=Tc gets very large at low temperature.
In comparison, the values for homogeneous BCS super-
conductors and homogeneous holographic superconduc-
tors are 3.54 and 8, respectively [15].

V. SUMMARYAND DISCUSSIONS

In this article, we have shown that when the homoge-
neous part of the chemical potential vanishes and when the
scaling dimension of the order parameter is larger than
3=2, the holographic striped superconductor exhibits a
superconducting dome with vanishing or nearly vanishing
critical temperature at the end points. Fitting the features of
the end points to experimental data will give us the central
charge of the conformal field theory describing the critical
point and the scaling dimension of the superconducting
order parameter.
We have also shown that deep under the superconduct-

ing dome, the order parameter exhibits a mild dependence
on the modulation wave number. This is perhaps somewhat
unexpected and shows that the lack of Q-dependent fea-
tures in the superconducting gap data should not be taken
as an indication that the stripe ordering is not related to the
mechanism that gives rise to superconductivity.
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FIG. 3 (color online). The ratio of the gap with respect to
temperature as a function of the wave number at fixed T=Tc.
Here, � ¼ 3 and the blue, purple and yellow lines (from bottom
to top) correspond to T=Tc ¼ 0:975, 0.95 and 0.9, respectively.
For clarity, we have also shown the critical temperature, plotted
with a dashed line.
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FIG. 4 (color online). The ratio of the gap to temperature
deep under the dome, as a function of the scaling dimension
of the order parameter. Here, the blue, purple and yellow lines
(from bottom to top) correspond to T=Tc ¼ 0:975, 0.95, and 0.9,
respectively.
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Toward the end of the superconducting dome, the gap
exhibits qualitatively different behavior. In particular, as
one approaches Q ¼ Q�, the gap decreases to zero while
its ratio with respect to critical temperature increases.

It is important that we remind the reader that in this
holographic model, the stripe order is introduced phenom-
enologically in the form of a modulated chemical potential.
In order to understand the phase diagram of the
holographic striped superconductor more accurately, we
ultimately would like to have both the stripe order and
superconducting order emerging dynamically.3 Work in
this direction is in progress.

Lastly, let us make a comment comparing superconduct-
ing domes of hole-doped cuprates and heavy fermion
systems such as CePd2Si2. In heavy fermion systems, the
existence of a superconducting dome is tightly related to

the existence of a magnetic quantum critical point due
to the belief that magnetic fluctuations play a critical role
in the superconducting mechanism [20]. It is tempting to
imagine that perhaps similar physics arises in the hole-
doped cuprates, where instead of magnetic ordering, one
has charge/stripe ordering. However, even though some
holographic models of stripe formation introduced so far
exhibit instabilities at zero temperature, it is not clear
whether these are related to quantum critical points.
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