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Quantum corrections to AdSs X S° left-invariant superstring current algebra
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In this work the pure spinor formulation of the superstring is used to study quantum corrections to the
left current operator product expansion algebra of the coset PSU(2, 2|4)/SO(4, 1) X SO(5) sigma model,
which describes the superstring dynamics in the AdSs X S° background. In particular, the one-loop
corrections to the simple poles of the bosonic currents are computed. Unlike the case of the double poles,
we show that the simple poles suffer corrections, which are important since the simple poles contribute to
the four-point amplitudes. We show that the only contribution to the simple poles comes from the pure

spinor Lorentz currents.
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L. INTRODUCTION

In view of the structural role anti—de Sitter (AdS)
superstrings plays in the construction of viable theoretic
frameworks for understanding the nonperturbative
regime of Yang-Mills theory, the AdS superstrings and
the AdS/CFT correspondence are topics of constant
and renewed interest in the string literature. Also, on
the string side, the quantization of the string in the
AdSs X S° space provides an important example of
string quantization in a Ramond-Ramond background
and it is interesting by itself.

Despite all the results concerning the AdSs X S°
superstring, owing to the complicated structure of the
worldsheet action, the quantum properties of the string
sigma model still remain elusive. In this direction, the
one-loop conformal invariance was proved in Refs. [1,2]
and the argument for all loop conformal invariance was
presented in Ref. [3]. In Ref. [4], the one-loop effective
action was computed, where it was shown that the "t Hooft
coupling A and the AdS radius are not renormalized at one
loop. This result was confirmed in Ref. [5], where the
double poles of the left-invariant currents were calculated
at one loop.

In this work, more ingredients of the quantum properties
of the AdSs X S° string sigma model are presented.
A basic set of operators in this two-dimensional conformal
field theory is composed by the left-invariant currents.
Since these currents are not holomorphic even in the
classical limit, their operator product expansions (OPEs)
cannot be deduced from general arguments and we need to
develop a perturbative approach. Although these currents
are not gauge invariant, they are invariant under global
PSU(2, 2|4) transformations and they can be used to con-
struct integrated massless vertex operators; also, they
appear in massive unintegrated vertex operators. In the
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case of the pure spinor superstring, these OPEs play an
important role, since the Becchi-Rouet-Stora-Tyutin
(BRST) charge is written in terms of the left-invariant
currents. In addition, the quantum OPEs are needed to
unambiguously define the b antighost in AdSs X S, taking
into account normal-ordering corrections [6]. Besides
these practical applications, the knowledge of this current
algebra in the worldsheet may shed light on more general
aspects of the theory, such as the apparent quantum
integrability." The tree-level OPEs of these currents were
computed in Ref. [12] (see also Ref. [9]). In Ref. [5]
a momentum-space perturbative approach was developed
to calculate the quantum corrections and it was used
to calculate the double pole corrections. Surprisingly, in
the bosonic sector most of the possible one-loop correc-
tions vanish due to spacetime supersymmetry and there is
no correction. The result obtained in this reference con-
firms the effective action result obtained in Ref. [4], and it
serves as further evidence that the relation between the ’t
Hooft coupling and the AdS radius is not renormalized.
However, for the simple pole we do not expect this behav-
ior, because the simple poles contribute to the four-point
amplitudes.

Keeping in mind this whole framework and the motiva-
tions mentioned above, we use the perturbative techniques
developed in Ref. [5] and calculate the one-loop simple
poles of bosonic left-invariant currents of the AdSs X S°

'The classical integrability of the AdSs X S’ sigma model was
established in the Ref. [7] for the Green-Schwarz-Metsaev-
Tseytlin action and in Ref. [8] for the pure spinor description.
Using cohomological and algebraic renormalization techniques,
Berkovits argued that the sigma model still has an infinite
number of conserved charges when quantum effects are taken
into account [3]. A detailed study of the transfer matrix of the
worldsheet was done in Ref. [9], where it was shown to be a
well-defined operator in quantum theory. The literature on this
subject is very large, and we did not attempt to give a list of
references. The reader can see a list of references in
Refs. [10,11].
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pure spinor superstring and we show that the pure spinor
Lorentz currents play an important role in the result.
In fact, we show that the only contribution for the simple
poles comes from the pure spinor currents. We present this
paper according to the following outline. In Sec. II, we
present a review of the pure spinor superstring in the
AdSs X S° background. Section III is devoted to present-
ing the Feynman rules and dimensional regularization used
in our calculations. In Sec. IV we present our results. The
conclusions are summarized in Sec. V and is followed by
the Appendix.

II. REVIEW OF PURE SPINOR
AdS; x S° SUPERSTRING

In the Green-Schwarz (GS) superstring, the target
space supersymmetries are manifest and the superspace
coordinates are treated more symmetrically with respect
to the Ramond-Neveu-Schwarz formalism. So, relative to
the Ramond-Neveu-Schwarz formalism, the GS formalism
is more appropriate to study curved backgrounds with
Ramond-Ramond fluxes. Using the GS superstring,
Metsaev and Tseytlin constructed the worldsheet action
for the type IIB superstring in AdSs X S3 from a geomet-
rical point of view based on a super coset approach [13].
They showed that the superstring in the AdSs X S° back-
ground can be described using some currents defined in the
superalgebra psu(2,2|4). Those currents are described
in terms of the supervielbein E,* and are defined in a
left-invariant way by

Jh=(g"lagyt = aZMEy,

TA — (o=150)A — 37M A M
Jh = (g7 'dg)" = dZVEy,,
where ZM are the curved superspace coordinates and g an
element in the coset supergroup PSU(2, 2|4)/SO(4, 1) X
SO(5). The index A denotes (a, @, @, ) anda = 0, . .., 4 for
AdSs, @’ =5,...,9for S°, a=1,...,16, a=1,...,16
and a denotes both a and a'.

In spite of the target space manifest supersymmetry of
the GS formalism, we encounter—already in flat space—
serious difficulties once we try to covariantly quantize the
GS superstring. This is because the first- and second-class
constraints that appear in this formalism cannot be sepa-
rated in a covariant way. A manifestly supersymmetric
formalism, which can be quantized in a covariant way,
was proposed by Berkovits in Ref. [14]. In this formalism,
in order to have standard fermionic kinetic terms, certain
ghost fields have to be introduced, satisfying pure spinor
constraints. The nonphysical degrees of freedom intro-
duced in the theory in this way are later removed through
a BRST-like operator Q. Although the BRST operator used
in the pure spinor formalism is not originally constructed in
a traditional way, the formalism has passed all tests and
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nowadays is a powerful tool for understanding superstring
theory.”

In a curved background, the pure spinor sigma-model
action for the type II superstring is obtained by adding to
the flat action the integrated vertex operator for supergrav-
ity massless states and then covariantizing with respect to
ten-dimensional N = 2 superreparametrization invariance.
The result of doing this is

1

1 = -
S = 277'a/ /d2Z<§ 8ZMBZN(GNM + BNM) + dQGZME,”(,[

+da0ZMEfy + A 0gdZM QP + A0 @ 50ZM 0P
+ dodsPP + N wpdy CPY + A 5d,C P
+ A% A%D 45 ,5PP) + Spue + Sero (2)

where By, is the super two-form potential, and Sp. is
the action for the pure spinor ghosts and is the same as in
the flat-space case. The pure spinor condition means that
they satisfy A*y5zA# =0 and /{&723/{5 =0, where
c=0,...,9 is a tangent-space bosonic index. The grav-
itini and the dilatini fields are described by the lowest
components of the superfields C,#7 and C;#”, while the
Ramond-Ramond field strengths are in the superfield P%#
[16]. The dilaton is the theta-independent part of the super-
field ® which defines the Fradkin-Tseytlin term

1
Ser — — f P2, 3)
29

where r is the worldsheet curvature.

In AdSs X S° the nonzero component of the two-form
B g, the five-form Ramond-Ramond field strength, and the
curvature are, respectively,

5P
Vol (Ng,)

1 1
Rapea = — ﬁ Nalc Ndbs Ropea = ﬁ Na'lc! Nd' '

1 | A
Ba3=§(NgS)Z\/a/5a‘é, pab =
4)

where R is the radius of AdSs; and S°. As shown in

Ref. [16], the term containing § g % is related to the constant
spacetime curvature, while the values of the superfields
C57 and C’g’ are zero, as well as QE‘}) and QS‘}) because they
are related to derivatives of the superfield containing the
dilaton, which is constant for this background. Finally, the
terms containing the spin connections will lead to

&)

2Actually, in Ref. [15] a new interpretation of the pure spinor
BRST charge was proposed, which elegantly explains its origin.
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where Je& =19ZMQ)y, . J& =16ZMQy,,, and N2 =
LAyt w), N =1 (Ay%é) are the pure-spinor Lorentz
currents, which play an important role in the pure spinor
formalism.” Using the definition of the currents in terms of
the supervielbein and taking the AdSs X S° values for the
metric Gy, the two-form By, and the Ramond-Ramond
flux, after using the equations of motion for d,, and scaling
the fields (see Ref. [5] for details), the pure spinor super-
string in AdSs X S5 is written in terms of the psu(2, 2|4)
currents as [14]

1 1 . -
$=g s [@e5eTna + 8,5078 ~ 387%)
+ NpJ4 + N, g — N, N + Na/,,/i\?“’h’)

+ 5+ S5 (6)

Note also that in Eq. (6) all J’s, J's, and pure-spinor
Lorentz currents have engineering dimension one. So, by
choosing units in which 277a’ = 1, the action is given in
terms of dimensionless worldsheet fields.

The currents (J4, J4) satisfy the Maurer-Cartan identi-
ties 9J4 — 9J4 + [J, J]* = 0, so by making a variation of
the action and using those identities, we can find the
equations of motion,

_ _ 1 - 1 _
VJ, = _[JI’JI]+§[N’J2]_§[J2’Nl (N
_ _ 1 _ 1 _
VJ, =[J3,]3]_5[J2,N]+5[N,12], (8)
Vi, =18 70 - S A 9
1 _E > J ] 5 1> > ( )
_ _ _ 1 - 1 _
VJ, =[Jz,J3]+[J3:J2]+§[NJ1]—5[11»1\7], (10)

= 1 - 1 _
VJ; =§[N,J3]—§[J3,N], (11)

. . i1 tiv 71ty ©
Vs = =l 7= Uy, L1+ 5N, 73] = 5[5 N1 (12)

The pure spinors also have equations of motion, given by
VN = I[N, N] and VN = L[N, N, where V = 9 + [J;, ]
and V=9 +[J, ]. We have suppressed the index A
and introduced a subindex O, 1, 2, 3 for the currents.
Using this notation, the current can be written in terms of
the generators of psu(2, 2|4) as follows:

Jo=JM,,, 0y =J"Q, Sy =J%P,  (13)

Jy3 =J%0,, (14)

*These currents are the ghost part of a redefined Lorentz
current M™", necessary for the implementation of a formalism
which has manifest supersymmetry and can be covariantly
quantized; see Ref. [14].
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and similarly for the J currents. The structure constants
different from zero from the psu(2, 2[4) algebra are

i,B = 277631'3: féB = 272[3:
lef] — ef = —(~ef ¥ L= [ef]
faB (7 )aysyﬁ (7 )By(say f,éoz >

Pl == 1)a78,5 = (v 7805 = £,

1 !¢l 1 ! U
R
[gn] 1 [ ok g oh) g oh)
Ftedter) = 5 (Meeda 85 = Merdq e + Mapdede

L
— 140,

f
ﬂ_@k = ‘fi@g] = NefeOgy

1
B _ B _

Jieata = ~fafeat = 5(7%)&[’:
. ) X A

fleaw = ~Jitea = 5 Vea)a® (15)

This Z, grading for the superalgebra was noted in Ref. [1].

III. FEYNMAN RULES AND DIMENSIONAL
REGULARIZATION

Now we are going to show the strategy of the
calculations we intend to do. In order to calculate the
simple pole corrections to the bosonic part of the algebra,
we need to calculate contributions to the expectation value
(J4(y)JL(z)) perturbatively, including double contractions
(one loop) with contributions of one classical field. In order
to do this, we perform a background field expansion as in
Refs. [1,2,17], choosing a classical background given by an
element g, in the supergroup and parametrizing the quan-
tum fluctuations by X as g = gye®X. Then, the currents can

be written as
J=g log = e ¥ JyeX + "X geX,
J=g10g = e ¥ JjeX + e XX,

(16)

By expanding the exponentials in Eq. (16) we get
2
J=Jy+ a(aX + [Jo, X)) + %([ax, X1+ [[Jo, X1 X])

61’3

where J, denotes the classical part of J and we have
a similar expression for J. The commutators can be
evaluated using the structure constants of the psu(2, 2|4)
Lie superalgebra given by Eq. (15). Here we are going to
use the SO(1, 4) X SO(5) gauge invariance to fix X, = 0.
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In addition to the expansion of the matter part of the
currents, we need to expand the ghost part as follows:

Nap = NS + aN) + a?NS), (18)

and similarly for Na_b. Now, the pure-spinor Lorentz
currents have the following behavior:

1 Nay(@ = NN (2)

Nfl_lb)(y)Ng(z) — g , (19)
Nald "M clb
NN (@) = =3 ﬁ (20)

Replacing the expansions of the currents in Eq. (6), one can
identify the kinetic piece §,, of the action,

. L
S, = deZ(E 9X2aXbm,, + 4aaﬁaxaaxﬁ), 21)
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from which we obtain the propagators in coordinate
space,

X(0)XP(z) = —n*Inly — 2,
X4 (30X (z) = =8 Inly — z|%, (22)

R 1 -
X*(y)XAP(z) — — 15“3 Inly — z|%

The reminder terms of the background expansion will
provide the vertices of the theory. In order to calculate the
one-loop simple pole corrections, we need the expansion of
the action up to three terms in the quantum fields and one
classical field. There are a lot of terms in the expansion of
the action. Let us just write the terms that will contribute to
the expectation value (J%(y)J%(z)). The terms with one
classical field and two quantum fields are

] i} 1 - , 3. 5
S(x2,J) = f d%[n@ Nea0X XTI + 1, g0 X2XCEJI] + 3 IX XY (y )P 8 5 + EaX“XVJ[Q]('y%)?B 8.z

3 e | N
-5 OXPXY TNy ), 8,5 — 3 IXPx7 ey 4),*8, E] (23)

and

1. | R 1 N DA |
S(X%, N) = f d2z[E IXXIN.4 — 5 9X° X Nug + 3 OXXN.g — 5 9X° XNy — 3 IXXP(y*)a” 8, 3Nap

1 = o) 1! 1 = ) 1 =<, 1!
5 IXXP )8, 5Ny = 5 IXPXH(Y )oY 8,5 Nap + 5 XPX(y™) o8 5Ny

[

1 ; . s .
=5 OXXP(y )78, 3Ry + 5 X XP(y™) 8, 5Ny

— N

1 5 N A - N
3 OXPX ), 0 5y + 3 XXy ), 8 5y | (24)

2

The terms with three quantum fields are

S(x3) = % f P IXTXXP(Yo)ap — XX XP(v)ap — IXOX XP(Yoap + 9X40XXP(v2)4 5

+2X90X“GXP (Y, ap — 2X40X4IXP(,)4 5] (25)

By integrating the first line by parts we obtain

SOO) = a / PeXAOXTXB(y,) g — X20XFTXP(y,), 5] (26)

The terms with three quantum fields and one classical field are

1 . 1 . 1.
SN =a f d2z[— EGX"‘XBXQnﬂ,J[@]('yQ)aB + Zaxéxvxw[ﬁé](y@yg)y@ +3 IXXPXN 09N () ap

1. 1 - 1
7 IXOXYXT 9 (y ¥ ) ys + g IXXOXY Ty )y — 3 IXXO XTI (y 0y )5y

| A | | R
+5 IXEXPXEN g T4 (yp) 4 5 — 1 OXCXTXT (y o y,) 55 — 3 IXEXPX 0T 90 () 4

Y

B
15 Loy Laxexsxs
+ZaX5X7X£J[£Q](»y@’y£)?S —gaXEXSXVJ[ﬁé](yﬁyg)gy +§6X9X6XVJ[@](7@79)$A] 27

and
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S(X3N)—a[d2|:

X 3!

o XX ap

2 X 3!

s XX g3 (), 285N,y —

() 45 PXT(y), 783N,y —
1
L SABXT (b Y0,5Nap + 5y
(7 ) ab 72X 31
| B A 1
- aXaXE(’yE)aB(sBBX’y(’yab)'ySﬁ Nab t-—= B

2 X 3!
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1 - A ) S 11/
7531 X XY a pd PXT (P )a? 85 Nary

o XAAXE(y,) 5 8 PXT(y?) 85N gy

3 XaXC(’yc)a,BBBBXY( /bl)yaasﬁNa’b’

Xaaxc(')’L)alg(sBﬁXy(‘y /b/) 568ﬂN by

1. 1. o 1.,
— 51 XXy, s X468 8IN, + 31 XXy pX 8 85Ny — 31 XXyt X sk 8N,

1 - A D ! !
& ¢! d' sla’ ¢b']
+ —0X Xﬁydﬁx 8.5 8, Ny e

3! X 3!
~3 ; 3 aX‘”*Xﬁ(yg)&gaaﬁxy(w””)mwm/b/ -
oo XX (voa 58 PXT(y "), 78 5N iy —
b XX ) X (), 0550 +

2% 3l

A

IXX(ye)4

XaaXC(’}/c)a,B(sﬁ'BX’y(’y ’b/) 68 Na/b’

6aﬁx7(,yab) y‘S)/)/]Vvab

1 - PN N
mxa3X£(7£)5,35QBXY(')’ab)ay5y&Nab
m3XaX£(’}’g)aﬁBBBXY(Vab)yﬁaaﬁNab

3 onaXC(,yc)aﬁaﬁBX)/(,yab) 653'3Nah

1 .
— 57 XXy pX sk st

1 , 1 1 oa . P 1o
3—axaxﬂ 75X 8 80Ny — §axaxﬁ«yji BxdaE“az]Nub + an“Xﬂ'y; X sl sb 1IN ,,,,] (28)

Finally, we need terms with quantum pure-spinor Lorentz
currents. These terms will contribute to diagram 21 (see
Fig. 1) and they are

1.
S(x2, NW) = / aﬂz[5 ax<xNY) —

1
d' n7(D
2aXCX N oo

+ %axvxdﬁf,‘; ; 9X° Xd’N“,d,] (29)

Terms with four quantum fields will not contribute since
two-dimensional tadpoles vanish in the regularization
scheme we are going to use. Given the propagators and
the interactions, it is then straightforward to write down
coordinate-space expressions for the Feynman rules of the
diagrams that appear in the expectation value (J%(y)J2(z)).
However, there are infrared and ultraviolet divergences
which produce ambiguities in the coordinate-space
integrals. In order to circumvent this problem, we use
momentum-space Feynman rules with a prescription for
worldsheet dimensional regularization [18-20]. After the
calculation of the OPEs in momentum space, the results are
written again in coordinate space by using an inverse
Fourier transformation.

The two-dimensional prescription for dimensional regu-
larization consists of keeping all the interactions in exactly
two dimensions, but the kinetic terms (and hence the
denominators of the propagators) will be in d =2 — 2¢

dimensions.

We are going to use the definition d’k = ek \With

this choice there is no 7 dependence in the results and the
Green function G(y, z) is represented as

[
eik(y—z)+i1€(yfz)
Gy, z) = f dsz (30)

The momentum-space propagators look like

. o 5%(k + 1)
X4(k)X2(1) n—hT,
&8%(k + 1)

N

To work out the corresponding expression for the
OPE’s in momentum space, we use the dimensional
regularization prescription and include a factor I'(1 — €) X
(47)~€(2m)?¢ for each loop; this will remove the Euler
constant (the G-scheme [21]). All the integrals we need
to compute in the momentum space come from the
formula

3D

X (k) XB(l) — ~ aaﬁ

b

2 a
[ PRl = KPP

_ jatl-a-Bfb+1-a-p k22 —€
)
Zfa\[TQ—a—B+b+i—e€)
X
§)<i)[l“(2—2e—a—ﬁ+i+b)
IlNa+B—1—i+e) .
—e— B+
e T -e=p l)], (32)

where w is the usual mass parameter of the dimensional
regularization.
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O e

Graph 1 Graph 2 Graph 3 Graph 4
OO0~~~
Graph 5 Graph 6 Graph 7 Graph 8
@ @ : 77777 G 77777 G
Graph 9 Graph 10 Graph 11 Graph 12
X+©_’_X-‘-‘>©*>—X H—Q @ ,,,,,
Graph 13 Graph 14 . Graph 15 Graph 16
-‘Q‘-R—Q X_—@ Q - :
Graph 17 Graph 18 Graph 19 Graph 20 Graph 21

FIG. 1. Diagrams for the one-loop contribution. The full lines represent the quantum fields, and the dashed lines represent the
classical field. In diagram 21, the dot vertex represents the presence of one quantum pure-spinor Lorentz current (Nfllb) or N E}b)).

Since the main part of this paper is rather technical and we want to be as clear as possible, we end this section showing in
detail the calculation of one diagram. Restricting the expansion (17) to the case with one classical current, we can write

(2GR = a(0X4()IXE(2)) + aXOXL() XDy, 87 + aX(Xe()IXE(2)I D g, 55,
) 3
— @ XUWIXXE@)YE g — @ @OXUWIX XY ;= S XX XB D (y0),
3 R R
= S OX2OXTXP @D (ye); v — @ OXTXP()OXEE) Y — a(OXEXP()IXEQ)YS

@ 4 a b avyp c a b
= X XPY)X() Uy 8y — @ (X XP()X() Ay smy B
e a c a b e avp c a b
— (X)X XP ()l 8y ap — @ (XWX XP ()l 85y, 4
a3 a3 Ao B ~
= 5 OXPMIXE @Y )y Vo — = XTXPG)IXE@MDyea)5 v
+ aXaX“XP()IXTX(2)Yap, 5 + @ (OX XP()IXTX* ()75 775
a4 S8 a I CY4 P> a b
+ S (X XP XX (MDY 5(vea)y Vi 5 + 5 OXEXPOIXTXP@WEAyE 5(vea)y vis

4 4
o 9y a c A4 b @ ayp (4 a b
+ 7<X7X5(y)6X XBWD (Y ea)s VS 5 Vap + 7<X7X5(y)ax XEWA Y e)y V357 g 4 (33)

Let us focus on the first term in Eq. (33). The diagrams that contribute to this expectation value are 4, 5, 6, 7, 8, and 21. Let
us calculate the diagram 7. We can form this one-loop diagram by using the two terms on the right-hand side of Eq. (26),
which will come from the expansion of the exponential of minus the action at second order. Also, we need the following:
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theterms%GX“X’A'J@]()/C_L,)?B&&[;,
of Eq. (23) (contributions of J% and Je);
— 5 OXPX ()78, pNap,

—39XPXY Ty 4),* 8 s
the terms
) 5X'8Xa(’)/a/b/)a75ﬂ§Na/b/,
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—LaXPX Dy, ), %8, 5. and 20X XTI (y ) P55

l XaXB(')’ab)aya%gNaby é&X“XB( a/b/)ay(syﬁNa’b”

- %axaxﬁ(yab)avayﬁNa,,, 2OXXP(ye?) Y8, 5N gy,

-1 aXﬁX“(y“b)ayéyﬁ]\?ub, and 1 axﬁxa(ya’h’)amyéﬁu,,,, of Eq. (24) (contributions of N, and N,;,); and the two terms
of Eq. (26). So, in momentum space, using the contractions (31), the contribution of diagram 7 to a*(0X%(y)dX2(z)) is

J[a_] )
D7 = —21a k2 fd

—2ia

, (p*(k — p)* + p*p(k — p)* = 2p*p(k — p)(k — p))

Ipl*lk — pl?

+ p?plk — p)* —2p>p(k — p)(k — p))

Jlatl p3(k — p)?
4__2/d2p(p( P)

Ipl*lk — pl?

la4N“”j‘d2 (p*(k — p)* + p*plk — p)> — 2p*p(k — p)(k — p))

Ipl*lk — pl?

3(k — p)* + p*plk — p)* = 2p*p(k — p)(k — p))

Ipl*lk — pl?

B l.a4_“b /dzp (p*(k — p)* + p*plk — p)* = 2p*p(k — p)(k — p))
2

Ipl*1k — pl?

Xra'b’ 2 2 _
a4__zj‘d2p(p (k — p)> + p*pk — p)* = 2p?p(k — p)(k — p))

For this diagram, we have an overall factor of & 37 coming
from the expansion of exp (—S) at third order in S, which
cancels with the factor of 6 coming from the different
products of the terms in S3. Also, we have to take into
account a minus sign coming from the expansion of
exp (—S8) at third order in S. Therefore, using the results
of the integrals summarized in the Appendix, we obtain

2 | —¢ ab __ ara'b’
k [l_ ( Jlab] 4 M)
n? k 2
k /- (Nab _ Na/h’)
+ — ( Jlab] + 7)]
2 <J > 35)

IV. ONE-LOOP OPE WITH
ONE CLASSICAL FIELD

In this section, we are going to present the results of the
OPE’s to each expectation value that appears in Eq. (33),

D; = 4ia*

k2

\7ab
u=4m(ﬁw—N”)£
i €

Is = —2iatfln £ | X 76<1 +
k2 IuZ €
S kKR el 1| &
Iy = —2ioz4ﬂu’ﬂP — (— + 2) - 2ia4J[“”]E |—2
)7 €

- A k 2
I; = 2ia* (2719 + N“b)p —

—€ ab
(1 + 2) + 4ia4(J[“h] N )i

- +2la4(2ﬂ“b] + N”b)

34
PIlk — I )

specifying which diagrams contribute to each one. But first
note that

(J2()JL(2)y = (I (2) + T (I (). (36)

So, due to the different contributions to each type of
index a and da/, the results for (J%(y)J’(z)) and
(J¥(y)J" (z)) will be presented separately. We will use
the notation I, for the contribution of the nth diagram
and we are going to write the contributions for each
expectation value in Eq. (33). The summary of the
results is presented in subsection C.

A. Results for (J*(y)J?(z))

To the expectation value a?*(0X%(y)aX’(z)), the
diagrams 4, 5, 6, 7, 8, and 21 contribute,

2 Jielw?
1

2 —€
2) — 2yl Ik_2 | < + 2),
klum €

M
k2
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N\ k| K2 | —<(1 Neby 1 e
Iy = dia (ﬂab] ) — (— + 2) + 4ia4<J[“b] == ( + 2)
2 )i | p € k
3ia* .k | K> |-¢/ 4 T\  3ia* 1|2 |-¢f 4 7
Ly =—N"— [ ———c)+ Nt — | = (————), 37
Ay i ( € 2) 4 k| p? e 2 G7)
giving as a result
2 b kR “tab]( 1 b
a*(0X(y)0Xb(2)) = ia ? — 4t p +3)— N
k2 —€ 1 7 9
+ia* <4ﬂaﬂ<— + 3) - N“b<— + _)) (38)
k € e 8

To the expectation value —a(dX“(y)0X*XA(z))y?, p» the diagrams 2, 3, and 19 contribute,

- ok | K| —efl K | -¢/1
I, = —2ia*(Jl9b) + N*") = | = (— + 2) — 2ia*(Jlab) — N“”) — (— + 2),
k-l € M €
. N\ k | K2 |1 NP\ 1 k2 —e(1
— ;. 4( 7lab] S 2 - oAl glab] 20 Y21 D -
L =ia (J + 3 )]52 (E + 2) + i (J 3 )E e (6 + 2), (39)
\jab 2 | —¢ ab —€
I = —ict (ﬂab] L ) CE (l+4) +i 1<J[ab] N ) L iy
k2 € “% 2 ) p?l €
giving as a result
. N " k K1 GNP kR e
k* |- N 1| k> | —¢(7
- 21a4][”b] — +ia* =|— (— + 11). (40)
k|u 3 k €

To the expectation value —a3(9X¢ (y)&XdX/;(z)WZ ;- the diagrams 2, 3, and 19 contribute,

4( jlab b | el 4( ylab b kel
—21a(J[“]+N”) — +2)+21a(J[”]—N”) — -t2)
M © €
N“” k |k |—<1 NN | k2 | <1
— i tab) — Ll A fap) 4 VOV A | e )
1y = —ia(7 - )kz ) (Er2)- (’ 3! )k (c+2) (1)
\7ab 21— ab 2 1 —
€1 €]
Iy = (ﬂab] LN ) k k— (- + 4) :(ﬂab] WX ) k—2 -
2 )i € k 2 M €
giving as a result
o k| K| e1 N k| k> |—¢(8
—a(9X(IX XP ()Y}, 5 = 2iat TP (f + 3) +iat— = | (f + 19)
ap K2 € 3 k €
1| k> |-« N 1 k2 —€(8
+2iat bl = | —iat—— = | = (—+ 13). (42)
k|lp 3 k €
To the expectation value @?(9X*(y)X¢(2))JtDn . 82], only diagram 13 contributes,
o2 [cd] 4 q0apr) 1 K| <(1
(0X(y)Xe(2))Jle 7]6[65[1] = [ = —4ia*J"“ il - +2) (43)

To the expectation values — % (0X(y) X7 XP(2))J! [Cd](ycd)ya yh pand — %3 (0X(y)XTXP(2))\] [Cd](ycd)y& 72 5 only diagram
15 contributes; however, it cancels,
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0[3 a3 P ~
— S XWX XP@M N yea)y v = hs =0 — S OXOIXTXP@NNye)y vy = 1hs = 0. (44)

To the expectation value —a*(9X“XP(y)dX"(z))y4 s, the diagrams 1, 10, and 14 contribute,

_ \jab 2 | -€e/1 Nab 1 k2 -e/1
I, = ia“(ﬂab] LN ).5 L (- + 2) + ia (ﬂab] ) — (— + 2),
31 ) i? € 3Nk lu €
. Wk LK el k> | €1
Lo = —2ia*(Jlb]l + N0y = | — (— + 2) — Dia(Jlab] — N“”)—_ — (— + 2), (45)
K2 | u? € k €
\jab VI 1 Nab k2 -€]
Iy = —ia (ﬂab] +N ) k k— (1 + 4) + ia4—_<J["b] + ) | -
k2 € k 2 M €
giving as a result
(aXXE ()X )yt s = —2ia Tl K | E ) MK K ()
— = 2ia - —ia = = —
“ Y DV ap 2 u? € 3 k2 €
K |- NP 1| k> | —¢(7
— 2za4J["b] — +ia* = |= (— + 11). (46)
k| 3 k €

To the expectation value —a3(dX4XA(y)9X? @)v4 5 the diagrams 1, 10, and 14 contribute,

. NN k| k2 | —</1 NN | K2 | -</1
— — i jlab) — 1 z {ab] ~ z
I = —ia (J y )Ez (6+2) (J + 5 ) - (6+2),
- alan] o gy K| K| e 4 glab] b k2|1
1o = 2ia*(Jl9) + N*") = [ — ( +2)+21a(]” —N“) — 1 (=+2) (47)
Kl n €
N\ k| k2 | —</1 .1 N\ K2 | el
Iy, = lab] 4 ) — (—+4>— (J[“b]+ ) =1 =
1= e (J 2 )2 p 2 A
giving as a result
o ook | K2 el N k| k* | —<(8
_ .3 aypB b a — ;. 47lab] > |2 - -4 R A e
X (0XXP(y)aXP(2)yys 5 = 2iat] 2|2 (6 + 3) et 5 (6 + 19)
1| K2 |-« NP 1| k® |-</8
+2iat bl | | —iat— = | (—+13). (48)
klum 3 k €

To the expectation value a*(dX*XP(y)oX7X 5(1)}7/2 By’; 5 only diagram 9 contributes,

o N\ k| k2 | e N\ | K2 | e
4 aypB 9y o a =], = {ab] o +3)+ lab] 4 ) (_+ )
a*{(9X*XP(y)oX7X (z)mﬂyw Iy = —2ia (J )k2 (6 3) 2ia’(J > )il . 1
(49)
To the expectation value a*(9X4XA(y)a X7 X 22y 371;5 only diagram 9 contributes,
. N\ k| K2 | e NNT | K2 | —¢(1
4 s b g o _ b b
(X XP(VIXTX2 (Y4 575 =1lo = 2ia (J[“+ 5 )kz — <€+3)+2’a (J["]+ 2 ); ol (g“)-
(50)
To the expectation value —a*(dIX*XP(y)X¢(z))y% BJ["d]ne[céz], only diagram 20 contributes,
(XXX gl g 8 = 1 = 2iatslan L | K] (L 51
a’( ) (Z)>'Ya3 Ne[cOq) = f20 = 4l %— P p - (5D
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only diagram 20 contributes,

7E<1 + 2). (52)

To the expectation value —a3(9X4XA (X (@)ye BJ[Cd]ne[c‘éZ],

B 1
—a¥(AX XPOIX @Dy g1 Mmegedg = g = —2iat TP .

k2
|-

To the expectation value %A(GX aXP(y) XX 8 @)y, gJ ledl(y.4) ?;‘yﬁ 5 only diagram 16 contributes; however, it cancels,

4
a ~ a ~
5 OXXPGXTX2(2) v D yea)y Vi 5 = 1he = 0. (53)

To the expectation value %(ax axB(y)X7X? @)y4 éﬂc‘ﬂ(ycd)y)‘yﬁ 5 only diagram 16 contributes; however, it cancels,

4
a o .
5 OXXPMXTX(@)7g oV ea)y V35 = Ths = 0. (54)
To the expectation value a*(X¢(y)9dX? (z))ﬂ”‘i]ne[cb‘;], only diagram 12 contributes,
1|k |-</1
a2<xe(y)ax"(z)>ﬂcﬂne[cag] = I, = —4ia*Jleb) - | = (— + 2). (55)
klum €
To the expectation value —a*(X“(y)dX*XP(z))v5 5/ [Cd]ne[c52], only diagram 18 contributes,
_3/ye ayB b led] a — :'4[ab]lk_2761
aX (X () IXXP (@)Y ol 8 = g = 2ia’) 7l -t2) (56)
To the expectation value —a3(X¢(y)aX4XP @)% 2 [Cd]ne[céz], only diagram 18 contributes,
. 1R | <1
— @ (X (V)OXIXP(2))yh (S 1 84 = g = —2ia*Jle] |—2 (- + 2). (57)
ap k|lum €

To the expectation values —“73<X7X'8(y)GXb(z)>J[Cd](ycd)y“y‘;B and —"‘73<X7X/§(y)BXb(z)ﬂ[Cd](ycd)f‘y‘f&ﬁ only

diagram 11 contributes; however, it cancels for the two cases,
a? )
= XTXPMIXP @M yea)y Vig = 111 = O, (58)

3
a S A
= XIXPGIXP @D yea); vG = T = 0. (59)

To the expectation value “74(X 106 S(y)aX *XP(2))y? gJ Ledl(y.4) ?;‘y‘} 5 only diagram 17 contributes; however, it cancels,

4
o &8 . A
S (XIXP )X XP @)yl sl N yea)s vi 5 = I = 0. (60)

To the expectation value %(X YX%(y)9X XA (z))yz éJ[Cd](ycd)y)‘y‘j 5 only diagram 17 contributes; however, it cancels,

4
a A v i .
5 XXX XP(2)y] 1 yea)y Vs = 117 = 0. (61)

B. Results for (J* (y)J? (z))

The results for the expectation value (J “/(y)J b(z)) are analogous to the results of subsection A. We just need to be careful
with the signals of some vertices. The result is
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N“ K |-¢f1 65 o k| K2 e 7 193
JYW)JIY (7)) = — — (———)+' AN | = (—+—). 62
VO = miet T | | (507 ) TN 3¢ 24 (62)

C. Summary of the results
Finally, summing up all the expectation values presented in subsections A and B, we have

NP K> |—e(1 65 cap k|2 | me( T 193
JYxX)JY (y) = —ia* — | = <_——>+' AN | = (—+—), 63
W70 = it == 5 | \3e T 2g) TN B 3¢ 24 ©3)
J(I(y) GNP —6(17 4 191) A fab K k k2 —6<25 . 319) (64)

X - —ia"— | — —+— — —+ =)

Y F lu2| Ge 2 2 3¢ 24

The results can now be expressed in coordinate space
using the following:

ik z—w

-, 65

K (z—w)? (©5)
—i 1

—_ = R 66
k z—w (66)
k

2 1
i | :I:>ln|z—w|2—, (67)
Z—w

+2] =Inl|z — w/—>—= (= w) (68)

—ik

e [6 | (z—w)*
The terms (65) and (66) can be derived by a simple inverse
Fourier transform. For Eq. (67) we calculate the expectation
value (0X(z)X(z)X(w)X(w)) in momentum and coordinate
space, and then compare them; the same is done for Eq. (63),
calculating  (9X(2)X(z) [ d?udX(u)X(u)oX(w)X(w)) in
momentum and in coordinate space. The results in coordinate

space arc
Neb 1] 65
(— Inlx — y|> — —)

T4 (x) ¥ (y) —

x—y)\3 24
oy G=9) (T 8l
o u—wi 3k m)
(69)
) N (17 191
FI0) = s (5 b+ )
cap (X =) 81
e VGJl P+ﬁ)(m)

Note that the divergences in momentum-space OPEs
appear as logarithms in coordinate-space OPEs, suggesting
that the currents may get anomalous dimensions. This is
not a surprising result since the AdSs X S° left-invariant
currents are not protected by any symmetry argument.
However—as it was shown in Ref. [5], where the one-
loop OPEs between the energy-momentum tensor and the

[

left-invariant currents were computed—the bosonic left-
invariant currents do not get anomalous dimensions. On the
other hand, the fermionic currents get anomalous dimen-
sion contributions. However, it was shown that the two
types of fermionic currents get the precise contributions
that cancel when combined into the single operator which
appears in the energy-momentum tensor. Therefore, the
energy-momentum tensor still has zero anomalous dimen-
sion. This result suggests that, although the left-invariant
currents have logarithmic terms in their one-loop OPEs,
protected operators constructed with these currents do not
have them.

V. CONCLUSION

It was shown in Ref. [5] that, at one loop, there are
nontrivial cancellations in the possible corrections to the
double pole of the product of the bosonic currents
J4(y)Jb(z). Here it was shown that there are contributions
to the simple poles. As the simple poles are important
in the calculations of the four-point function, the results
presented here are a step forward in order to get a world-
sheet description of pure-spinor closed strings in
AdSs; X S°. Since these currents are not holomorphic,
there are antiholomorphic terms in the OPEs. However, if
we try to make the same calculation for holomorphic
quantities, such as the combination A%J,, which is used
to define the BRST charge in AdSs X S°, we can see that
it is not possible to form diagrams with one classical field
and so there is no antiholomorphic contributions for these
quantities.

As in the tree-level calculation of Ref. [12], the one-loop
OPEs calculated here respect the Z4-grading of the
psu(2, 2|4) superalgebra, reflecting the fact that all the
interactions respect the Z4-automorphism of the superal-
gebra. It is important to note that all terms proportional to
the currents J22, J9¢ cancel and the only contribution
comes from the pure-spinor Lorentz currents N%2 and
N The calculations presented in this work show the
way to get the complete one-loop current algebra for the
pure-spinor AdSs X S string. However, owing to the huge
number of vertices coming from background expansion,
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we hope to develop some algebraic computational methods
in order to complete such a task.

As a final remark, we would like to draw attention to
Ref. [22], where the author presents another method to
compute the current algebra. In this paper, this method was
used to compute the current algebra at tree level. However,
the author states that it can be generalized to compute
quantum corrections to the algebra of the currents. It would
be a good task to investigate this in a future work.

ACKNOWLEDGMENTS

D.F.Z.M. would like to thank ICTP for financial sup-
port. D.L.N. would like to thank CNPq, Grant
No. 501317/2009-0 for financial support. This paper is
dedicated to Yasmim Marchioro Nedel.

APPENDIX
1. Table of integrals

1 2 /1 k|2
dim—— (——1 —) Al
/ TmPlm— kP kk (AD)

mm
dim—m——— =1 A2
[ " P lm — k12 (A2)
[ddmL _ 1L L[kP] T - e)’T(e)
ImPlm = kP w€k p T - 2€)

1/1 2
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mPlm —kP €k w7 T(1 - 2€)

1(1 | |k|2>
= —_—— n—
k\e w?
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2 (A8)
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ImPlm — k> 7 2 T4 — 2e)
kk
X A
5 (A9)

min 11 2 |kl
dim——me——— = — (1+——21 —)
f "TmPRIm — k2~ 7 kk € u

(A10)

25 1 1/1 k|?
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o)
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3 1 k
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