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We obtain all the stationary vacua of de Sitter space by classifying the inequivalent timelike isometries

of the de Sitter group. Besides the static vacuum, de Sitter space also admits a family of rotating vacua,

which we use to obtain Kerr–de Sitter solutions in three, four, and five dimensions. By writing the metric

in a coordinate system adapted to the rotating Hamiltonian, we show that empty de Sitter space admits not

only an observer-dependent horizon but also an observer-dependent ergosphere.
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I. INTRODUCTION

The Hamiltonian, as the generator of time translations,
depends of course on the definition of time. In a theory with
diffeomorphism invariance, this is arbitrary. However, in
suitably symmetric spacetimes, there exists a preferred
class of Hamiltonians, namely those that generate timelike
isometries. Timelike isometries are special because they
allow quantum fields to be decomposed in terms of positive
and negative energy modes in a time-independent manner.
In particular, the state annihilated by a Hamiltonian that
generates a timelike isometry remains empty for all time;
we will refer to such states as stationary vacua.

Does every timelike isometry yield a different vacuum
state? Consider Minkowski space. This has a timelike
Killing vector @T , where T is a Cartesian time coordinate.

But one can also define a new time coordinate T0 ¼ T��Xffiffiffiffiffiffiffiffiffi
1��2

p
and ask the following question: is the vacuum defined by
the new Hamiltonian @T0 different from the one defined by
@T? The answer, of course, is no, since these two
Hamiltonians are related by an isometry transformation
of Minkowski space, viz. a Lorentz transformation. We
will call such Hamiltonians group equivalent. Isometry
generators that can be mapped to each other by isometry
transformations, like @T and @T0 , are part of the same
equivalence class. This breaks up the isometry group into
distinct conjugacy classes i.e. equivalence classes of iso-
metrically related generators.

In addition to group equivalence, we also have the
notion of particle equivalence. Formally, two vacua defined
by different choices of time are particle inequivalent if
there exists a nontrivial Bogoliubov transformation (with
nonvanishing �kk0) between the two. The two choices of
time imply different notions of positive frequency and,
consequently, the vacuum state of one appears to contain
particles for the other. We will refer to the corresponding
Hamiltonians as particle inequivalent.

Group equivalence implies particle equivalence. To see
this, suppose two timelike isometries H and H0 are related
by a continuous isometry (i.e. they are group equivalent).
But isometries leave unchanged the metric and hence also
the wave operator. This means that an individual mode
solution of the wave equation will, under the isometry that
relates H and H0, be mapped to another individual mode
solution. In particular, a continuous isometry must map
positive-frequency modes to positive-frequency modes.
Hence the modes of H and H0 are related by a trivial
Bogoliubov transformation; they are particle equivalent.
Although group equivalence implies particle equiva-

lence, the converse is not true, as we shall see. However,
since group inequivalence is a necessary condition for
particle inequivalence, a starting point for classifying the
particle-inequivalent stationary vacuum states is to enu-
merate all the group-inequivalent generators of timelike
isometries. This involves identifying the conjugacy classes
of the isometry group. In this paper, we consider such
stationary Hamiltonians for de Sitter space in various
spacetime dimensions; we find a family of vacuum states,
which we call � vacua, that are generalizations of the static
vacuum state.
As a warmup, let us illustrate these ideas by enumerating

all the stationary vacua of Minkowski space. The most
general continuous isometry of Minkowski space is gen-
erated by a linear combination of translations, boosts, and
rotations:

��P� þ �iKi þ!ijJij: (1)

This needs to be timelike, at least in some suitable region,
for the generator to be a candidate Hamiltonian. Choosing
the Hamiltonian to beP0 yields the usual Poincaré-invariant
vacuum. Alternatively, we note that the boost generator Ki

squares to X2
0 � X2

i , which is timelike when restricted to the

wedges X2
i > X2

0 and is future directed when further re-

stricted toXi > 0. This is of course the right Rindler wedge.
Note that the orbit of Ki starting from a point in the right
Rindler wedge remains in the wedge. Choosing the
Hamiltonian to be Ki yields the Rindler vacuum for the
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right Rindler wedge, while choosing the Hamiltonian to be
�Ki gives the Rindler vacuum for the left Rindler wedge.
Another possibility is the combinationKi þ �P0, but this is
conjugate to Ki, the Rindler Hamiltonian. For a less famil-
iar example, consider the generator Ki þ �Pj for i � j.

This generates the worldline of an accelerating Rindler
observer with a constant drift velocity parallel to the
Rindler horizon [1–3]. It can be shown that this generator
cannot be reduced to either P0 or Ki by other isometries.
However, it turns out that the vacuum defined by this
generator is particle equivalent to the Rindler vacuum;
they are related by a trivial Bogoliubov transformation
[1]. This is a case in which the Hamiltonians are group
inequivalent but particle equivalent. It is straightforward
to check that there are no other inequivalent isometric
Hamiltonians for Minkowski space. For example, the com-
bination P0 þ!J12, which generates the worldlines of
observers rotating in the X1 � X2 plane with angular veloc-
ity !, becomes spacelike outside the sphere X2

1 þ X2
2 ¼

1=!2; restriction to the world volume of the inside of the
sphere fails because such a region does not admit a Cauchy
surface. Or, the combination P0 þ �iPi is timelike for
�i�i < 1 but this is obviously isometrically equivalent to
the Poincaré Hamiltonian via a Lorentz boost. It is easy to
check that there are no other inequivalent isometries that
could be used as the Hamiltonian. In summary, the only
stationary vacua of Minkowski space are the Poincaré-
invariant vacuum and the Rindler vacuum.

Similarly, the conjugacy classes of the isometry group of
anti–de Sitter space can be used as a starting point to
classify the stationary vacua of anti–de Sitter (AdS) space
[4]. In this case, there is the vacuum annihilated by the
generator of global time, which is the AdS counterpart of
the Poincaré-invariant vacuum. There is also a Rindler-
AdS vacuum. But, remarkably, in three spacetime dimen-
sions, there exists a one-parameter family of � vacua,
which give a kind of rotating Rindler-AdS space [4,5].
With this time coordinate, AdS3 possesses not only an
observer-dependent Rindler horizon but also an observer-
dependent ergosphere.

The goal of this paper, then, is to use a similar group-
theoretic analysis to enumerate the stationary vacua of de
Sitter space in three, four, and five dimensions. As in AdS3,
we will find that de Sitter space (in all dimensions) admits a
family of� vacua, leading to Kerr–de Sitter space, a kind of
rotating de Sitter space. To be clear: the vacuum states we
are looking for are generalizations of the static vacuum of
de Sitter space. The Bunch-Davies state and the� vacua [6]
are not part of this set. They are not stationary vacua
because, for example, the positive-frequency Bunch-
Davies modes are eigenmodes (at early times) of the gen-
erator of conformal time, @

@� , but this does not generate an

isometry [7]. Our strategy is to find the stationary vacua of
de Sitter space by first identifying all the group-inequivalent
timelike isometries of de Sitter space. Now de Sitter space

in d dimensions can be described by a hyperboloid em-
bedded in dþ 1 dimensional Minkowski space:

�X2
0 þ X2

1 þ � � � þ X2
d ¼ 1: (2)

The de Sitter group is manifestlyOð1; dÞ, which is of course
also the Lorentz group of the higher-dimensional
Minkowski space. Hence finding the group-inequivalent
isometries of de Sitter space amounts to finding the con-
jugacy classes of the Lorentz group.

II. CONJUGACY CLASSES OF THE
LORENTZ GROUP

The Lorentz group has a fascinating structure. Even for the
familiar Lorentz group of four-dimensional Minkowski
space, there are, in fact, five types of Lorentz transforma-
tions. That is, group elements of SOð1; 3Þ fall into five
distinct conjugacy classes. One conjugacy class consists of
the elliptic transformations. This is the set of Lorentz trans-
formations conjugate to the pure rotations i.e. the elliptic
transformations consist of pure rotations Ji, as well as all
Lorentz transformations �Ji�

�1, that can be obtained from
pure rotations via Lorentz transformations. Another conju-
gacy class is that of the hyperbolic transformations; these
consist of the pure boosts and their conjugates �Ki�

�1.
There is also the class of parabolic transformations, whose
representative elements are the so-called null rotations, gen-
erated by Ji þ Kj for i � j. Most interesting for our pur-

poses are the so-called loxodromic transformations. These
are Lorentz transformations generated by commuting pairs
of rotations and boosts, such as Kz þ �Jz. The loxodromes
cannot be reduced to either pure rotations or pure boosts by
Lorentz transformations since those belong to different con-
jugacy classes. These, then, are the four nontrivial conjugacy
classes of SOð1; 3Þ. (Strictly speaking, the number of con-
jugacy classes is continuously infinite, as each loxodrome
rotation parameter � corresponds to its own conjugacy
class.) Finally, there is also the trivial conjugacy class con-
taining the identity transformation.
There is a nice electromagnetic analog to the Lorentz

group. The Lorentz generators M��, being antisymmetric,

can be thought of as the electromagnetic field strength F��;

the Lorentz boosts are then like the electric field with the
rotations like the magnetic field. Then, just as there are five
kinds of Lorentz transformations, there are five kinds of
electromagnetic field configurations. To count these, recall
that the two electromagnetic Lorentz invariants are F ^
�F� E2 � B2 and F ^ F� E � B. Besides the trivial con-
figuration ( ~E ¼ ~B ¼ ~0), the four types of nontrivial elec-
tromagnetic fields are therefore (i) magnetic field/elliptic

( ~E � ~B ¼ 0, E2 � B2 < 0), (ii) electric field/hyperbolic

( ~E � ~B ¼ 0, E2 � B2 > 0), (iii) radiation field/parabolic

( ~E � ~B ¼ 0, E2 � B2 ¼ 0, ~E, ~B � ~0), and (iv) non-null

field/loxodromic ( ~E � ~B � 0). If ~E � ~B � 0, no Lorentz
transformation can transform the field into a configuration
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that is either a pure electric field, a pure magnetic field,
or pure electromagnetic radiation, since these all have
~E � ~B ¼ 0. Correspondingly, the loxodromes of the
Lorentz group are generated by linear combinations of

generators that have ~J � ~K � 0.
Specifically, a loxodromic generator in 3þ

1-dimensional Minkowski space can be written as

M01 þ �M23; (3)

in Cartesian coordinates, where Mij ¼ �Mji are the usual

Lorentz generators. This can be extended to higher dimen-
sions as well. In six spacetime dimensions, we can write a
loxodromic generator as

M01 þ �1M23 þ �2M45: (4)

The key property is that the Lorentz generators appearing
in the linear combination of a loxodrome have no common
indices and therefore commute with each other. For odd d,
we can always form the Lorentz-invariant Casimir

�i1...id!
i1i2 . . .!id�1id ; (5)

where ! is the parameter for the most general generator
1
2!ijM

ij. For example, the generator (3) has an invariant

equal to 2�. We shall consider the case of even d later.

III. STATIONARY VACUA IN DE SITTER SPACE

So far, we have discussed the need to characterize all the
inequivalent timelike isometries. But, in order for the
generator of a timelike isometry to lead to a stationary
vacuum, certain additional conditions have to be satisfied:

(1) The surfaces of constant time should be spacelike in
some region.

(2) The region must admit a Cauchy surface.
(3) The integral curves of the Hamiltonian must not exit

that region.
(4) The Hamiltonian should be spacelike at future and

past null infinity I�.
The justification for these assumptions is the following

[4]. In de Sitter space, there is no global timelike Killing
vector. Hence we can only insist that the Hamiltonian be
timelike in certain regions. In fact, it may even be spacelike
within our allowed region, as in an ergoregion. So the
criterion we need is that, in the allowed region, surfaces
of constant t (where H ¼ i @

@t ) must be spacelike.

Moreover, the region of interest must admit a Cauchy
surface because otherwise we would not be able define
quantum states. In addition, the integral curves of the
Hamiltonian should not exit that region, or we would not
be able to define the time evolution of quantum states.
Finally, the last condition is justified as follows. Since de
Sitter space has no global timelike Killing vector, any
timelike Killing vector would become spacelike outside
some region. In particular, it becomes spacelike at future
and past null infinity. The last condition is also consistent

with the holographic principle in de Sitter space [8]. The
time translation generator of the boundary conformal field
theory (living on I�) is dual to the Hamiltonian generator
in the bulk de Sitter space which becomes spacelike at
future and past null infinity.
The condition that the Hamiltonian be timelike in certain

regions but spacelike at null infinity is the reason that de
Sitter space admits rotating stationary vacuum solutions
(� vacua) in all dimensions. By contrast, in anti–de Sitter
space the Hamiltonian needs to be timelike at spatial
infinity [4] so that � vacua exist only in three dimensions;
in higher dimensions, it turns out that the embedding
equation is not sufficiently constraining for the generator
of a loxodromic isometry to be timelike everywhere at the
boundary.

A. dS3

We begin with de Sitter space in three spacetime dimen-
sions (dS3). Its (connected) isometry group is SOð1; 3Þ. The
simplest stationary Hamiltonian which satisfies all the
necessary conditions is

H ¼ M01 ) @

@t
¼ ðX1@0 þ X0@1Þ; (6)

where we have used the standard definition of the Lorentz
generators asM�� ¼ iðX�@� � X�@�Þ. This generator be-
longs to the hyperbolic conjugacy class of the Lorentz
group and leads to the static patch of de Sitter space. To
see this, note that the requirement that this generator be
timelike in certain regions yields

jHj2 ¼ �X2
1 þ X2

0 < 0; i:e: X2
1 � X2

0 ¼ �2
0: (7)

Since the Hamiltonian involves only the X0, X1 coordi-
nates, we can write

X0 ¼ gðtÞ; X1 ¼ fðtÞ: (8)

For this to be an isometry, the metric should be indepen-
dent of the parameter t. We can therefore write

�dX2
0 þ dX2

1 ¼ ��2�2
0dt

2; (9)

where � is a constant with dimensions inverse length and
�0 depends possibly on other coordinates but not on t. We
therefore find

X0 ¼ �0 sinh�t; X1 ¼ �0 cosh�t; (10)

so that the integral curves of H describe Rindler trajecto-
ries in the higher-dimensional Minkowski space. The rest
of the coordinates can then be parameterized to satisfy the
embedding equation (2), giving

ds2 ¼ �ð1� R2Þdt2 þ dR2

1� R2
þ R2d	2; (11)

where we defined �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
.
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Now, since the symmetry group of dS3 is SOð1; 3Þ, we
can also consider Hamiltonians which belong to the elliptic,
parabolic, and loxodromic conjugacy classes of the Lorentz
group of four-dimensional Minkowski space. Generators
belonging to the elliptic conjugacy class correspond to
pure rotations (e.g. X1@2 � X2@1) and hence are spacelike
everywhere. Similarly, parabolic generators [e.g. M01 þ
M12 ¼ ðX1@0 þ X0@1Þ þ ðX1@2 � X2@1Þ], which are a spe-
cific combination of boosts and rotations with a shared
index, fail to be timelike anywhere. Therefore, generators
belonging to both elliptic as well as parabolic conjugacy
classes are ruled out as candidate Hamiltonians. The final
possibility is to consider a candidate Hamiltonian belonging
to the loxodromic class. Such a generator can be written as

H ¼ M01 þ �M23 ) @

@t

¼ ðX1@0 þ X0@1Þ � �ðX2@3 � X3@2Þ; (12)

where � is a parameter. The requirement that this generator
be timelike yields

jHj2 ¼ �X2
1 þ X2

0 þ �2ðX2
2 þ X2

3Þ< 0: (13)

We see that jHj2 becomes positive (i.e. the generator be-
comes spacelike) for large values of X0, which is one of our
requirements. Note that H cannot be reduced to (6) by any
isometry transformation. This is guaranteed by the existence
of a nonzero Casimir �ijkl!

ij!kl ¼ 2�, where!ij ¼ �!ji

are the usual parameters of the Lorentz generators in 3þ 1
dimensions. Therefore, the Hamiltonians (6) and (12) are
group inequivalent. But for the vacua described by (6) and
(12) to be inequivalent, there has to be a nonzero
Bogoliubov beta coefficient between the two, or in other
words they have to be particle inequivalent. To calculate the
Bogoliubov coefficients, we follow our earlier steps to
coordinatize dS3 described by (12) as

X0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

1þ �2

s
sinh ðt� �	Þ;

X1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

1þ �2

s
cosh ðt� �	Þ;

X2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ �2

1þ �2

s
cos ð	þ �tÞ;

X3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ �2

1þ �2

s
sin ð	þ �tÞ:

(14)

The metric then reads

ds2 ¼ �ðr2 þ �2Þð1� r2Þ
r2

dt2 þ r2dr2

ðr2 þ �2Þð1� r2Þ
þ r2

�
d	þ �

r2
dt

�
2
; (15)

where 	�	þ 2
. This metric describes Kerr–de Sitter
space [9,10] in 2þ 1 dimensions, without any point defect.

Note that Kerr–de Sitter space has an ergoregion where the
norm of @t vanishes. The mass and angular momentum of
the spacetime are

M ¼ 1� �2

8G
; (16)

J ¼ �

4G
: (17)

(Following the definitions of [10], empty de Sitter space has
nonzero mass.)
It is important to recognize that (15) is just ordinary,

empty de Sitter space expressed in unusual coordinates. In
some sense, it is not a different spacetime, much as Rindler
space is locally just Minkowski space in unusual coordi-
nates. Indeed, by means of a diffeomorphism, t ! t� �	
and 	 ! 	þ �t, static de Sitter space and Kerr–de Sitter
space can be mapped to each other, even globally.
Nevertheless, there is an important distinction between
the two spacetimes: the diffeomorphism that relates them
is not an isometry. So, in particular, the vacuum states
corresponding to the different time coordinates are not
group equivalent; given a holographic dual theory to de
Sitter space, the vacuum states in the dual theory would not
be related by conformal transformations.
Using the diffeomorphism between static de Sitter space

and Kerr–de Sitter space, we can now check the particle
inequivalence of the beta vacua. Consider a positive-
frequency (!> 0) mode of the Klein-Gordon equation
static coordinates:

un;!ðt; 	; rÞ ¼ e�i!tþin	fn;!ðrÞ; (18)

where n is any integer. Under the transformation t ! t�
�	 and 	 ! 	þ �t, the spacetime becomes Kerr–de
Sitter. Next, consider a positive energy mode (� > 0) in
Kerr–de Sitter coordinates:

vl;�ðt0; 	0; rÞ ¼ e�i�t0þil	0
gl;�ðrÞ: (19)

The Bogoliubov beta coefficient between the two modes is
easily calculated:

�n;!;l;� ¼ i�ð��� �lÞ�
�
!þ �þ �l

1þ �2

�
�n;l���

1þ�2
; (20)

where the final term is a Kronecker delta. Note the �
function in front: when the rotation parameter � is zero,
the� function vanishes. However, for nonzero�, there is a
range of l for which �, and therefore also the beta coeffi-
cient, is nonzero. The � vacua are therefore distinct from
the static vacuum of de Sitter space; an observer in the
static vacuum perceives a � vacuum of Kerr–de Sitter as
filled with an infinite sea of particles for each positive
frequency !.
Similarly, the Bogoliubov beta coefficient between

the modes of two distinct Kerr–de Sitter spacetimes,
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with rotation parameters � and �0, can be shown to be
nontrivial:

�n;!;l;� ¼ i�ð��ð1þ ��0Þ

þ ð�0 � �ÞlÞ�
�
!þ �ð1þ ��0Þ � ð�0 � �Þl

1þ �2

�

� �
n;lð1þ��0 Þþ�ð�0��Þ

1þ�2

: (21)

Evidently, Kerr–de Sitter spacetimes specified by different
rotation parameters are particle inequivalent. As a check,
we note that this reduces to (20) in the limit �0 ! 0.

B. dS4, dS5

Next, consider the cases of dS4 and dS5, whose (identity-
connected) isometry groups are SOð1; 4Þ and SOð1; 5Þ,
respectively. As always, one stationary vacuum is the static
vacuum. For the most general stationary vacua, consider a
candidate Hamiltonian which is a linear combination of all
the isometries: H ¼ 1

2!��M
��. This sum must include at

least one boost; otherwise H cannot be timelike anywhere.
To be specific, let us focus on dS4 whose ten isometries
consist of four boosts and six rotations. Now, H
can be transformed into another equivalent Hamiltonian
via H0 ¼ gHg�1 ¼ H þ i���½M��;H� þ � � � , where

g ¼ ei���M
�� 2 SOð1; 4Þ. By the application of rotations,

H can be reduced to a linear combination of just one boost
(say M01) and the six rotations. The six rotations can be
further reduced by considering rotations in planes orthogo-
nal to the boost direction (here X1), until the Hamiltonian
reduces to just one boost and three rotations e.g. H ¼
M01 þ aM12 þ bM23 þ cM14. One can then perform one
last reduction by applying the boost generatorM04 to get it
into the form H ¼ M01 þ �M12 þ �M34. If � ¼ 1, then
this Hamiltonian cannot be reduced any further. However,
in this case the candidate Hamiltonian is never timelike
anywhere and is therefore ruled out [this is the higher-
dimensional counterpart of the parabolic generators of
SOð1; 3Þ]. If �> 1, then the Hamiltonian can be further
reduced to H ¼ M12 þ �0M34. It is obvious that this gen-
erator is spacelike everywhere and hence is ruled out as a
Hamiltonian. The last remaining possibility arises if
�< 1. In that case, the Hamiltonian can be reduced to
H ¼ M01 þ �00M34, or to M01 þ �M23. This form of the
Hamiltonian is reminiscent of the loxodromic generators of
SOð1; 3Þ and also satisfies the conditions set for candidate
Hamiltonians described earlier. Therefore this form can be
considered as a candidate Hamiltonian for dS4. A similar
analysis holds for dS5, and the lesson learned is that by
repeatedly applying the symmetries of de Sitter space, the
candidate Hamiltonians can be represented as a linear
combination of isometries which have no shared indices
(e.g. H ¼ M01 þ �1M23 þ �2M34 þ � � � ).

Therefore, for dS4, we consider a candidate Hamiltonian
as

H ¼ M01 þ �M23 ) @

@t

¼ ðX1@0 þ X0@1Þ � �ðX3@2 � X2@3Þ: (22)

Note that, since the embedding space has odd dimension-
ality, this generator does not include one of the coordinates
(X4 in this case). It is not at all obvious that the above
generator and (6) belong to different conjugacy classes of
SOð1; 4Þ since the Casimir �abcd...!

ab!cd . . . does not exist
in odd dimensions. In the absence of a Casimir, proving the
group inequivalence of the Hamiltonians (6) and (22) is
nontrivial. Do (6) and (22) belong to different conjugacy
classes of SOð1; 4Þ? To answer this question, it suffices to
prove the particle inequivalence of the corresponding va-
cua. Consider a massive scalar field operating in the static
patch of dSdþ1, noting that this spacetime is described by
the Hamiltonian (6).
Separating variables using spherical harmonics Ylmð�Þ,

we seek the solution for the massive Klein-Gordon equa-
tion in static coordinates as [11]

�ðt; r;�Þ ¼ ’ðrÞe�i!tYlmð�Þ: (23)

The general solution to the radial part of the wave equation
has the form

’ðrÞ ¼ B’normðrÞ þ A’non-normðrÞ; (24)

where

’normðrÞ ¼
�
1� r2

‘2

��i!=2
�
r

‘

�
l

2F1

�
�
aþ h�; aþ hþ;

d

2
þ l;

r2

‘2

�
; (25)

’non-normðrÞ ¼
�
1� r2

‘2

��i!=2
�
r

‘

�
2�d�l

2F1

�
�
bþ h�; bþ hþ;

4� d

2
� l;

r2

‘2

�
: (26)

Here a ¼ ðl� i‘!Þ=2, b ¼ ð2� d� l� i‘!Þ=2 and the
weights are

h� ¼ d

4
� x

2
; (27)

where

‘2m2 ¼ d2

4
� x2: (28)

Based on the falloff behavior near the origin, we
observe that ’norm is normalizable and ’non-norm is non-
normalizable. Expanding the hypergeometric functions in
the solutions (26) near the horizon, as r ! ‘, one finds the

two behaviors: ’� ð1� r2=‘2Þ�i‘!=2. These are again a
superposition of ingoing and outgoing plane waves if one
defines a tortoise coordinate. This means that ! is inde-
pendent of l. The spacetime described by the Hamiltonian

ALL THE STATIONARY VACUUM STATES OF DE SITTER . . . PHYSICAL REVIEW D 87, 125037 (2013)

125037-5



(12) is related to the spacetime of the usual static patch by
the simple transformation 	 ! 	þ �t, where 	 is the
azimuthal angle in�. In other words, for!> 0 and n 2 Z
where �l � n � þl, we can have in (23)

e�i!tein	 ! e�ið!��nÞtein	: (29)

This, coupled with the fact that ! is not constrained by l,
implies that a positive energy mode in the vacuum de-
scribed by the Hamiltonian (6) is not necessarily a positive
energy mode in the vacuum described by the Hamiltonian
(12), i.e. !� �n < 0 for certain values of ! and n.
Therefore the vacua are particle inequivalent, as there
exists a nonzero Bogoliubov coefficient � between the
two spacetimes. This is a general argument and holds for
all spacetime dimensions. This result also ensures that the
corresponding Hamiltonians, (6) and (22), belong to differ-
ent conjugacy classes of SOð1; 4Þ and are therefore group
inequivalent.

A suitable coordinatization which describes this rotating
vacuum is

X0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
sinh ðt� �	Þ;

X1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
cosh ðt� �	Þ;

X2 ¼ r sin  cos ð	� �tÞ;
X3 ¼ r sin  sin ð	� �tÞ;
X4 ¼ r cos :

(30)

The corresponding metric is

ds2 ¼ �ð1� r2 � r2�2sin 2Þdt2

þ dr2

1� r2
þ ðr2sin 2� �2ð1� r2ÞÞd	2

þ 2�ð1� r2ð1þ sin 2ÞÞdtd	: (31)

The horizon is at r ¼ 1 and the ergosphere is given by the
surface r�2 ¼ 1þ �2sin 2. This new solution is essen-
tially a four-dimensional analogue of Kerr–de Sitter solu-
tion in three spacetime dimensions.
Similar rotating vacua in five-dimensional de Sitter

space can be constructed by considering a candidate
Hamiltonian of the form

H ¼ M01 þ �1M23 þ �2M45

) @

@t
¼ ðX1@0 þ X0@1Þ � �1ðX2@3 � X3@2Þ

� �2ðX4@5 � X5@4Þ: (32)

However, in this case (analogous to dS3), the existence of a
nonzero Casimir �abcdef!

ab!cd!ef guarantees that H is

group inequivalent to the static Hamiltonian. This is in fact
the situation for all the odd-dimensional de Sitter spaces.
We would also like to stress that proving particle inequi-
valence between such stationary vacua in four (and five)
dimensions for different values of � (�1, �2 in five dimen-
sions) still remains an open question to be addressed later.
In principle, one can also construct higher-dimensional

rotating de Sitter spaces using similar loxodromic
Hamiltonians [12]. These solutions are analogous to the
topological black holes in anti–de Sitter space [13–15],
even though they are not black hole solutions.
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