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The renormalization-group procedure for effective particles is applied to the model quantum theory of

free fermions to which one adds an interaction in the form of a mass-mixing term. If one used a standard

approach based on the instant form of dynamics, the theory would suffer from a generic vacuum problem

caused by a divergent production of virtual quanta out of a bare vacuum and it would require an

adjustment of its degrees of freedom to the added interaction term before quantization, considered a means

of avoiding the quantum vacuum problem. In the effective particle approach, the quantum vacuum

problem is dealt with instead by using the front form of dynamics, where the pair production is excluded

by momentum conservation. The corresponding Hamiltonian includes mass parameters through constraint

equations while the required quantum field operators are constructed independently of all mass parame-

ters, including the parameters that appear in the added mass-mixing interaction term. Then the masses and

states of physical fermions emerge at an end of the nonperturbative calculation that is carried out entirely

in one and the same interacting quantum theory with a trivial vacuum and no quantization adjustment. An

a priori infinite set of renormalization-group equations for all momentum modes of fermion fields is

reduced to just one equation for a two-by-two mass squared matrix, thanks to seven kinematical

symmetries of the front form (the instant form has only six). For strong mass-mixing interactions, the

fermion-model solutions qualitatively differ from the analogous, earlier found boson-model solutions by

the absence of tachyons.
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I. INTRODUCTION

It has been recently shown [1] that a theory of quantum
scalar fields with mass-mixing interactions can be solved
nonperturbatively using the renormalization-group proce-
dure for effective particles (RGPEP). This paper shows that
the RGPEP can also solve a quantum theory of fermion
fields with arbitrarily strong mass-mixing interactions.
Thus, RGPEP is found to pass the test of solving elemen-
tary theories beyond perturbative expansions. For example,
the procedure demonstrates that the fermion theories do
not have tachyon solutions no matter how strong the mass-
mixing interactions are, in distinction from the boson
theories that have tachyon solutions for sufficiently strong
mass-mixing interactions.

The theories of fermions or bosons with mass-mixing
interactions can be constructed using different forms of
dynamics [2]. The most commonly used form of dynamics
is called the instant form (IF). Both the boson and the
fermion theories exhibit an ultraviolet divergent vacuum
problem in their IF versions. The problem is caused by a
copious creation of virtual particle pairs of unlimited vir-
tuality [3]. The only IF method that the author knows for
circumventing the vacuum problem caused by mass mixing
is to return to a classical theory and to change the quanti-
zation procedure in a way that depends on the mass-mixing
interaction. This method is called here re-quantization.
Unfortunately, it is not clear how to apply the method of
re-quantization to theories of great physical interest, such

as QCD or the electroweak theory with massive neutrinos.
The reason is that the corresponding relativistic quantum
interactions are not sufficiently understood to establish if
there exist some classical degrees of freedom that are
suitable for the purpose.
The RGPEP is systematically applied to a quantum

theory with mass-mixing interactions without any need
for re-quantization. The vacuum problem is avoided in
the RGPEP by using an alternative form of dynamics to
the IF. The alternative form is called the front form (FF)
[2]. The creation of pairs out of the bare vacuum by a
translation-invariant interaction, which by necessity con-
serves momentum, is not possible in a regulated FF theory
since the pairs must carry a nonzero kinematical momen-
tum while the vacuum carries zero. Moreover, the FF has
seven kinematical symmetries instead of only six in the IF
and the RGPEP preserves these seven symmetries. The
symmetries result in a reduction of an infinite set of dif-
ferential renormalization-group equations for all Fourier
components of quantum fields to just one 2� 2 matrix
equation for masses of effective particles. This is not a
mere computational simplification because the reduction
of solving a mass-mixing theory to solving just two
coupled RGPEP equations for the masses of effective
particles allows one to avoid the issue of regulating the
theory in ultraviolet and subsequently removing the ultra-
violet cutoff dependence from observables, in order to
recover the Lorentz symmetry in the spectrum of solutions
(see below).
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Some details of the construction of quantum fermion
fields in the RGPEP are worth mentioning because they
are helpful in handling the FF constraint equations and the
Lorentz symmetry. In distinction from the IF quantum
fermion fields, the unconstrained parts of the FF quantum
fermion fields have only two components instead of four
and these two are constructed purely kinematically in
terms of their Fourier components. Hence, the uncon-
strained quantum fields do not depend on the fermion
mass parameters. These parameters only enter in the
Hamiltonian as coefficients of products of the quantum
fields, as a consequence of the constraint equations.
Thus, the FF construction of quantum fermion field opera-
tors avoids the IF difficulties due to assigning masses to
fermions as if they were free while the Hamiltonian in-
cludes interactions. More generally, the little group [4] that
preserves the front allows one to build states and operators
for fermions with arbitrary kinematical momenta irrespec-
tive of the interaction. Such a purely kinematical construc-
tion of quantum field operators is not possible in the IF
theory. The reason is that the motion of fermions in the
IF requires a spinor representation of the Lorentz boosts.
A priori, the boost generators depend on interactions and
the simplest form of such a dependence occurs through the
mass terms. This is also why the IF Fourier expansion of
quantum fermion fields depends on the fermion masses.

A comprehensive description of the RGPEP for fermi-
ons requires several elements that are collected in several
appendices, in order to avoid crowding the main text with
details. However, the main text does include the details that
concern basic features of quantum field theory, a subject
with a long history [5,6] and unyielding relevance [7]. The
only details that are not discussed comprehensively con-
cern the regularization of fermion fields. These details are
not required for the completeness of the paper because the
RGPEP equations turn out to reduce to two equations
for mass parameters only and these equations are entirely
independent of particle momenta in our mass-mixing
models (this is a consequence of a general design of the
RGPEP). Thus all regularizations based on limiting a
momentum range in the Fourier expansion of quantum
fields are of no consequence for the obtained solutions
and the solutions satisfy all requirements of special rela-
tivity and quantum mechanics within any finite range of
momentum under consideration.

So, this paper’s point is not just that the RGPEP can be
used to solve a simple theory, but that it is defined in quite
general terms and works well in the test case with fermions,
in addition to the test it had passed earlier for bosons [1].
Of course, solutions of the RGPEP equations in complex
theories cannot be found as easily as in the simple models
with mass mixing. Nevertheless, one may hope that the
RGPEP will help in searches for feasible ways of construct-
ing numerical approximations to solutions of complex
relativistic theories, such as the FF version of QCD [8].

The article is organized as follows. Section II describes
the model theory of fermions with mass-mixing interaction
terms in the standard approach based on the IF of dynam-
ics. One starts with constructing a quantum theory of free
fermions, adds mass-mixing interactions, discovers the
divergent vacuum problem, and goes back to the classical
theory in order to re-quantize it using new fields and thus
get rid of the vacuum problem. The outcome is an expec-
tation of what the solution to the quantum theory of
fermions with mass-mixing interactions could look like.
Section III describes the FF approach. Once the FF quan-
tum theory is defined, by constructing the unconstrained
quantum field operators kinematically and taking into
account the constraint equations in constructing the FF
Hamiltonian, the vacuum problem is absent because the
interaction terms do not create pairs from the bare vacuum
state. The RGPEP procedure is then applied to solving
the quantum theory without any need for re-quantization.
The procedure leaves the trivial vacuum state unchanged.
At the end of the RGPEP, one arrives at the same spectrum
of solutions as the one expected on the basis of re-
quantization in the IF. Section IV concludes the paper
with an explanation of a qualitative difference between the
fermion and boson models concerning tachyons when the
mass-mixing interactions are strong. Appendix A describes
a representation of � matrices that is useful in constructing
FF theories. The kinematical construction of the FF quan-
tum fermion fields is described in Appendix B. For com-
pleteness, Appendix C recapitulates elements of the RGPEP
in general terms. Explicit solutions of the RGPEP equations
in the fermion model are described in Appendix D.

II. IF THEORY OF MASS MIXING

We start our discussion with a brief recollection of the
commonly known IF theory of free fermion fields. For
simplicity, we explicitly consider just two fields (our key
conclusions apply to theories with more fields as well). The
quantum theory is obtained by imposing anticommutation
relations on the fields. Then we add the mass-mixing
interaction term to the free Hamiltonian and thus obtain
an elementary example of the Dirac vacuum problem [3].
The problem is then dealt with by going back to a classical
theory and introducing two new fermion fields for which
the classical Lagrangian density does not contain mass-
mixing terms. The FF approach based on the RGPEP will
be shown in Sec. III to be different.

A. IF free fermions

Consider the Lagrangian density,

L ¼ �c ði6@��Þc þ ��ði6@� �Þ�; (1)

for two types of fermion fields c and � with masses �
and �. Variation of the action A ¼ R

d4xL with respect to
�c and �� yields the Dirac equations of motion
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ði6@��Þc ¼ 0; (2)

ði6@� �Þ� ¼ 0: (3)

The corresponding IF Hamiltonian has the form

H ¼
Z

d3xT 00; (4)

where T 00 ¼ H denotes the energy density, i.e., the � ¼
� ¼ 0 component of the energy-momentum density tensor

T �� ¼ @L
@@�c �

@�c � þ @L
@@���

@��� � g��L: (5)

The resulting Hamiltonian reads

H ¼
Z

d3x½c yði ~� ~@þ��Þc þ�yði ~� ~@þ��Þ��: (6)

For the purpose of constructing a quantum theory, the
Fourier decomposition of the fields at x0 ¼ 0 is arranged
in the forms

c ð ~xÞ ¼
ZX

�ps
½u�psb�pse

i ~p ~x þ v�psd
y
�pse�i ~p ~x�; (7)

�ð ~xÞ ¼
ZX

�ps
½u�psb�psei ~p ~x þ v�psd

y
�pse�i ~p ~x�: (8)

We explicitly explain the notation for the field c . The
notation for � is obtained by replacing the mass � with �.

The meaning of summing over spins and integrating
over momentum is defined by

ZX
�ps

¼ X
s¼�1

Z d3p

ð2	Þ32E�p

; (9)

E�p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ~p2

p
, etc. The subscript � refers to the de-

pendence on the mass parameter. The spinors are obtained
by boosting spinors at rest (cf. Ref. [9], Chap. 3),

u�ps ¼ Bð�; ~pÞu�0s; (10)

v�ps ¼ Bð�; ~pÞv�0s; (11)

where the boost matrix in the spinor representation,

Bð�; ~pÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðE�p þ�Þ

q ð6p�þ�Þ; (12)

acts on the spinors that correspond to fermions at rest.
In the representation of � matrices used in Ref. [9]
[see Eq. (A2) in Appendix A], the spinors at rest are the
ones given in Eqs. (A8) and (A10) after multiplication
by

ffiffiffiffiffiffiffi
2�

p
.

The quantum field ĉ is obtained from c by replacing
the Fourier coefficients b and d with operators. The non-
zero anticommutation relations the resulting operators
satisfy read

fĉ ð ~xÞ; ĉ yð ~x0Þg ¼ 
3ð ~x� ~x0Þ; (13)

fb�ps; b
y
�p0s0 g ¼ fd�ps; d

y
�p0s0 g

¼ 2E�pð2	Þ3
3ð ~p� ~p0Þ
ss0 : (14)

The quantum field �̂ is obtained in a similar way, keeping
� in place of �.
The quantum Hamiltonian takes the form

Ĥ¼
Z
d3x:½ĉ yði ~� ~@þ��Þĉ þ �̂yði ~� ~@þ��Þ�̂�:; (15)

where the symbols : denote normal ordering of the
operators between them, i.e., creation operators are put to
the left of the annihilation operators. Such ordering
involves dropping an infinite additive numerical constant
of dimension energy from the Hamiltonian.
To avoid the infinity, one would have to limit the range

of momentum in the Fourier expansion of the quantum
fields and the size of space volume in which the theory is
being constructed. On the other hand, a numerical constant
does not contribute to the resulting quantum mechanics
and can be ignored. This is justified by saying (e.g., see
Ref. [10], p. 297) that the resulting quantum Hamiltonian
has the structure

Ĥ0 ¼
ZX

�ps
E�pðby�psb�ps þ dy�psd�psÞ

þ
ZX

�ps
E�pðby�psb�ps þ dy�psd�psÞ; (16)

which is physically right for counting the energy of free
fermions. The subscript 0 is used to indicate that there is no
interaction.
All the relations given above are commonly known.

They are given here for the purpose of observing that the
construction of quantum fields in the IF of dynamics relies
on the representation of boosts for fermions that is valid
only if they are free. The issue is that in a theory with
interactions the complete boost operators depend on the
interactions. The boosts do not belong to the little group [4]
associated with a timelike four-vector n that defines the
canonical quantization hyperplane in space-time through
the condition nx ¼ x0 ¼ 0, where x denotes the coordi-
nates of points in space-time in the frame of reference of an
observer who carries out the quantization procedure and
whose worldline lies along n. These general features are
also exhibited in the case of the mass-mixing interaction to
be discussed below. Not only the mass parameters must be
chosen properly in the IF quantization of fields but also the
quantum creation and annihilation operators need proper
definitions. Such definitions are necessary in order to avoid
the IF Dirac vacuum problem [3] described in Sec. II B
below. In general, however, one does not know what mass
parameters and operators to assign to fermions in the IF
construction of a quantum field theory in the presence of
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interactions, especially in the case of strong interactions to
which one cannot apply any perturbative procedure that
starts from the free particle approximation. The ultimate
difficulty with the free fermion mass assignment is encoun-
tered in the case of confined quarks. It is hence helpful to
keep in mind while following further discussion of the
theory of fermions with mass mixing in the IF of dynamics
that the FF construction of the theory is different and does
not require any assignment of masses to fermions in the
definition of quantum field operators on the front where the
initial conditions are specified.

B. IF mass mixing and the vacuum

The Lagrangian density including the mass-mixing
interaction is defined by writing

L¼ �c ði6@��Þc þ ��ði6@��Þ��mð �c�þ ��c Þ: (17)

The corresponding quantum Hamiltonian of the canonical
IF quantization procedure (e.g., see Refs. [9–11]) is

Ĥ ¼ Ĥ0 þ ĤI; (18)

where Ĥ0 is given in Eq. (16) and the interaction term reads

ĤI ¼ m
Z

d3x:ðĉ y�0�̂þ �̂y�0 ĉ Þ:: (19)

Using the Fourier expansions for the quantum fields
described in the previous section, integrating over space
and performing normal ordering, one obtains

ĤI ¼ m
ZX

�ps

X
s0

1

2E�p

½ �u�psu�ps0b
y
�psb�ps0

þ �u�psv��ps0b
y
�psd

y
��ps0 þ �v�psu��ps0d�psb��ps0

� �v�psv�ps0d
y
�ps0d�ps� þ ð� $ �Þ: (20)

The Hamiltonian Ĥ can be considered an operator in the
Fock space whose basis states are created from the bare
vacuum state j0i by products of creation operators. The
state j0i is defined by the condition that it is annihilated by
all annihilation operators in the theory.

Unfortunately, the interaction Hamiltonian ĤI is able to
copiously create fermion-antifermion pairs from the bare
vacuum state j0i no matter how small the mass mixing
parameter m is. Such creation leads to the divergences that
were considered severe enough to question the existence of
the Schrödinger picture in QED [3]. Indeed, the vacuum
problem in the mass-mixing model is an elementary ex-
ample of the general vacuum problem in relativistic quan-
tum field theory with interactions. The general vacuum
problem has a long history of attempts to solve it, motivated
by its basic significance in physics. The literature concern-
ing the problem is very rich. The list of Refs. [3,8,12–28]
amply illustrates this statement. Despite that the list is
greatly incomplete and partly biased by the stress on works
that concern differences between formulations of the

vacuum problem in the IF and FF of dynamics, the quoted
works are indicative of the development of ideas concerning
the vacuum problem over the last half of a century.
Our further discussion is limited to the simple mass-

mixing model. We proceed to an explanation of the diver-
gences that appear in its vacuum problem.

Consider the pair-creation term in ĤI of Eq. (20),

ĥ ¼ m
ZX

�ps

X
s0

1

2E�p

�u�psv��ps0b
y
�psd

y
��ps0 : (21)

This term is analogous to the model Hamiltonian term of

Eq. (9) in Ref. [3]. The term ĥ contains the spinor product

�u�psv��ps0 ¼
0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�p þ �

E�p þ�

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�p þ�

E�p þ �

s 1
A�y

s ~� ~p i�2�s0 ;

(22)

where the two-component spinors �s are the ones
introduced in spinors of fermions at rest, u�0s and v�0s in

Eqs. (10) and (11).

The eigenvalue problem for the ground state of Ĥ

involves ĥ. The state obtained by acting with ĥ on the
bare vacuum,

jhi ¼ ĥj0i; (23)

differs from the bare vacuum. The question arises of how to
find the true ground state of the theory, if it is not j0i.
If a part ĥ of ĤI produces jhi � 0, the ground eigenstate of

Ĥ must involve the component proportional to jhi once it

contains a component proportional to j0i. Then the term ĥy in
the same ĤI produces a state of an infinite normwhen acting

on jhi. The further action of ĥ and ĥy produces states with
additional pairs and infinities. Theground statewouldhave to
involve some combination of all of them. Reference [3]
points out that the problem with ultraviolet divergences in
all these states leads to the violation of the Lorentz symmetry
in a mathematically well-defined theory. In our example, the
corresponding reasoning could go as follows.
Since jhi is an eigenstate of the three-momentum operator

with eigenvalue 0, it has, as all eigenstates of the three-
momentum operator, a norm squared proportional to the
volume of space, or V ¼ R

d3x ¼ ð2	Þ3
3ð0Þ. This is a
general feature and it does not pose serious problems for the
application of a theory to the description of physical phe-
nomena of a finite size. However, a direct evaluation yields

hhjhi ¼ h0jĥyĥj0i (24)

¼ Vm2
ZX

�ps

X
s0

1

2E�p

j �u�psv��ps0 j2 (25)

� 4Vm2
Z d3p

ð2	Þ32E�p

~p2

E�p

: (26)
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This result means that the norm of jhi is infinite unless the
number of momentum states of a single fermion in the theory
is limitedby someultraviolet cutoff, say�, on j ~pj. Otherwise,
the action of ĤI takes states out of theHilbert space. To obtain
a mathematically acceptable theory, the Fourier expansion of

the fermion fields ĉ ð ~xÞ and �̂ð ~xÞ at x0 ¼ 0must be cut off at
some finite �, or regulated in some other way in the ultra-
violet so that the range of momenta is effectively limited by
some �. But every finite cutoff � on particle momenta
violates the Lorentz symmetry. Since this symmetry is be-
lieved to be physically valid to a great precision, the theory
with a finite cutoff faces the problem of applicability in
physics. In particular, the theoretical assumption that there
exists a vacuum state that is invariant with respect to the
Lorentz transformations is not compatible with a precisely
defined theory.

The ultraviolet divergent pair creation that causes the
vacuum problem also leads to divergences in other states

and the Schrödinger evolution operator exp ð�iĤtÞ cannot
be understood as an operator in terms of the corresponding
Taylor series acting on any state. The question then arises
of whether a relativistic quantum theory with a mass-
mixing interaction can be formulated in the IF of quantum
Hamiltonian dynamics. The positive answer to this
question that is discussed below in Sec. II C involves a
well-known procedure that we call the IF re-quantization.
However, although the re-quantization works for the mass-
mixing model, it does not tell us at all how to seek a
solution of the general vacuum problem in other theories,
as the half of a century of research we refer to above attests.
The alternative approach that is based on the RGPEP, and
can also be employed to study other theories, will be
discussed later on in Sec. III.

C. IF re-quantization

The Lagrangian density of Eq. (17) can be written in the
equivalent form

L ¼ ��ði6@�MÞ�; (27)

where the field � is a double-size fermion field built from
the two four-component fields c and �,

� ¼ c

�

" #
; (28)

so that � has altogether eight components. The mass
symbol M stands for the 8� 8 mass matrix, formed out
of four 4� 4 unit matrices multiplied each by �, �, or m,

M ¼ � m

m �

" #
: (29)

Let the notation be arranged so that �� � > 0. This is
always possible except for the case of fermions with equal
masses, i.e., � ¼ �, which is special and will be com-
mented on separately in further discussion. The eigenval-
ues and normalized eigenvectors of the mass matrix M are

m1;2 ¼ ½�þ �� ð�� �Þ��=2; (30)

v1 ¼
cos’

� sin’

" #
; v2 ¼

sin’

cos’

" #
; (31)

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½2m=ð�� �Þ�2

q
; (32)

’ ¼ � arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

�þ 1

s
: (33)

The double-size fermion field � can be written in terms
of two new four-component fields c 1 and c 2 using the
eigenvectors of M,

� ¼ c 1v1 þ c 2v2: (34)

The new four-component fermion fields are

c 1 ¼ cos’c � sin’�; (35)

c 2 ¼ sin’c þ cos’�: (36)

The IF re-quantization is based on expressing the classical
Lagrangian density of Eq. (17) in terms of the fields c 1 and
c 2. Since these fields multiply the orthogonal eigenvectors
of M, they are multiplied in the Lagrangian by the corre-
sponding eigenvalues m1 and m2 and they are not mixed
by M. Since the Lagrangian density term with i6@ is the
same for both fields c and � and does not mix them, the
orthogonal rotation of fields from c and � to c 1 and c 2

does not alter this term.
The Lagrangian density of Eq. (17) takes the form

L ¼ �c 1ði6@�m1Þc 1 þ �c 2ði6@�m2Þc 2: (37)

One can now quantize the independent fields c 1 and c 2 as
if they were free, because there is no interaction between
them; the mass mixing is removed at the classical level of
dealing with the fields. The only effect of the original
mass-mixing interaction is that the masses m1 and m2 are
the eigenvalues of M. We call this new quantization a
re-quantization because it removes the mass-mixing inter-
action terms that caused trouble in the original quantum

theory of fields ĉ and �̂. We have stepped back to the
classical theory, introduced new field variables c 1 and c 2,

and now we construct the new quantum operators ĉ 1 and

ĉ 2 instead of struggling with the old ones ĉ and �̂.

The quantum operators ĉ 1 and ĉ 2 are obtained by
imposing standard anticommutation relations of the type
indicated in Eqs. (13) and (14). Following the same steps
that previously led to Eq. (16), one now obtains

Ĥ ¼
ZX

m1ps
Em1pðbym1psbm1ps þ dym1psdm1psÞ

þ
ZX

m2ps
Em2pðbym2psbm2ps þ dym2psdm2psÞ; (38)
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which is a quantum IF Hamiltonian for two types of free
fermions with masses m1 and m2. The vacuum problem is
now absent because the mixing is classically included in
the new mass parameters and the re-quantized theory does
not produce terms of the type bydy and db any more.

The situation is similar to the one in scalar theory
with mass-mixing interactions discussed in Ref. [1]. The
disappearance of terms such as bydy results from the
choice of masses in Em1p and Em2p. However, instead of

using these energies for constructing the time derivatives of
fields that play the role of canonical momenta, one con-
structs the corresponding spinors whose matrix elements in
front of the terms such as bydy vanish.

As in the scalar case, the author does not know of any
practical extension of the IF re-quantization recipe for
fermion mass mixing that could be systematically applied
in relativistic theories with other interactions beyond the
perturbative expansion that is based on a free-particle
approximation with a nearly precise match between the
theoretical Lagrangian mass parameters and masses of
physical particles. The RGPEP will be shown below to
deal with the mass-mixing interaction quite differently,

entirely within a quantum theory of ĉ and �̂, i.e., without
a need to define new fields c 1 and c 2 and quantizing them

from scratch to define ĉ 1 and ĉ 2. This means that the
RGPEP works in a way that can also be systematically tried
in application to other types of interactions than just the
mass mixing.

III. FF THEORY OF MASS MIXING

The FF of dynamics aims at a description of the evolu-
tion of a system from one hyperplane of constant xþ ¼
x0 þ x3 to another [2], with the front xþ ¼ 0 used to set up
a quantum theory. We use the notation v� ¼ v0 � v3 and
v? ¼ ðv1; v2Þ for all four-vectors. The same convention is
adopted for denoting the components of all tensors. In
particular, @� ¼ 2@=@x� and @? ¼ �@=@x?.

In the FF of dynamics, it is useful to consider the
Lagrangian density of Eq. (17) in the form of Eq. (27).
The Euler-Lagrange equations read

ði6@�MÞ� ¼ 0: (39)

Using conventions described in Appendix A, one can write
these equations as

i@��þ þ i@þ�� � ði�?@? þ �MÞð�þ þ��Þ ¼ 0:

(40)

The projection with �þ yields equations of motion that
involve @�,

i@��þ ¼ ði�?@? þ �MÞ��: (41)

The projection with �� produces complementary
constraints, i.e., equations that do not involve @�,

i@þ�� ¼ ði�?@? þ �MÞ�þ: (42)

In deriving the corresponding FF Hamiltonian, one can
take advantage of Refs. [29,30] and obtain

P� ¼ 1

2

Z
dx�d2x?T þ�; (43)

with the energy-momentum density component

1

2
T þ� ¼ �y

þi@��þ (44)

¼ �y
þði�?@? þ �MÞ 1

i@þ
ði�?@? þ �MÞ�þ: (45)

The density involves the nonlocal inverse of the differential
operator,

1

i@þ
fðx�; x?Þ ¼ 1

2

�Z x�

�1
�

Z þ1

x�

�
dy�fðy�; x?Þ: (46)

For finite and nonzero momentum arguments of the Fourier

transform f̂ðpþ; p?Þ of the function fðx�; x?Þ that van-
ishes at the FF ‘‘spatial’’ infinity, this operation means
simply dividing by pþ. It will be shown below that the
RGPEP equations in the mass-mixing model are com-
pletely independent of the momentum variables pþ and
p?. Therefore, one does not have to deal here with subtle
aspects of modes with pþ ¼ 0.
Having accepted the inverse of i@þ as a division of the

Fourier components by their pþ, one has

P� ¼
Z

dx�d2x?�y
þ
�@?2 þM2

i@þ
�þ; (47)

where

M2 ¼ �2 þm2 mð�þ �Þ
mð�þ �Þ �2 þm2

" #
: (48)

The next step is to define the corresponding quantum
theory.

A. FF quantization

The quantum Hamiltonian P̂� defined by

P̂� ¼
Z

dx�d2x?:�̂y
þ
�@?2 þM2

i@þ
�̂þ: (49)

can be obtained by using the representation of the �
matrices defined in Appendix A and taking advantage of
the results for spinors and the quantization of a fermion
field in Appendix B.
In analogy to Eq. (B26), one can write classical fields at

xþ ¼ 0 in the form

c ðxÞ ¼ 
ðxÞ
�ðxÞ

" #
; (50)
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�ðxÞ ¼ !ðxÞ
�ðxÞ

" #
: (51)

In the representation of � matrices defined in Eqs. (A22)
and (A23), one has

cþðxÞ ¼

ðxÞ
0

" #
; �þðxÞ ¼

!ðxÞ
0

" #
; (52)

so that the double-size fermion field�þ is composed of the
two-component fermion fields 
ðxÞ and !ðxÞ according to

�þðxÞ ¼


ðxÞ
0

!ðxÞ
0

2
666664

3
777775: (53)

The quantum fields ĉþ and �̂þ are obtained by changing
the classical fields 
ðxÞ and !ðxÞ to operators according
to the pattern of Eq. (B30), with


̂ðxÞ ¼
ZX

ps

ffiffiffiffiffiffiffi
pþ

q
½b
pse�ipx � dy
pse

ipx�1��s; (54)

!̂ðxÞ ¼
ZX

ps

ffiffiffiffiffiffiffi
pþ

q
½b!pse

�ipx � dy!pseipx�1��s; (55)

where

ZX
ps

¼ X
s¼�1

Z þ1

�1
d2p?

ð2	Þ2
Z þ1

0

dpþ

2ð2	Þpþ (56)

and the operators b
ps, d
ps, b!ps, and d!ps annihilate

fermions and antifermions of two kinds, respectively. The
nonzero canonical anticommutation relations at xþ ¼ 0,

f
̂ðxÞ; 
̂yðx0Þg ¼ f!̂ðxÞ; !̂yðx0Þg ¼ 
3ðx� x0Þ; (57)

correspond to

fb
ps; by
p0s0 g ¼ fd
ps; dy
p0s0 g
¼ 2pþð2	Þ3
3ðp� p0Þ
ss0 ; (58)

fb!ps; b
y
!p0s0 g ¼ fd!ps; d

y
!p0s0 g

¼ 2pþð2	Þ3
3ðp� p0Þ
ss0 : (59)

The above operator representations of quantum fermion

fields 
̂ðxÞ and !̂ðxÞ at xþ ¼ 0 are universal in the sense
that they are independent of the fermion mass parameters.

In terms of the quantum fields 
̂ðxÞ and !̂ðxÞ, the
Hamiltonian of Eq. (49) reads

P̂� ¼ P̂�
f þ P̂�

I ; (60)

where the free Hamiltonian is

P̂�
f ¼

Z
dx�d2x?:

�
�

̂y

�@?2 þ�2

i@þ

̂ þ !̂y �@?2 þ �2

i@þ
!̂

�
:; (61)

and the interaction Hamiltonian is

P̂�
I ¼

Z
dx�d2x?:

�

̂y

mð�þ �Þ
i@þ

!̂þ !̂y mð�þ �Þ
i@þ


̂

þ 
̂y
m2

i@þ

̂ þ !̂y m2

i@þ
!̂

�
:: (62)

The interaction contains terms linear in the mass-mixing
parameter m and terms quadratic in m. The latter appear
because of the FF constraint equations.
The evaluation of the Hamiltonian in terms of the

creation and annihilation operators yields

P̂� ¼
ZX

ps

��
p�
� þ m2

pþ

�
ðby
psb
ps þ dy
psd
psÞ

þ
�
p�
� þ m2

pþ

�
ðby!psb!ps þ dy!psd!psÞ

þmð�þ �Þ
pþ ðby
psb!ps þ dy!psd
ps

þ by!psb
ps þ dy
psd!psÞ
�
; (63)

where

p�
� ¼ p?2 þ�2

pþ ; p�
� ¼ p?2 þ �2

pþ : (64)

Note that the FF condition that all quanta have positive
momentum pþ eliminates terms of the type bydy and bd.

The negative sign in front of dy in 
̂ of Eq. (54) and !̂ of
Eq. (55) is compensated by the sign of the inverse of i@þ
and the normal ordering of antifermion operators compen-

sates the negative signs in front of d in 
̂y and !̂y. The
vacuum problem is thus eliminated from the quantum
theory. However, the mass-mixing interaction is still
present in the FF Hamiltonian of Eq. (63). This
Hamiltonian provides the initial condition for the RGPEP.

B. Application of the RGPEP

The Hamiltonian P̂� of Eq. (63) is now considered an
initial condition,

P�
0 ¼ P̂�; (65)

in the RGPEP scale evolution of P�
t according to the

equation (see Appendix C)

P�0
t ¼ ½½P�

f ;P
�
Pt�;P�

t �: (66)

The prime denotes differentiation with respect to the scale
parameter t that ranges from 0 at the beginning and tends to
1 at the end of the RGPEP evolution. The equation is
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further explained in Appendix C. Equation (66) is the same
general RGPEP equation that is used in the case of boson
mass mixing and can also be used in other quantum field
theories.

A direct inspection of how Eq. (66) works in the fermion
mass-mixing model (see below) allows one to write a
general solution for P�

t in the form

P�
t ¼

ZX
ps
½Atpðby
psb
ps þ dy
psd
psÞ

þ Btpðby!psb!ps þ dy!psd!psÞ
þ Ctpðby
psb!ps þ by!psb
ps þ dy
psd!ps

þ dy!psd
psÞ�; (67)

where the spin-independent coefficients are

Atp ¼ p?2 þ�2
t

pþ ; (68)

Btp ¼ p?2 þ �2
t

pþ ; (69)

Ctp ¼ m2
t

pþ ; (70)

and the initial conditions at t ¼ 0 read

�2
0 ¼ �2 þm2; (71)

�2
0 ¼ �2 þm2; (72)

m2
0 ¼ mð�þ �Þ: (73)

Note that the negative initial mixing term coefficient m
implies a negative initial value ofm2

t , which means that the
notation m2

t is merely a formal indication that its dimen-
sion is mass squared but the value can be negative.

1. Boost invariance

We explain how the design of the RGPEP leads to boost-
invariant evolution equations for mass parameters alone,
which happens because the RGPEP preserves all kinemati-
cal symmetries of the FF and the mass-mixing interactions
in P�

t are sufficiently simple. The formal features de-
scribed below are shown in Sec. III D to lead to the
Lorentz symmetry in the spectrum of solutions in the
model fermion theory.

According to the general RGPEP rules described in
Appendix C, the operators P�

f and P�
Pt in Eq. (66) are

P�
f ¼

ZX
ps
½p�

�ðby
psb
ps þ dy
psd
psÞ

þ p�
� ðby!psb!ps þ dy!psd!psÞ�; (74)

P�
Pt ¼

ZX
ps
pþ2½Atpðby
psb
ps þ dy
psd
psÞ

þ Btpðby!psb!ps þ dy!psd!psÞ
þ Ctpðby
psb!ps þ by!psb
ps þ dy
psd!ps

þ dy!psd
psÞ�: (75)

The resulting RGPEP generator is

½P�
f ;P

�
Pt� ¼

ZX
ps
Ctpp

þ2ðp�
� � p�

� Þ

� ðby
psb!ps � by!psb
ps

þ dy
psd!ps � dy!psd
psÞ: (76)

Consequently, Eq. (66) reads

P�0
t ¼

ZX
ps
½A0

tpðby
psb
ps þ dy
psd
psÞ

þ B0
tpðby!psb!ps þ dy!psd!psÞ

þ C0
tpðby
psb!ps þ by!psb
ps

þ dy
psd!ps þ dy!psd
psÞ� (77)

¼ �
ZX

ps
Ctpp

þ2ðp�
� � p�

� ÞðAtp � BtpÞ

� ðby
psb!ps þ dy!psd
ps þ by!psb
ps þ dy
psd!psÞ
þ

ZX
ps
2C2

tpp
þ2ðp�

� � p�
� Þ½by
psb
ps þ dy
psd
ps

� by!psb!ps � dy!psd!ps�: (78)

Equating coefficients in front of the same operators on both
sides of the last equation, one arrives at an infinite set of
equations; six for every momentum mode p, i.e., three
equations for every choice of p and spin s. Namely,

A0
tp ¼ 2pþ2ðp�

� � p�
� ÞC2

tp; (79)

B0
tp ¼ �2pþ2ðp�

� � p�
� ÞC2

tp; (80)

C0
tp ¼ �pþ2ðp�

� � p�
� ÞðAtp � BtpÞCtp: (81)

The equations are independent of spin. Moreover, they can
be written using Eqs. (68)–(70) as�
p?2 þ�2

t

pþ

�0 ¼ 2pþ2

�
p?2 þ�2

pþ � p?2 þ �2

pþ

��
m2

t

pþ

�
2
;

(82)

�
p?2 þ �2

t

pþ

�0 ¼ �2pþ2

�
p?2 þ�2

pþ � p?2 þ �2

pþ

��
m2

t

pþ

�
2
;

(83)
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�
m2

t

pþ

�0 ¼ �pþ2

�
p?2 þ�2

pþ � p?2 þ �2

pþ

�

�
�
p?2 þ�2

t

pþ � p?2 þ �2
t

pþ

��
m2

t

pþ

�
: (84)

It is visible that the momentum variables pþ and p? drop
out from the infinite set of equations and every momentum
mode p in the FF Fourier expansion of quantum fields
evolves independently of its spin and only to the extent that
the mass parameters evolve. These parameters evolve ac-
cording to the set of just three equations, which is the same
for all momentum modes and spins; see Eqs. (85)–(87)
below.

2. Evolution of effective mass parameters

The RGPEP equations for the mass parameters are

ð�2
t Þ0 ¼ 2ð�2 � �2Þðm2

t Þ2; (85)

ð�2
t Þ0 ¼ �2ð�2 � �2Þðm2

t Þ2; (86)

ðm2
t Þ0 ¼ �ð�2 � �2Þð�2

t � �2
t Þm2

t : (87)

These equations for fermions are identical to Eqs. (53)–(55)
for bosons in Ref. [1], respectively. They would have the
same solutions for the same initial conditions. However, the
initial conditions for the fermion mass-mixing Hamiltonian
are different from the initial conditions for scalar boson
mass-mixing Hamiltonian. The difference originates in the
constraints that fermions obey and scalar bosons do not.
Solutions for fermions are discussed in Sec. III C.

Note that the replacement of the constant freeHamiltonian
P�

f in Eq. (66) by the part of the Hamiltonian that contains

the operators by
 b
 þ dy
 d
 and by!b! þ dy!d!, which

means a change in the RGPEP generator mentioned below
Eq. (C8) in Appendix C, yields a slightly different set of
equations,

ð�2
t Þ0 ¼ 2ð�2

t � �2
t Þðm2

t Þ2; (88)

ð�2
t Þ0 ¼ �2ð�2

t � �2
t Þðm2

t Þ2; (89)

ðm2
t Þ0 ¼ �ð�2

t � �2
t Þ2m2

t : (90)

This set of three equations matches the matrix Eq. (A1) in
Ref. [1] that resembles Wegner’s equation [31–33] for
2� 2 Hamiltonian matrices. Again, since these equations
are the same as for bosons, the only difference between the
fermion and boson solutions comes from the initial con-
ditions that reflect the presence of constraints for fermions.
Solutions to Eqs. (88)–(90) lead to the same results for
t ! 1 as solutions to Eqs. (85)–(87) discussed below.

C. Solutions to the RGPEP equations

Solutions to Eqs. (85)–(87) are derived in Appendix D.
They differ from the solutions for bosons with mass
mixing [1] due to the change of initial conditions for
mass terms,

�2 m2

m2 �2

" #
! �2 þm2 mð�þ �Þ

mð�þ �Þ �2 þm2

" #
: (91)

The fermion initial conditions are the square of the matrix
M in Eq. (29). See also Eqs. (47) and (48) to recall howM2

emerges due to constraints. As a consequence, the parame-
ter � defined by Eq. (32) in the fermion case replaces the

boson parameter � ¼ f1þ ½2m2=ð�2 � �2Þ�2g1=2 when m2

is replaced by mð�þ �Þ and the ratio 2m2=ð�2 � �2Þ
becomes 2m=ð�� �Þ.
Solutions of the RGPEP equations yield the diagonal

form of M2 when t ! 1 for �> �; see Appendix D. The
case � ¼ � is commented on below. The eigenvalues of
M2 arem2

1 andm
2
2, wherem1 andm2 are the eigenvalues of

M given in Eq. (30). Since M is Hermitian, its eigenvalues
are real. This means that the eigenvalues of M2 cannot be
negative no matter how strong the mixing parameter m is.
This feature distinguishes the mass mixing for fermions
from mass mixing for bosons. The difference is further
discussed below.
The eigenvectors ofM2 are the same as eigenvectors ofM.

Therefore, the angle of rotation ’ that appears in the eigen-
vectors v1 and v2 in Eq. (31) is reproduced in the RGPEP
when t ! 1. This is how theRGPEPsolves themass-mixing
theory without any need for re-quantization.
We also observe that solutions to the RGPEP

Eqs. (88)–(90) that are obtained using the generator with
running effective masses produce the same values of
masses in the limit t ! 1. For finite values of t, the
corresponding angle of rotation ’t (see Appendix D) is
different but otherwise there is no difference in comparison
to solutions to Eqs. (85)–(87) with constant masses in the
generator.
In solving the RGPEP equations, as described in

Appendix D, a convenient variable in place of t is
u ¼ 
�4t, where 
�2 ¼ �2 � �2 > 0. If �2 ¼ �2, the
mass parameters do not evolve with t, irrespective of the
initial value of the mass-mixing parameter m. In this
special case, one can introduce an auxiliary difference
between � and � and one can seek solutions in the limit
of the auxiliary difference going to 0, as had already been
suggested in Ref. [1]. For example, such artificial splitting
of degenerated fermion masses would have to be intro-
duced in the case of local theories with massless fermions,
including theories with chiral symmetry. A prominent
example of the FF quanta for which a small deviation
from mass degeneracy is involved in defining the parame-
ter u are neutrinos [34].
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D. Spectrum of the theory

The initial Hamiltonian, P̂� in Eq. (63), is transformed
as a result of the RGPEP to

P̂� ¼ UtP�
t U

y
t ; (92)

where P�
t is given in Eq. (67) and Ut is taken from

Eq. (D24). Thus,

P̂� ¼
ZX

ps
½Atpðbyt
psbt
ps þ dyt
psdt
psÞ

þ Btpðbyt!psbt!ps þ dyt!psdt!psÞ
þ Ctpðbyt
psbt!ps þ byt!psbt
ps þ dyt
psdt!ps

þ dyt!psdt
psÞ�; (93)

where the t-dependent annihilation operators are defined
by Eqs. (D41)–(D44). The corresponding creation opera-
tors are defined through Hermitian conjugation. The
coefficients Atp, Btp, Ctp are defined in Eqs. (68)–(70),

and the t-dependent mass parameters in them are given
in Eqs. (D13)–(D16). The RGPEP secures that the

Hamiltonian P̂� as an operator does not depend on t while
the creation and annihilation operators and coefficients of

their products in P̂� do depend on t, in such a way that in
the limit of t ! 1 the mass-mixing term disappears,
lim t!1Ctp ¼ 0.

The eigenvalues and eigenstates of P̂� do not depend on
t. One can construct the eigenstates using creation opera-
tors corresponding to any value of t one chooses. Having
chosen operators for some selected value of t, one can
apply them to the bare vacuum state j0i and create a basis
in the FF Fock space. The bare vacuum does not depend on
t (it is annihilated by all annihilation operators, irrespective
of the value of t). If one chooses certain t for creation and
annihilation operators and the construction of the Fock-
space basis, the easiest Hamiltonian to work with is the one
expressed in terms of the same operators.

In principle, one can also work with different operators
for constructing states and Hamiltonians. This option in-
volves potentially complex formulas that include loga-
rithms and other functions of the ratios of corresponding
scales in complex theories. For example, such a setup is
useful in the description of the form factors and structure
functions of hadrons because the external probes may
distinguish a considerably different scale from the one
that is most convenient for solving the hadron mass eigen-
value problem. The scale evolution of the parton distribu-
tions appears in the transformation matrix between the
effective quanta used in the eigenvalue equation and the
effective quanta corresponding to the external probe
scale [26].

Thewave functions of eigenstates in the basis constructed
at some t depend on t. In general, the larger t the more
limited the spread of wave functions in total invariant
masses of constituent states around the eigenvalue mass

squared. In the fermion mass-mixing case, the wave func-
tions are simple to describe because one knows them
exactly.

1. The limit of t ! 1
The simplest choice of t to work with is t ! 1, since in

this case there is no mass mixing, C1p ¼ m21=pþ ¼ 0.

Thus, the effective theory with t ¼ 1 is a theory of free
fermions with masses m1 and m2, with a correspondingly
simple spectrum. Namely, in the limit of t ! 1,

P̂� ¼
ZX

ps

�
p?2 þm2

1

pþ ðby1
psb1
ps þ dy1
psd1
psÞ

þ p?2 þm2
2

pþ ðby1!psb1!ps þ dy1!psd1!psÞ
�
; (94)

where the operators with subscript 1 are given in
Eqs. (D41)–(D44) with t ¼ 1, i.e., with the angle
’1 given by Eq. (D52), matching the angle ’ found in
Eq. (33) as an ingredient of the IF re-quantization proce-
dure in Sec. II C,

’1 ¼ ’ ¼ � arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

�þ 1

s
: (95)

Hence, the eigenvalues of the Hamiltonian P̂� in Eq. (94)
are free FF energies of n11 fermions and antifermions of
mass m1 and n12 fermions and antifermions of mass m2,
each with some momentum components pþ and p? and
spin z-axis projection s, with no more than one particle in
any state with the same momentum and spin (i.e., in
agreement with the Pauli exclusion principle for effective
fermions),

P�
fðp1i;s1iÞ;i¼1;...;n11g;fðp2j;s2jÞ;j¼1;...;n12g

¼ Xn11

i¼1

p?2
1i þm2

1

pþ
1i

þ Xn12

j¼1

p?2
2j þm2

2

pþ
2j

: (96)

The spectrum is degenerate. The eigenstates can be closely
identified because the RGPEP provides expressions for
the corresponding creation operators. A complete set of
eigenstates (not normalized) is defined by writing

fn11g ¼ fðp1i; s1iÞ; i ¼ 1; . . . ; n11g; (97)

fn12g ¼ fðp2j; s2jÞ; j ¼ 1; . . . ; n12g; (98)

jfn11g; fn12gi ¼
Yn11

i¼1

ðby1
p1is1i
or dy1
p1is1i

Þ

�Yn12

j¼1

ðby1!p2js2j or d
y1!p2is2iÞj0i; (99)
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where j0i denotes the bare vacuum state. j0i is annihilated
by all annihilation operators for all values of t and it can be
treated as one and the same state for all values of t.

The eigenstates in Eq. (99) can also be written as combi-
nations of states created from the same vacuum state by
products of the creation operators in the FF Fourier expan-

sions of the fields 
̂ and !̂ in Eqs. (54) and (55) at t ¼ 0. For
states with a large number of fermions, a simple eigenstate
made of the effective particles with t ¼ 1, i.e., physical
fermions, is a complex mixture of many states made of bare
particles corresponding to t ¼ 0.

2. Strong mass mixing

The mass-mixing interaction with jmj> ffiffiffiffiffiffiffi
��

p
causes

the smaller one of two eigenvalues of mass matrix M, m2

in Eq. (30), to be negative. The RGPEP equations
imply that m2

2 is the square of the mass of a physical
fermion. The sign of m2 remains undetermined by the
equations of RGPEP because, due to the FF constraints,
the Hamiltonian depends only on M2. The eigenvectors of
M2 are the same as eigenvectors of M but there is a
difference between evolving M2 in the RGPEP and diago-
nalizing M in the IF re-quantization.

For � > 1, which is obtained assuming �> � and
m � 0 in Eq. (17) or, equivalently, Eq. (27), the smaller
one of two diagonal elements of the evolving mass matrix
squared, denoted by �2

t in Eq. (69) and Appendix D, de-
creases monotonically to its lowest value of m2

2 � 0, never
reaching 0 if the eigenvalue m2 � 0. Thus, the RGPEP
approaches the physical solution for �21 when t ! 1
without ever referring to the sign of �t. The question of a
strong mass mixing with jmj> ffiffiffiffiffiffiffi

��
p

is, where is the

information about the sign of the negative eigenvalue m2

of the mass matrix M stored?
Using Eq. (C1) for the unconstrained fermion fields

(and the variable t ¼ s4 instead of s), one can write

�̂tþ ¼ Ut�̂0þU
y
t : (100)

This relation describes the basic transformation of
quantum degrees of freedom. The complementary field
components �t� can be obtained from the constraints
they obey. The constraints involve interactions, which in
our case are just the mass-mixing terms that are linear, not
quadratic in the mass parameters. This is where the sign of
m2t appears. Namely,

�̂t� ¼ 1

i@þ
ði�?@? þ �MtÞ�̂tþ; (101)

where the matrix Mt is a root of M
2
t . If one writes

M2
t ¼

m1t mIt

mIt m2t

" #
2

¼ �2
t m2

t

m2
t �2

t

" #
; (102)

the smooth solution for Mt that satisfies the initial
conditions is given by

m1t ¼ 1

2

�
�þ �þ 
�2

t

�þ �

�
; (103)

m2t ¼ 1

2

�
�þ �� 
�2

t

�þ �

�
; (104)

mIt ¼ m2
t

�þ �
; (105)

where 
�2
t and m

2
t are given in Eqs. (D15) and (D16). The

mass-mixing term has the same sign that m2
t has, m1t

monotonically increases from the positive initial fermion
mass � to the eigenvalue mass m1, and m2t monotonically
decreases from the positive initial fermion mass � to the
eigenvalue mass m2, which may become negative even if
m2 þ �2

t decreases monotonically from �2 to m2
2 and thus

never approaches 0. Thus, one obtains

�̂t ¼ �̂tþ þ �̂t� (106)

¼ ĉ 1t þ �mIt ĉ 2tþ
ĉ 2t þ �mIt ĉ 1tþ

" #
; (107)

where the quantum fields

ĉ 1t ¼

̂ t

ði@þÞ�1ð�2@1 � �1@2 þm1tÞ
̂ t

" #
; (108)

ĉ 2t ¼
!̂t

ði@þÞ�1ð�2@1 � �1@2 þm2tÞ!̂t

" #
(109)

both have the FF Fourier expansions at xþ ¼ 0 of the form

ĉ ltðxÞ ¼ ĉ ltþðxÞ þ ĉ lt�ðxÞ
¼

ZX
ps
½upsðmltÞbtlpse�ipx þ vpsðmltÞdytlpseipx�;

(110)

where l ¼ 1 refers to 
̂ , l ¼ 2 to !̂, the spinors are

upsðmltÞ ¼ 1ffiffiffiffiffiffiffiffiffiffijpþjp pþ

�i�2p1 þ i�1p2 þmlt

" #
�s; (111)

vpsðmltÞ ¼ 1ffiffiffiffiffiffiffiffiffiffijpþjp �pþ

þi�2p1 � i�1p2 þmlt

" #
��s; (112)

and the annihilation operators are defined according to
Eqs. (D41)–(D44). In summary, the quantum field opera-

tors ĉ 1t and ĉ 2t handle the effective fermions of masses
m1t and m2t that interact through the mass-mixing interac-
tion of strength mIt.
When m2 >��, the limit of t ! 1 produces a negative

m2t in �̂t and mIt ! 0 in the Hamiltonian. On the other
hand, the sign of the mass term with respect to the

momentum-dependent terms in the spinors in �̂t can be
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changed by making a chiral rotation. In the FF representa-
tion of � matrices, it is visible that chiral rotations turn the
spin-up and spin-down þ-components of spinor fields by
opposite angles and the terms proportional to mass are
turned by the angle opposite to the one in rotation of the
terms that are proportional to pþ and p?. A rotation by an
angle 	=2 changes the sign of the mass terms with respect
to the momentum-dependent terms.

It might seem that one could make a chiral rotation of
c 2t and restore the positivity of the mass term with m2t as
soon as m2t changes sign as a function of t. However, as
long as the mass-mixing interaction term with mIt is
present, the chiral rotation influences the interaction with
c 1t. Only for t ! 1, when mIt vanishes, can one chirally
rotate the field c 21 independently of the field c 11, with
both fields representing physical particles. The strong mass
mixing thus produces physical fermions that are chirally
rotated with respect to the fermions one starts from.

3. Effective fermions

The effective quantum field operators c 1t and c 2t are
constructed in Eq. (110) in Sec. III D 2 according to a
general scheme for building effective quantum field
operators using the RGPEP; see Appendix C. The FF
Hamiltonian does not change as a result of rewriting it in
terms of the effective fermion operators. The constancy of
the Hamiltonian as a whole includes the infinite additive
constant dropped in the process of normal ordering. The
constant does not depend on t because the range of
kinematical momentum variables does not depend on the
interaction and is the same for all values of t. However, the
mass-mixing interaction strength mIt decreases when t
increases, becoming 0 in the limit t ! 1, where the
same Hamiltonian is expressed in terms of the creation
and annihilation operators for physical fermions.

The Hamiltonian expressed in terms of the effective
quantum fermion fields corresponding to t is characterized
by two features. One of them is that the massesm1t andm2t

differ from the physical masses m1 and m2 for as long as t
is kept finite instead of being sent to1. The other feature is
that the interaction term strengthmIt is different from 0 for
as long as t is kept finite. These features of our simple
model solution suggest that it may also be appropriate in
more complex models, where exact solutions are not
known, to keep due mass-mixing interactions intact in an
effective theory for as long as the effective theory includes
any interactions that are capable of contributing to the
effective mass-mixing parameters. By the same token, it
may be misleading to interpret a theory in terms of the
degrees of freedom that correspond to a diagonalized mass
matrix when the other interactions are present.

When there are more than just two different species of
fermions mixed by mass terms, say f different species
corresponding to different ‘‘flavors’’ or ‘‘families,’’ the
RGPEP leads to equations for matrices of dimension

f� f. Such equations do not have known analytic
solutions for a general choice of initial conditions but
they do have exact numerical solutions that can be found
using computers.

IV. CONCLUSION

It has been demonstrated in Ref. [1] that the RGPEP
provides a solution to the quantum theory of two kinds of
scalar bosons that interact with each other through mass-
mixing terms. The solution avoided the divergent vacuum
problem of the type that was for a long time considered
critical to the construction of a relativistic quantum theory
of particles and fields [3]. In this paper, it was shown that
the RGPEP also provides a solution to the FF theory of two
kinds of spin-1=2 fermions that interact through mass-
mixing terms, avoiding the associated fermion vacuum
problem as well.
The differential RGPEP equations for effective mass

parameters in the theories of bosons and fermions turn
out to have identical forms. However, the same equations
lead to qualitatively different solutions in the fermion and
boson theories when the mass-mixing interactions are
strong. The reason is that the initial conditions in these
theories are set in different ways. Since the RGPEP does
not a priori rely on any perturbative expansion, it can tell
us precisely what happens in the theories with arbitrary
strengths of the interactions.
The 2� 2 mass matrix that appears in the scalar

bosons theory as an initial condition for the RGPEP
differential equations in a suitable operator basis has the
form (see Ref. [1])

M2
B ¼ �2 m2

m2 �2

� �
; (113)

while the analogous initial condition in the fermion theory
has the form (see Sec. III C)

M2
F ¼ �2 þm2 ð�þ �Þm

ð�þ �Þm �2 þm2

� �
: (114)

In both cases, � and � denote the bare masses of initial
quanta and m denotes the strength of the mass-mixing
interaction terms. Once these initial conditions are set,
the RGPEP yields exact solutions for the creation and
annihilation operators of effective particles and the corre-
sponding masses in the effective Hamiltonians as functions
of the scale parameter t. The parameter can take any
value starting at 0 and ending at 1. At the end of the
RGPEP evolution, when t ! 1, one obtains quantum
Hamiltonians expressed in terms of the creation and anni-
hilation operators for physical particles. The masses
squared of the physical bosons and fermions are the eigen-
values of the matrices M2

B and M2
F, respectively.

The key difference between M2
B and M2

F is that one of
the eigenvalues of M2

B is negative when jmj is larger thanffiffiffiffiffiffiffi
��

p
while M2

F does not have negative eigenvalues no
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matter how large is m. The wrong sign of the mass squared

for bosons causes the eigenvalues of P̂� to be unbounded
from below. The fermion theory qualitatively differs from
the boson theory because the wrong sign of the mass
squared never appears in the fermion theory. This is a
consequence of the fermion constraint equations that are
specific to the FF of Hamiltonian dynamics and do not
appear in theories of scalar bosons. These constraints
produce the diagonal terms m2 that prevent the off-
diagonal mass-mixing terms mð�þ �Þ from inducing a
negative mass squared for fermions no matter how large m
is in comparison to � and � and what its sign is. In other
words, the FF theory of bosons with mass-mixing inter-
actions may collapse due to tachyon solutions when the
interaction is strong while the FF theory of fermions cannot
have tachyon solutions and so cannot collapse.

One can speculate about what may be found when the
RGPEP is applied to theories with fermions that include
interactions other than the mass mixing. The fermion mass
may appear not only quadratically but also linearly in
physically relevant interactions. The terms linear in masses
can be considerably different from the mass-mixing terms
in our simple model. For example, fermion masses appear
linearly in the photon-electron interaction terms in QED
and in quark-gluon interaction terms in QCD. Perhaps the
effective masses of the lightest fermion species could
change sign in the RGPEP due to the interactions if the
latter have sufficient strength (considerably greater than in
QED). If this happens, the interactions that are linear in the
lightest fermion masses and hence sensitive to their signs
could go through zero. Thus, the RGPEP could possibly
unveil new features of relevant effective theories due to the
associated chiral rotations. One might even be forced to
limit the range of the allowed strengths of interactions. On
the other hand, the RGPEP solutions for the mass mixing in
both scalar boson and spin-1=2 fermion theories suggest
that interactions of weak strength in comparison to masses
can hardly cause harm such as a collapse due to tachyon
solutions.

Even if the lessons learned in the elementary models
with mass mixing and no other interaction are insufficient
to guess the nature of approximate solutions that the
RGPEP may produce in complex theories, both the boson
and fermion examples already indicate that the RGPEP is
capable of helping in studies of quantum field theories.
Some help is certainly needed in generating effective
interactions in an FF theory of neutrino oscillations [34],
including the generation of the neutrino mass terms. Since
the vacuum problem in the IF of dynamics is far from being
understood, the RGPEP is of particular relevance as a
method of study because it appears prepared to provide
new information without changing the trivial nature of the
FF vacuum state. This special feature may remain valid
even in theories as complex as QCD, if the features typi-
cally associated with a complex vacuum in the IF of

dynamics are instead associated with a potentially rich
structure of the FF effective Hamiltonian operators. Such
a possibility had been previously suggested in Ref. [8]. If
that guess is right, the challenge for the RGPEP is to
produce the required counterterms and generate new inter-
action terms in effective theories.

APPENDIX A: FF REPRESENTATION
OF � MATRICES

The popular representation of �matrices [35] adopted in
Ref. [9] is called below the IF representation. The IF
representation leads to the FF projection matrices �� ¼
�0��=2 that mix all four components of the Dirac spinors.
This appendix defines the representation of � matrices,
called below the FF representation, in which

�þ ¼ 1 0

0 0

" #
; �� ¼ 0 0

0 1

" #
: (A1)

In the FF representation, the unconstrained parts of the
fermion fields c , i.e., cþ ¼ �þc , form the two upper
components of c , and the dependent parts, i.e., constrained
by the FF constraint equations, c� ¼ ��c form the

two lower components. Thus, the quantum field ĉþ can
be constructed using only two-component spinor fields as
described in Appendix B 3. The same construction is used

in the case of quantum fields ĉþ and �̂þ in Sec. III A.
The forms (A1) of �� do not fully define a representa-

tion of the algebra ���� þ ���� ¼ 2g��. A slightly dif-
ferent representation from the FF one described below was
introduced before in the context of the FF formulation of
QCD in Ref. [36], Sec. II B; see also Sec. IVA in Ref. [8].
The possibility of representing the Dirac fermions with
only two-component spinors when one is not interested
in the discrete symmetry of parity is discussed in Ref. [10],
p. 221. In the FF of Hamiltonian dynamics, the parity
symmetry is dynamical and thus not fully understood in
complex theories, due to the lack of precise solutions.
In the simple model with interactions limited to the mass
mixing, the constraint equations that force c� to form a
complete spinor field in combination with cþ can be
conveniently solved using the FF representation of �
matrices. The parity symmetry is then exhibited in the
spectrum of solutions for states of physical particles.
The IF representation we start from is (k, l ¼ 1; 2; 3) [9]

�0 ¼ 1 0

0 �1

" #
; �k ¼ 0 �k

��k 0

" #
; (A2)

�5 ¼ i�0�1�2�3 ¼ 0 1

1 0

" #
; (A3)

�5�0 ¼ 0 �1

1 0

" #
; �5�k ¼ ��k 0

0 �k

" #
; (A4)
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��� ¼ i

2
½��; ���; �kl ¼ �klm

�m 0
0 �m

� �
; (A5)

�0k ¼ 0 i�k

i�k 0

� �
¼ i�k; (A6)

�� ¼ �0��=2 ¼ 1

2

1 ��3

��3 1

� �
: (A7)

Every other choice for the � matrices can be obtained [37]
using ~�� ¼ Uy��U with Uy ¼ U�1. The FF representa-
tion is obtained by defining a special U that provides
matrices �� of the form (A1) and at the same time trans-
forms IF spinors in a specific way. This way is identified by
performing suitable rotations of the conventional elements
in a spinor basis for physical fermions at rest.

In the IF representation for � matrices, the basis for
constructing spinors of fermions at rest can be chosen in
the form

u" ¼
1
0
0
0

2
6664

3
7775; u# ¼

0
1
0
0

2
6664

3
7775; (A8)

v" ¼ C

�1
0
0
0

2
6664

3
7775

T

; v# ¼ C

�0
1
0
0

2
6664

3
7775

T

; (A9)

where C ¼ i�2�0 is the charge conjugation matrix with
properties C ¼ �C�1 ¼ �Cy ¼ �CT . The above defini-
tion assumes that v ¼ C �uT ¼ i�2u�. One obtains

v" ¼
0
0
0
1

2
6664

3
7775; v# ¼

0
0
�1
0

2
6664

3
7775: (A10)

The action of the projection matrix �þ on these IF spinors
yields uþ ¼ �þu and vþ ¼ �þv. Adjusting normaliza-

tion to uyþuþ ¼ vy
þvþ ¼ 1, one obtains

u"þ ¼ 1ffiffiffi
2

p
1
0
1
0

2
6664

3
7775; u#þ ¼ 1ffiffiffi

2
p

0
1
0
�1

2
6664

3
7775; (A11)

v"þ ¼ 1ffiffiffi
2

p
0
�1
0
1

2
6664

3
7775; v#þ ¼ 1ffiffiffi

2
p

�1
0
�1
0

2
6664

3
7775: (A12)

This result involves only two linearly independent spinor
basis elements,

u"þ ¼ �v#þ; u#þ ¼ �v"þ; (A13)

which can be used as the new elements of a spinor basis
that are invariant under the action of and span the image of
�þ. Acting on the IF spinors at rest with �� yields

u"� ¼ 1ffiffiffi
2

p
1
0
�1
0

2
6664

3
7775; u#� ¼ 1ffiffiffi

2
p

0
1
0
1

2
6664

3
7775; (A14)

v"� ¼ 1ffiffiffi
2

p
0
1
0
1

2
6664

3
7775; v#� ¼ 1ffiffiffi

2
p

1
0
�1
0

2
6664

3
7775: (A15)

This result also involves only two linearly independent
spinor basis elements,

u"� ¼ v#�; u#� ¼ v"�; (A16)

which can be used as the two complementary new elements
of a spinor basis which are invariant under the action of and
span the image of ��. The complete new spinor basis is
called here the FF basis. Its elements are linear combina-
tions of the canonical basis elements with coefficients that
form the four columns of the matrix

S ¼ 1ffiffiffi
2

p 1 1
�3 ��3

� �
: (A17)

Spinors written in terms of their coefficients in the FF basis
are marked with the subscript FF.
If an IF spinor is a superposition of the canonical basis

elements with coefficients ai, i ¼ 1, 2, 3, 4, one can write

uIF ¼
a1
a2
a3
a4

2
6664

3
7775

¼ a1 þ a3ffiffiffi
2

p u"þ þ a2 � a4ffiffiffi
2

p u#þ þ a1 � a3ffiffiffi
2

p u"�

þ a2 þ a4ffiffiffi
2

p u#�: (A18)

This means that in the FF basis the spinor components are

uFF ¼ STuIF: (A19)

Since the matrix S is orthogonal, ST ¼ S�1, one has uIF ¼
SuFF. Therefore,

S�FFuFF ¼ �IFuIF ¼ �IFSuFF (A20)

and

�FF ¼ ST�IFS: (A21)

Carrying out the required matrix multiplications, one ob-
tains the following FF representation of the � matrices,

�0 ¼ 0 1
1 0

� �
; �3 ¼ 0 �1

1 0

� �
; (A22)
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�1 ¼ �i�2 0

0 i�2

" #
; �2 ¼ i�1 0

0 �i�1

" #
; (A23)

with �k for k ¼ 1, 2, 3 obtained from

�k ¼ 1

2

½�k; �3� �f�k; �3g
f�k; �3g �½�k; �3�

" #
: (A24)

Hence,

�1 ¼ 0 i�2

�i�2 0

" #
; �2 ¼ 0 �i�1

i�1 0

" #
; (A25)

and

�3 ¼ 1 0

0 �1

" #
: (A26)

One also obtains

�5 ¼ �3 0

0 ��3

" #
; �5�0 ¼ 0 �3

��3 0

" #
; (A27)

�5�? ¼ ��? 0

0 ��?

" #
; (A28)

�5�3 ¼ 0 ��3

��3 0

" #
; (A29)

and

�0k ¼ i�k; �12 ¼ �3 0

0 �3

" #
; (A30)

�23 ¼ 0 �1

�1 0

" #
; �31 ¼ 0 �2

�2 0

" #
: (A31)

Equations (2.8) in Ref. [36], or Eq. (4.6) in Ref. [8] define a
different representation. For example, the FF matrices ��
are real instead of imaginary and the roles of �1 and �2 are
changed.

APPENDIX B: FF CONSTRUCTION OF SPINORS

This appendix defines the spinors that are useful in
constructing the FF quantum fields of fermions and solving
constraint equations in the model with mass-mixing inter-
actions. The spinors are obtained using the FF little group,
which belongs to the second class distinguished by Wigner
[4]. The little group preserves the null four-vector n
(up to a scale) that defines the front hyperplane in space-
time through the condition nx ¼ xþ ¼ 0, where x denotes
the coordinates of points in space-time. The subgroup of
the Poincaré group that preserves the front hyperplane is
also called the group of kinematical symmetries of the
FF of dynamics; the group elements do not depend on
interactions.

The construction of spinors adopted here draws on
Refs. [38–40]. The resulting notation differs slightly from
the one introduced in Ref. [41] in Eq. (A3), due to keeping
boost matrices for spinors explicitly the same for fermions
and antifermions and using the kinematical variable kþ0
instead of a mass parameter; see Eqs. (B18) and (B19)
below.

1. Spinors corresponding to momentum k0

According toWigner [4], quantum states of a particle are
obtained from one state with some specified kinematical
momentum k0, by applying to the specified state operators
that represent elements of the Poincaré group (we do not
discuss discrete transformations). In the FF of quantum
theory, in distinction from the IF in which boosts depend
on interactions, one can use the FF kinematical subgroup
of the Poincaré group to construct a fermion state with
arbitrary momentum. This means that the FF allows one to
construct the states of moving fermions irrespective of
interactions while the IF does not allow for such a
construction.
Let us introduce two basis states for spin-1=2 fermions

with momentum k0 and different spin projections on the z
axis. Let the kinematical components of the momentum k0
be kþ0 � 0 and k?0 ¼ 0. The component k�0 is left unspe-

cified by the kinematics because one needs to know the
Hamiltonian P� to determine if there exists a preferred
value of k�0 . For free fermions of mass �, the correspond-

ing P� would distinguish k�0 ¼ �2=kþ0 . It would also be

natural to assume kþ0 ¼ � for free fermions at rest with

respect to the observer who constructs a theory. However,
at the level of defining the quantum fields [10] and before
one fully understands the implications of the assumed
dynamics, it is useful to keep the kinematical quantity kþ0
in the notation. Such notation allows one to separate the
kinematical construction of quantum field operators from
making assumptions about dynamics.
Let the spinors corresponding to the two selected

fermion states have the form

u0s ¼ ST
ffiffiffiffiffiffiffiffiffi
2kþ0

q �s

0

" #
¼

ffiffiffiffiffiffi
kþ0

q �s

�s

" #
; (B1)

where the matrix S is defined in Appendix A in Eq. (A17)
and �s with s ¼ �1 is the standard two-component Pauli
spinor for states with spin up or down. Namely,

�1 ¼ �" ¼
1

0

" #
; ��1 ¼ �# ¼

0

1

" #
: (B2)

This choice is motivated by the physical meaning of
spinors in the IF representation of the � matrices consid-
ered in Appendix A; �s corresponds to the spin projection
on the z axis equal sℏ=2, irrespective of the value of kþ0 .
Similarly, the spinors for two selected basis states of

antifermions are assumed to have the form
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v0s ¼ ST
ffiffiffiffiffiffiffiffiffi
2kþ0

q 0

’s

" #
¼

ffiffiffiffiffiffi
kþ0

q �3’s

��3’s

" #
: (B3)

In accordance with Appendix A, when one introduces
the two-component spinor for antifermions using the
charge-conjugation matrix C, so that

’s ¼ �i�2�s; (B4)

one obtains

v0s ¼
ffiffiffiffiffiffi
kþ0

q ��1�s

�1�s

" #
: (B5)

Spinors of fermions with momenta other than k0 are ob-
tained using a spinor representation of the FF kinematical
symmetries.

2. Spinors for momenta other than k0

Spinors corresponding to states of fermions with mo-
menta other than k0 are obtained by applying a spinor
representation of the Lorentz transformations built using
the FF kinematical Poincaré group generators of boosts
along the z axis, �Jþ�=2 ¼ K3, and the mixed boost-
rotations, Jþ1 ¼ K1 þ J2 and Jþ2 ¼ K2 � J1, e.g., see
Refs. [42,43]. The required spinor transformations corre-
spond to the Lorentz subgroup of matrices L of the form

LðaþÞx ¼

1=aþ 0 0 0

0 aþ 0 0

0 0 1 0

0 0 0 1

2
666664

3
777775

x�

xþ

x1

x2

2
666664

3
777775; (B6)

Lða?Þx ¼

1 a2? 2a1 2a2

0 1 0 0

0 a1 1 0

0 a2 0 1

2
666664

3
777775

x�

xþ

x1

x2

2
666664

3
777775; (B7)

aþ ¼ kþ2 =k
þ
1 ; a? ¼ ðk?2 � k?1 Þ=kþ1 : (B8)

A four-vector k1¼ðk�1 ;kþ1 ;k?1 Þ with k�1 ¼ ð�2 þ k?2
1 Þ=kþ1

is changed by these matrices irrespective of the value of the
mass parameter � to

LðaþÞk1 ¼ ½ð�2 þ k?2
1 Þ=kþ2 ; kþ2 ; k?1 �; (B9)

Lða?Þk1 ¼ ½ð�2 þ k?2
2 Þ=kþ1 ; kþ1 ; k?2 �: (B10)

To transform spinors, one can use a spinor representation
of the matrix

LðaþÞLða?Þ¼

1=aþ a2?=aþ 2a1=a
þ 2a2=aþ

0 aþ 0 0

0 a1 1 0

0 a2 0 1

2
666664

3
777775; (B11)

which transforms the momentum four-vectors according to

LðaþÞLða?Þk1 ¼ ½ð�2 þ k?2
2 Þ=kþ2 ; kþ2 ; k?2 �; (B12)

no matter what the value of � is. The required spinor
matrix is

Bðk2; k1Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
kþ2 k

þ
1

q ½kþ2 �þ þ kþ1 �� þ ðk?2 � k?1 Þ�?�þ�:

(B13)

By checking the relations

Bðk3; k2ÞBðk2; k1Þ ¼ Bðk3; k1Þ; (B14)

Bðk2; k1Þ ¼ ½Bðk1; k2Þ��1; (B15)

Bðk1; k1Þ ¼ 1; (B16)

one can verify that such spinor matrices form a group, as
they must as representatives of elements of a subgroup of
the Lorentz group.
By replacing k1 and k2 in Eq. (B13) by k0 and p,

respectively, and using the FF representation of � matrices
defined in Appendix A, one obtains

Bðp; k0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
pþkþ0

q pþ 0

�i�2p1 þ i�1p2 kþ0

" #
: (B17)

The spinors for fermions of momentum p, irrespective of
mass parameters that may be associated with them in a
Hamiltonian, are defined as

ups ¼ Bðp; k0Þu0s; (B18)

vps ¼ Bðp; k0Þv0s; (B19)

where the spinors corresponding to k0 are given by
Eqs. (B1) and (B5). In full detail,

ups ¼ 1ffiffiffiffiffiffiffi
pþp pþ

�i�2p1 þ i�1p2 þ kþ0

" #
�s; (B20)

vps ¼ 1ffiffiffiffiffiffiffi
pþp �pþ

þi�2p1 � i�1p2 þ kþ0

" #
��s: (B21)

The spinors satisfy the relationsX
s

ups �ups ¼ 6pþ kþ0 ; (B22)

X
s

vps �vps ¼ 6p� kþ0 ; (B23)

where

p ¼ ðp�; pþ; p?Þ; (B24)
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p� ¼ p?2 þ kþ2
0

pþ : (B25)

For free fermions, one could immediately assume that the
kinematical parameter kþ0 equals the physical fermion

mass that appears in the free fermion Hamiltonian. In the
presence of interactions, it is not known prior to solving
the theory how the fermion mass parameter that appears
in the Hamiltonian is related to the physical fermion mass.
The latter situation is exemplified by the model with mass-
mixing interactions that is solved using the RGPEP in
Sec. III. In more complex theories, especially in QCD,
which is expected to explain confinement of color, it is
important to distinguish between the kinematical quantity
kþ0 and any dynamically determined concept of a quark

mass �.

3. Spinors in quantum fields

The quantum fermion field

ĉ ðxÞ ¼ 
̂ðxÞ
�̂ðxÞ

" #
(B26)

on the front xþ ¼ 0 can be kinematically composed from
its Fourier components using momentum variables pþ and
p?. The FF constraint equations in theories of physical
interest, including the mass-mixing model, cause the inde-
pendent fermion degrees of freedom to be the Fourier

components of the field ĉþ ¼ �þ ĉ . The field ĉ� is

related to the field ĉþ through the constraints.
Using the representation of � matrices introduced in

Appendix A, one has

ĉþðxÞ ¼ 
̂ðxÞ
0

" #
; ĉ�ðxÞ ¼

0

�̂ðxÞ

" #
: (B27)

Acting with �þ on the spinors of Eqs. (B20) and (B21),
one obtains

�þups ¼
ffiffiffiffiffiffiffi
pþ

q �s

0

" #
; (B28)

�þvps ¼
ffiffiffiffiffiffiffi
pþ

q ��1�s

0

" #
: (B29)

Using these results, one can write


̂ðxÞ ¼
ZX

ps

ffiffiffiffiffiffiffi
pþ

q
½bpse�ipx � dypseipx�1��s; (B30)

where

ZX
ps

¼ X
s¼�1

Z þ1

�1
d2p?

ð2	Þ2
Z þ1

0

dpþ

2ð2	Þpþ (B31)

and the operators bps and dps annihilate fermions and

antifermions, respectively. Note that one could use jpþj

instead of pþ visible in Eqs. (B30) and (B31) because
pþ > 0 in these equations.
The nonzero canonical anticommutation relations at

xþ ¼ 0 read

fĉþðxÞ; ĉ y
þðx0Þg ¼ �þf
̂ðxÞ; 
̂yðx0Þg (B32)

¼ �þ
3ðx� x0Þ; (B33)

fbps; byp0s0 g ¼ fdps; dyp0s0 g (B34)

¼ 2pþð2	Þ3
3ðp� p0Þ
ss0 : (B35)

The fields ĉ� depend on interactions through constraints

and generally are not related to ĉþ in any simple way. In
the case of a theory of free fermions of mass �, the Dirac
equation

ði6@��Þc ¼ 0 (B36)

takes the form

i@�cþ þ i@þc� � ði�?@? þ ��Þðcþ þ c�Þ ¼ 0

(B37)

and

c� ¼ 1

i@þ
ði�?@? þ ��Þcþ: (B38)

Using Eq. (B26), one has

�̂ ¼ 1

i@þ
ð�2@1 � �1@2 þ�Þ
̂ (B39)

and

ĉ ðxÞ ¼ ĉþðxÞ þ ĉ�ðxÞ
¼

ZX
ps
½upsð�Þbpse�ipx þ vpsð�Þdypseipx�; (B40)

where the spinors are

upsð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffijpþjp pþ

�i�2p1 þ i�1p2 þ�

" #
�s; (B41)

vpsð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffijpþjp �pþ

þi�2p1 � i�1p2 þ�

" #
��s; (B42)

and the modulus of pþ is freely inserted using the condi-
tion pþ > 0 in the FF Fourier expansion of fields. These
spinors match the ones defined kinematically in Eqs. (B18)
and (B19) using the momentum k0 and transformations
Bðp; k0Þ of Eq. (B17), if one sets kþ0 ¼ �. This result

is visible by comparing Eqs. (B41) and (B42) with
Eqs. (B20) and (B21), correspondingly.
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4. Spinor matrix elements

The fermion model with mass mixing involves matrix
elements of the form

�u1�u2 ¼ �u01�
0Byðp1; k01Þ�0�Bðp2; k02Þu02: (B43)

The subscripts 1 and 2 refer to the spin labels and selected
momenta k01 and k02 for fermions of the type 1 and 2 in the
construction of their states and the corresponding quantum
field operators, respectively. Each of these types can be
associated with a mass � or � in the Hamiltonian. If a
theory contains more types of fermions than two, the sub-
scripts 1 and 2 may each be associated with any mass in the
Hamiltonian. Since

�0Byðp; k0Þ�0 ¼ ½Bðp; k0Þ��1 ¼ Bðk0; pÞ; (B44)

the matrix elements can be written as

�u1�u2 ¼ �u01B�u02; (B45)

where

B� ¼ Bðk01; p1Þ�Bðp2; k02Þ: (B46)

It is assumed that both k?01 and k?02 are 0 and the only

nonzero kinematical parameters left are kþ01 and kþ02.
In the fermion model with its interaction limited to mass

mixing, all terms in the FF Hamiltonian density are bilinear
in the fields. Therefore, the kinematical momentum
variables that appear in the spinor matrix elements in the
FF Hamiltonian involve one kinematical momentum p ¼
p1 ¼ p2. This means that the matrix elements that count
involve only the matrix

B� ¼ Bðk01; pÞ�Bðp; k02Þ (B47)

¼ 1

pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ01k

þ
02

q ½kþ01�þ þ pþ�� � p?�?�þ��

� ½pþ�þ þ kþ02�� þ p?�?�þ�: (B48)

For the matrix element for � ¼ �þ ¼ 2�0�þ, one uses

B�þ ¼ pþ�þffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ01kþ02

q ; (B49)

and obtains

�u1�
þu2 ¼ �v1�

þv2 ¼ 2pþ�y
1�2 (B50)

¼ 2pþ
s1s2 : (B51)

These matrix elements do not depend on the kinematical
parameters k01 and k02 used in the FF construction of
quantum fields for spin-1=2 fermions.

For comparison, one can observe that the matrix element
with � ¼ 1, relevant to chiral symmetry, does depend on
the details of constructing quantum fields. Namely,

B1 ¼ Bðk01; pÞBðp; k02Þ (B52)

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ01kþ02

q ½kþ02�� þ kþ01�þ�; (B53)

�u1u2 ¼ � �v1v2 ¼ ðkþ01 þ kþ02Þ
s1s2 : (B54)

Thus, these matrix elements are sensitive to the values of
kþ01 and kþ02 used in constructing states and fields. If one

insists on kþ01 ¼ � and kþ02 ¼ �, the matrix elements equal

�þ � for the same spin projections on the z axis of
fermions of types 1 and 2 at rest.
Note that the FF z axis is also the direction of motion for

a fermion with?momentum 0 andþmomentum different
from its mass. Moreover, the ratio r ¼ pþ=�, where �
denotes the fermion mass, tells one in which direction the
fermion moves: r > 1 corresponds to motion toward
positive and r < 1 to motion toward negative values of
the coordinate z on the z axis. Hence, the same projection s
denotes different helicities depending on the ratio r. These
observations are included here in order to prevent a con-
fusion of the spin projection s with just one value of
helicity irrespective of pþ. For the same reason, the inter-
pretation of s as related to helicity depends on the ratio of
kþ0 to �. When the mass depends on the dynamics, one has

to be careful in interpreting s in terms of helicity.

APPENDIX C: ELEMENTS OF THE RGPEP

Elements of the renormalization-group procedure for
effective particles are summarized below for completeness
of the paper, following notation adopted in Ref. [1] that
treats the mass-mixing interactions of bosons in a non-
perturbative way. More generally, the RGPEP development
can be traced back to the invention of the similarity
renormalization-group procedure [44,45] and to the
conception of the operator formalism that allows one to
calculate effective Hamiltonians without limiting their
domain in the Fock-space expansion of quantum states,
and including interactions that involve various numbers of
quanta [46,47]. Compact expressions for the RGPEP in a
perturbative series up to the fourth order in interaction are
given in Ref. [48].
Effective particles are introduced through a transformation

c s ¼ Usc 0U
y
s ; (C1)

where c s is a quantum field operator built from creation
and annihilation operators for effective particles of size s
and c 0 is a corresponding quantum field operator built
from creation and annihilation operators for bare quanta of
a local theory. The creation and annihilation operators are
denoted collectively by qs and q0, respectively. All kine-
matical quantum numbers that label operators q are the
same on both sides of Eq. (C1). Masses are considered
dynamical. The interpretation of s as size is based on the
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form factors that limit how far off energy shell the inter-
actions can extend. The value s ¼ 0 corresponds to the
absence of form factors. For a finite s, the effective
Hamiltonian is band-diagonal on the energy scale and the
band width is �1=s.

A canonical Hamiltonian density is built from fields c 0.
A corresponding Hamiltonian is a polynomial H 0ðq0Þ
with coefficients c0 that are functions of the quantum
numbers labeling operators q0. Similarly, H tðqtÞ is de-
fined through its coefficients ct. For dimensional reasons, it
is convenient to use t ¼ s4. The RGPEP starts with the
equality

H tðqtÞ ¼ H 0ðq0Þ; (C2)

which says that the same dynamics is expressed in terms of
different operators for different values of t. The initial
condition being set at t ¼ 0, the variation of the coeffi-
cients ct with t is described by the equation obtained by
differentiating both sides of

H tðq0Þ ¼ Uy
t H 0ðq0ÞUt (C3)

with respect to t, obtaining

H 0
tðq0Þ ¼ ½Gtðq0Þ;H tðq0Þ�; (C4)

where Gt ¼ �Uy
t U0

t and

Ut ¼ T exp

�
�
Z t

0
d�G�

�
: (C5)

T denotes ordering in �.
The RGPEP generator is defined by

Gt ¼ ½H f;H Pt�; (C6)

where H f, called the free Hamiltonian, is the part of

H 0ðq0Þ that does not depend on the coupling constants,

H f ¼
X
i

p�
i q

y
0iq0i: (C7)

The subscript i denotes particle species and their quantum
numbers. The FF free energy of a particle with massmi and
kinematical momentum components pþ

i and p?
i is

p�
i ¼ p?2

i þm2
i

pþ
i

: (C8)

We shall also considerH f equal to the entire part ofH of

the type qy0q0 that includes the effective mass parameters

mi that do depend on interactions. The operator H Pt is
defined knowing H t,

H tðq0Þ ¼
X1
n¼2

X
i1;i2;...;in

ctði1; . . . ; inÞqy0i1 . . . q0in ; (C9)

to be

H Ptðq0Þ ¼
X1
n¼2

X
i1;i2;...;in

ctði1; . . . ; inÞ
�
1

2

Xn
k¼1

pþ
ik

�
2
qy0i1 . . .q0in :

(C10)

Thus, H Pt differs from H t by the multiplication of each
and every term in it by a square of a total þ momentum
involved in a term [26,48]. The multiplication leads to
preservation of seven kinematical symmetries of the FF
dynamics in the RGPEP.
In summary, the coefficients ct of products of operators

qt in the effective HamiltoniansH tðqtÞ are solutions of the
equation

H 0
t ¼ ½½H f;H Pt�;H t�; (C11)

where all operators are written as polynomials in q0 and the
initial condition is provided by a regulated canonical
Hamiltonian with counterterms. The counterterms are cal-
culated using a condition that for finite t the coefficients ct
with finite arguments do not depend on the regularization
parameters used in the canonical Hamiltonian [44]. There
is no need for calculating counterterms in the fermion
mass-mixing model because the coefficients ct with finite
arguments do not depend on regularization in this model.
The regularization dependence in the model is limited to an
additive constant in H t, which drops out from Eq. (66).
The band-diagonal structure of H t can be seen using a

projector R on a subspace in the Fock space. The projected
RGPEP equation for H R ¼ RH tR,

H 0
R ¼ ½½H f;H PR�;H R�; (C12)

implies for constant H f that

�X
mn

jH Imnj2
�0 ¼ �2

X
km

ðM2
km �M2

mkÞ2jH Ikmj2 	 0;

(C13)

whereH I ¼ H �H f,H PR ¼ RH PtR,Mkm denotes

an invariant mass of the particles in a state labeled k that
are connected through the interaction H I to the particles
in a state labeled m, and the matrix elements H mn ¼
hmjH jni are evaluated in the basis built from eigenstates
jmi of H f. According to Eq. (C13), the sum of moduli

squared of the interaction Hamiltonian matrix elements
decreases as t increases until all off-diagonal matrix ele-
ments of the interaction Hamiltonian between states with
different free invariant masses vanish. The width of the
narrow invariant-mass band in H R is s�1. When the
masses in H f increase with t, they reduce the right-hand

side of Eq. (C13) to more negative values and thus accel-
erate the formation of the band-diagonal structure of H t.
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APPENDIX D: SOLVING THE RGPEP EQUATIONS

It is convenient to define the new variables

� ¼ �2
t =
�

2; (D1)

� ¼ �2
t =
�

2; (D2)

� ¼ m2
t =
�

2; (D3)

in terms of which Eqs. (85)–(87), read

�0 ¼ 2�2; (D4)

�0 ¼ �2�2; (D5)

�0 ¼ �ð�� �Þ�; (D6)

where a prime denotes differentiation with respect to the
dimensionless parameter u ¼ 
�4t and 
�2 ¼ �2 � �2.
Solutions can be found using the same method as in
Ref. [1] because the equations are identical. We quote
only key details here, for completeness.

Equations (D4) and (D5) imply that �þ � is a constant
and


0 ¼ 4�2; (D7)

�0 ¼ �
�; (D8)

where 
 ¼ �� �. Multiplying these equations by 2
 and
2�, respectively, one arrives at


20 ¼ 8
�2; (D9)

�20 ¼ �2
�2; (D10)

which implies a constant

�2 ¼ 
2 þ 4�2 ¼ T 2 � 4D; (D11)

where D ¼ D=
�4, T ¼ T=
�2, D is the determinant
and T is the trace ofM2. Eliminating �2 from Eq. (D9), one
obtains an ordinary differential equation,


0 ¼ �2 � 
2: (D12)

Integrations of Eq. (D12) and then Eq. (D8), using the
initial conditions of Eqs. (71)–(73), produce

�2
t ¼ m2 þ 1

2
ð�2 þ �2Þ þ 1

2

�2

t ; (D13)

�2
t ¼ m2 þ 1

2
ð�2 þ �2Þ � 1

2

�2

t ; (D14)


�2
t ¼ 
�2 cosh xt þ � sinh xt

cosh xt þ ��1 sinh xt
; (D15)

m2
t ¼ mð�þ �Þ

cosh xt þ ��1 sinh xt
; (D16)

where xt ¼ �
�4t, and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½2m=ð�� �Þ�2p

as in
Eq. (32).
The RGPEP produces a family of Hamiltonians

P̂�
t ðbt
 ; dt
 ; bt!; dt!Þ for t � 0, members of which are

obtained from P�
t ðb
 ; d
 ; b!; d!Þ in Eq. (67) by replacing

operators qps, i.e., b
ps, d
ps, b!ps, d!ps and their

Hermitian conjugates, by qtps, i.e.,

bt
ps ¼ Utb
psU
y
t ; (D17)

dt
ps ¼ Utd
psU
y
t ; (D18)

bt!ps ¼ Utb!psU
y
t ; (D19)

dt!ps ¼ Utd!psU
y
t (D20)

and their conjugates, correspondingly. In fact, all members
of the entire family are the same; see Eq. (C2). The
operator Ut is given by Eq. (C5), as a solution of

U0
t ¼ �Ut½P�

f ;P
�
Pt�: (D21)

The results of Sec. III B, in particular Eq. (76) and the fact
that the RGPEP respects the FF kinematical symmetries,
imply

½P�
f ;P

�
Pt� ¼ 
�2m2

tA; (D22)

A¼
Z
½p�ðby
psb!ps � by!psb
ps þ dy
psd!ps � dy!psd
psÞ;

(D23)

which is a product of the numerical factor that depends on t
and a constant operator. Therefore,

Ut ¼ exp ð’tAÞ; (D24)

where

’t ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

�� 1

s
� arctan ext

ffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

�� 1

s
: (D25)

To evaluate

qtps ¼ e’tAqpse
�’tA (D26)

one can use

½A; b
ps� ¼ �b!ps; (D27)

½A; b!ps� ¼ b
ps; (D28)

½A; d
ps� ¼ �d!ps; (D29)
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½A; d!ps� ¼ d
ps; (D30)

and their Hermitian conjugates. There exist combinations

bps ¼ b
ps þ zb!ps; (D31)

dps ¼ d
ps þ zd!ps; (D32)

for which one has

½A; bps� ¼ zbps; (D33)

½A; dps� ¼ zdps; (D34)

if z2 ¼ �1. One can use z ¼ �i for fermions and
antifermions equally. Denoting

qps� ¼ q
ps � iq!ps; (D35)

one obtains

e’tAqps�e�’tA ¼ e�i’tqps�: (D36)

Using

b
ps ¼ 1

2
ðbpsþ þ bps�Þ; (D37)

d
ps ¼ 1

2
ðdpsþ þ dps�Þ; (D38)

b!ps ¼ �i

2
ðbpsþ � bps�Þ; (D39)

d!ps ¼ �i

2
ðdpsþ � dps�Þ; (D40)

one obtains

bt
ps ¼ cos’tb
ps � sin’tb!ps; (D41)

dt
ps ¼ cos’td
ps � sin’td!ps; (D42)

bt!ps ¼ sin’tb
ps þ cos’tb!ps; (D43)

dt!ps ¼ sin’td
ps þ cos’td!ps: (D44)

These equations provide explicit definitions of annihilation
operators for effective particles corresponding to the
RGPEP parameter t ¼ s4. The corresponding relations
for creation operators are obtained by Hermitian conjuga-
tion. The inverse relations read

b
ps ¼ cos’tbt
ps þ sin’tbt!ps; (D45)

d
ps ¼ cos’tdt
ps þ sin’tdt!ps; (D46)

b!ps ¼ � sin’tbt
ps þ cos’tbt!ps; (D47)

d!ps ¼ � sin’tdt
ps þ cos’tdt!ps: (D48)

When t ! 1, one obtains

�21 ¼ m2
1; (D49)

�21 ¼ m2
2; (D50)

m21 ¼ 0; (D51)

where m1 and m2 are the fermion eigenvalue masses of
Eq. (30), and

lim
t!1’t ¼ ’; (D52)

where ’ is the angle found in Eq. (33). Thus the RGPEP
produces an FF quantum Hamiltonian for the two species
of free fermions that were obtained in Sec. II C in the IF
of a theory at the price of re-quantization. No such
re-quantization is required in the RGPEP.
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