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Here we obtain all possible second-order theories for a rank-2 tensor which describe a massive spin-2

particle. We start with a general second-order Lagrangian with ten real parameters. The absence of lower-

spin modes and the existence of two local field redefinitions leads us to only one free parameter. The

solutions are split into three one-parameter classes according to the local symmetries of the massless limit.

In the class which contains the usual massive Fierz-Pauli theory, the subset of spin-1 massless symmetries

is maximal. In another class where the subset of spin-0 symmetries is maximal, the massless theory is

invariant under Weyl transformations and the mass term does not need to fit into the form of the Fierz-

Pauli mass term. In the remaining third class neither the spin-1 nor the spin-0 symmetry is maximal and

we have a new family of spin-2 massive theories.
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I. INTRODUCTION

In general relativity the gravitational interaction is
mediated by an apparently massless spin-2 particle. In
order to understand whether the graviton is really massless
one investigates the consequences of turning on a (tiny)
mass term. The mass discontinuity [1,2] and the appear-
ance of ghosts [3] are two known longstanding problems
of the massive theory. More recently, motivated also by
experimental large-scale gravitational results, there has
been intense work on massive gravity where the mass
discontinuity problem has been addressed via the ideas of
Ref. [4]; see, for instance, Refs. [5–7]. For a review, see
Refs. [8,9]. Besides ghosts and mass discontinuity, there is
also an ongoing discussion [10–14] on causality in massive
gravity theories.

We would like to stress that all the above works are
based on the usual description of massive spin-2 particles
suggested long ago by Fierz and Pauli (FP) [15] where the
basic field is a symmetric rank-2 tensor. It is certainly
welcome to search for alternative descriptions of massive
spin-2 particles. Among them, probably the most natural—
especially if we have in mind a frame-like (e a

� ) description

of gravity—is to allow for an arbitrary rank-2 tensor with a
nonvanishing antisymmetric part e½�a� � 0. This is the

route we follow here, which has been followed before in,
e.g., Refs. [16–20].

The conclusion of those works is that the only possibil-
ity, in the massive case, is the well-known symmetric
description of FP. Regarding the massless spin-2 case,
although Ref. [19] concludes in favor of the linearized
Einstein-Hilbert theory (massless FP) as the only possibil-
ity, in Ref. [21] another theory was found which is invariant
under transverse linearized reparametrizations and Weyl
transformations and correctly describes a massless spin-2

particle in terms of a symmetric tensor. Moreover, in
Ref. [22] there was a further description of a massless
spin-2 particle in terms of an arbitrary rank-2 tensor.
Back to the massive case, there are two exceptions to
the conclusion of Refs. [16–20] recently found in
Refs. [23,24]. In both Refs. [23,24], e½��� does not de-

couple from the symmetric part eð��Þ in any local way

at the action level. In particular, in Ref. [24] the mass
term �m2ðe��e

�� þ ce2Þ does not need to fit in the

usual FP form with c ¼ �1. The real parameter c is
arbitrary.
The above exceptions have prompted us to revisit

Refs. [16–20] in order to achieve a complete classification
of massive spin-2 particles in terms of an arbitrary rank-2
tensor. In Sec. II we start with a general second-order
Lagrangian density with ten free real parameters. By
requiring the existence of only one massive spin-2 pole
in the propagator and using a trivial field redefinition
[Eq. (34)] we get rid of eight parameters; see Eqs. (22),
(24), (25), (28), (30), (31), and (42). There is another trivial
field redefinition [Eq. (33)] which allows us to fix another
undetermined parameter in Sec. III, where we also analyze
the local symmetries of the corresponding massless theo-
ries. Based on those symmetries we end up with three
classes of models, one of which is new. Its equations of
motion are presented in Sec. IV where we also discuss the
mass discontinuity problem. In Sec. V we draw our
conclusions.

II. GENERAL SETUP

We start with a second-order Lagrangian density in
D ¼ 4 with ten real free parameters,1

*dalmazi@feg.unesp.br

1Throughout this work we use ��� ¼ diagð�;þ;þ;þÞ and
the abbreviations LEH (linearized Einstein-Hilbert) and GR
(general relativity) among others defined in the text.
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LG½e��� ¼ a1ð@�e��Þ2 þ a2ð@�e��Þð@�e��Þ
þ a3ð@�e��Þ2 þ b1eheþ b2@

�e@�e��

þ p1

2
e��he�� þ p2

2
e��he�� þ ce2

þ d1e��e
�� þ d2e��e

��: (1)

It is convenient to rewrite LG in terms of antisymmetric
(B��) and symmetric (h��) tensors. Using e�� ¼ B�� þ
h�� we obtain

LG½B��; h��� ¼ Sð@�h��Þ2 þ b1hhhþ b2@
�h@�h��

þ ch2 þ pþh��hh�� þ dþh2��

þ 2ða1 � a3Þ@�B��@�h
��

þ ða1 þ a3 � a2Þ@�B��@�B
��

þ p�B��hB�� þ d�B��B
��; (2)

where

S ¼ a1 þ a2 þ a3; (3)

d� ¼ d1 � d2; (4)

p� ¼ ðp1 � p2Þ=2: (5)

Our aim is to single out the regions in the ten-
dimensional parameter space of Eq. (1) which correspond
to only one massive spin-2 particle without tachyons and
ghosts. We assume that all parameters in the second-
derivative terms are dimensionless and in the massless
limit all nonderivative terms vanish, i.e.,

lim
m!0

ðc; d1; d2Þ ¼ ð0; 0; 0Þ: (6)

As far as we know there are three examples of massive
spin-2 models in the literature [15,23,24] in agreement
with our hypothesis. For all three models we have

ða2; a3Þ ¼ ð1=2; 1=4Þ; p1 ¼ p2 ¼ 1=2;

ðd1; d2Þ ¼ ð0;�m2=2Þ:
(7)

The first model is the well-known massive FP theory
[15] which can be entirely described by means of a
symmetric tensor. Its massless limit is the linearized
Einstein-Hilbert theory. It is invariant under linearized
reparametrizations �e�� ¼ @��� þ @���. The massive

FP theory corresponds to

ða1; b1; b2; cÞ ¼ ð1=4;�1=2;�1; m2=2Þ; S ¼ 1: (8)

Since B�� only appears now in the last term of Eq. (2), the

parameter d� is a free parameter in the FP model.
In the second model, defined in Ref. [23], there is a

nontrivial coupling between the symmetric (h��) and anti-

symmetric (B��) parts of the rank-2 tensor. The massless

limit of Ref. [23] is invariant under �e�� ¼ @���. For the

massive model [23] we have

ða1; b1; b2; cÞ ¼ ð�1=4; 0; 0; m2=2Þ; S ¼ 1=2: (9)

Regarding the third model defined in Ref. [24], the
massless limit—previously studied in Ref. [22]—is invari-
ant under �e�� ¼ @��� þ ����. While the mass term of

the models in Refs. [15,23] must be of the Fierz-Pauli type
(e��e

�� � e2), in the massive model [24] one can add a

term proportional to the square of the trace of the rank-2
tensor (e��e

��=2þ fe2), where f is an arbitrary real

constant. This is a consequence of the linearized Weyl
symmetry of the massless theory. This symmetry can be
extended to the whole massive theory if we choose f ¼
�1=4 which allows us to use a traceless rank-2 tensor. The
massive model of Ref. [24] is described in general by

ða1; b1; b2Þ ¼ ð�1=12;�1=6;�1=3Þ; S ¼ 2=3;

(10)

while the parameter c remains arbitrary for reasons already
mentioned.
The Lagrangian LG can be written as LG ¼

e��G
����e�� where, suppressing the indices, we have

the differential operator

G ¼ ðdþ þ pþhÞPð2Þ
TT þ ðd� þ p�hÞPð0Þ

AA

þ X
s¼0;1

X
I;J

AðsÞ
IJ P

ðsÞ
IJ ; (11)

where the spin-s operators PðsÞ
IJ , given in Appendix A,

satisfy the algebra

PðsÞ
IJ P

ðrÞ
KL ¼ �rs�JKP

ðsÞ
IL: (12)

The operators Pð1Þ
IJ with I, J ¼ S, A form a subalgebra of

Eq. (12) as well as the operators Pð0Þ
IJ with I, J ¼ T,W. The

2� 2 matrices AðsÞ
IJ are given by

Að1Þ
AA ¼ dþ þ ðpþ � S=2Þh; (13)

Að1Þ
SS ¼ d� þ ð2p� þ a2 � a1 � a3Þh2 ; (14)

Að1Þ
AS ¼ Að1Þ

SA ¼ ða1 � a3Þh=2; (15)

Að0Þ
TT ¼ dþ þ 3cþ ðpþ þ 3b1Þh; (16)

Að0Þ
WW ¼ dþ þ cþ ðpþ þ b1 � S� b2Þh; (17)

Að0Þ
TW ¼ Að0Þ

WT ¼ ffiffiffi
3

p ½cþ ðb1 � b2=2Þh�: (18)

A key role will be played by the propagator which is
proportional to the operator G�1

���� which is given (again

suppressing the indices) by
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G�1 ¼ Pð2Þ
TT

dþ þ pþh
þ Pð0Þ

AA

d� þ p�h
þ X

s¼0;1

X
I;J

ðA�1ÞðsÞIJ P
ðsÞ
IJ ;

(19)

where the inverse matrix ðA�1ÞðsÞIJ is given explicitly by

ðA�1ÞðsÞ11 ¼ AðsÞ
22

KðsÞ ; ðA�1ÞðsÞ22 ¼ AðsÞ
11

KðsÞ ;

ðA�1ÞðsÞ12 ¼ ðA�1ÞðsÞ21 ¼ � AðsÞ
12

KðsÞ ;
(20)

with the determinants

KðsÞ ¼ AðsÞ
11A

ðsÞ
22 � ½AðsÞ

12 �2; s ¼ 0; 1: (21)

In G�1 we have four sources of poles, namely, the

operators in the denominators below Pð2Þ
TT and Pð0Þ

AA and

the determinants KðsÞ for s ¼ 0, 1. We must determine
the parameters of our model such that we only have one
massive physical pole coming from the denominator below

Pð2Þ
TT . The no-pole condition in the denominator of Pð0Þ

AA

requires

p1 � p2 ¼ 0: (22)

In the operator below Pð2Þ
TT we have a massive particle with

m2 ¼ �dþ=pþ. From the two-point amplitude saturated
with external sources T�� we can calculate the residue at

k2 ! �m2, whose imaginary part is given in momentum
space by

I�m2 ¼ = lim
k2!�m2

ðk2 þm2Þ
�
� i

2

�
T�
��ðkÞ

� ½G�1ðk;�kÞ�����T��ðkÞ
¼ 1

pþ
T�
��ðkÞ½Pð2Þ

TT�����T��ðkÞ

� 1

pþ
T�Pð2Þ

TTT: (23)

Since (see, for instance, Ref. [24]) T�Pð2Þ
TTT > 0 at

k2¼�m2, a physical particle (I�m2>0) requires pþ > 0.
After a dilatation e�� ! �e�� we can set without loss of

generality

pþ ¼ p1 ¼ p2 ¼ 1=2; (24)

and the mass is fixed by dþ,

dþ ¼ �m2=2: (25)

Let us now examine the consequences of the no-pole

condition on the determinants KðsÞ. From Eqs. (21) and
(13)–(18) we can write down

KðsÞ ¼ CðsÞ
2 h2 þ CðsÞ

1 hþ C0: (26)

The existence of G�1 and the absence of poles in KðsÞ
require

Cð1Þ
2 ¼ ða1 � 1=4Þða3 � 1=4Þ � ða2 � 1=2Þ2 ¼ 0; (27)

Cð1Þ
1 ¼ d�ð1� SÞ=2þm2ða2 � a1 � a3Þ=4 ¼ 0; (28)

Cð1Þ
0 ¼ �m2d�=2 � 0; (29)

Cð0Þ
2 ¼ 3ðb1 þ 1=6Þð2=3� SÞ � 3ðb2 þ 1=3Þ2=4 ¼ 0;

(30)

Cð0Þ
1 ¼ m2ðS� 1þ b2 � 4b1Þ=2þ 3cð2=3� SÞ ¼ 0;

(31)

Cð0Þ
0 ¼ m2ðm2=8� cÞ � 0: (32)

Henceforth we assume d� � 0 and c � m2=8. The seven
conditions (22), (24), (25), (27), (28), (30), and (31) still
leave three out of ten coefficients in Eq. (1) arbitrary. Part
of this redundancy is due to the following two families of
local field redefinitions:

e�� ! e�� þ a

2
���e; a � �1=2; (33)

e�� ! Ae�� þ ð1� AÞe��; A � 1=2: (34)

The restrictions a � �1=2 and A � 1=2 are needed for the
existence of the inverse transformations. The transforma-
tions (34) are dilations in the antisymmetric part of the
tensor, i.e., ðh��; B��Þ ! ðh��; ð2A� 1ÞB��Þ.
From Eqs. (33) and (34) we can fix two more coeffi-

cients such that all solutions to the no-pole conditions (27),
(28), (30), and (31) become one-parameter families. More
specifically, the transformations (33) and (34) lead to

b2 ! b2 þ aðSþ 2b2Þ; (35)

c ! cþ 4aðaþ 1Þðc�m2=8Þ; (36)

b1!b1þa½ðaþ1Þð4b1þ1=2Þ�a=4S�ðaþ1=2Þb2�;
(37)

a2 ! a2 þ 2Að1� AÞða1 þ a3 � a2Þ; (38)

a1 ! A2ða1 þ a3 � a2Þ þ Aða2 � 2a3Þ þ a3; (39)

a3 ! A2ða1 þ a3 � a2Þ þ Aða2 � 2a1Þ þ a1; (40)

d� ! d�ð1� 2AÞ2; p� ! p�ð1� 2AÞ2; (41)

while dþ, pþ and the constraints (27), (28), (30), and (31)
are invariant. The sum S ¼ a1 þ a2 þ a3 is also invariant
under Eqs. (35)–(41), it will play an important role in
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the classification of the solutions to Eqs. (27), (28), (30),
and (31).

In the Appendix we prove that due to Eq. (34) we can
choose without loss of generality the following solution
to Eq. (27):

a2 ¼ 1=2; a3 ¼ 1=4: (42)

The solution (42) is assumed henceforth unless otherwise
stated. Due to the special role [see Eq. (35)] of the fixed
point S ¼ �2b2 we postpone fixing b2 by using Eq. (33).

In summary, any one-parameter family of solutions to
Eqs. (28), (30), and (31) with Eqs. (22), (24), (25), (29),
(32), and (42) describes one massive physical particle of
spin-2. In the next section we split those solutions into
three classes.

III. CLASSIFYING THE MASSIVE MODELS
VIA THE MASSLESS LIMIT

As we will see in this section, the massless limit, defined
in Eq. (6), of the massive spin-2 models which satisfy the
constraints (27) and (30) necessarily have local symmetries
which can help us classify the solutions to the constraints
(28), (30), and (31).

First, it is clear from Eq. (11) and the algebra (12) that
there can only be spin-1 and spin-0 local symmetries of
Eq. (1). Moreover, since each of the sets of operators

fPð0Þ
AAg,fPð1Þ

IJ g and fPð0Þ
KLg, with ðK;LÞ � ðA; AÞ, form subal-

gebras of the algebra (12), we can write down the most
general symmetry transformation of e�� as follows:

�e�� ¼ �ð0Þ
AAe�� þ �ð0Þe�� þ �ð1Þe��; (43)

where

�ð0Þ
AAe�� ¼ E½Pð0Þ

AA������
��; (44)

�ð0Þe��¼½APð0Þ
TTþBPð0Þ

WWþC
ffiffiffi
3

p ðPð0Þ
TWþPð0Þ

WTÞ������
��;

(45)

�ð1Þe�� ¼ ½ ~APð1Þ
SS þ ~BPð1Þ

AA þ ~CðPð1Þ
AS þ Pð1Þ

SAÞ������
��:

(46)

The parameter ���ðxÞ is an arbitrary rank-2 tensor while

A, B, C, ~A, ~B, ~C, E are arbitrary real constants. Due to the

fact that PðsÞ
IJ� is independent of PðrÞ

KL� unless ðI; J; sÞ ¼
ðK;L; rÞ we have from �SG ¼ 2

R
d4xe��G

�����e�� ¼ 0

[with ða2; a3Þ being arbitrary] the following set of
equations:

ðb1 þ 1=6ÞAþ ðb1 � b2=2ÞC ¼ 0; (47)

ðb1 � b2=2ÞAþ ðb1 � b2 � Sþ 1=2ÞC ¼ 0; (48)

ðb1 � b2 � Sþ 1=2ÞBþ 3ðb1 � b2=2ÞC ¼ 0; (49)

ðb1 � b2=2ÞBþ 3ðb1 þ 1=6ÞC ¼ 0; (50)

ð1� SÞ ~Aþ ða1 � a3Þ ~C ¼ 0; (51)

ða1 � a3Þ ~Aþ ða2 � a1 � a3Þ ~C ¼ 0; (52)

ða2 � a1 � a3Þ ~Bþ ða1 � a3Þ ~C ¼ 0; (53)

ða1 � a3Þ ~Bþ ð1� SÞ ~C ¼ 0; (54)

d�E ¼ 0: (55)

For future purposes we note that if we use Eqs. (42) and
(51)–(54) become equivalent to

ðS� 1Þð ~A� ~CÞ ¼ 0; ðS� 1Þð ~B� ~CÞ ¼ 0: (56)

In order for Eqs. (47)–(50) to have a nontrivial solution
for the pairs ðA;CÞ and ðB;CÞ a determinant must be zero.
It turns out that such a determinant is exactly the constraint
(30). Likewise, a nontrivial solution for Eqs. (51)–(54) is
warranted by the constraint (27). Therefore, the absence of
spin-0 and spin-1 poles in the propagator requires the
existence of both spin-0 and spin-1 local symmetries in
the corresponding massless theory. This is of course analo-
gous to the massive spin-1 Maxwell-Proca theory. The
Maxwell term, invariant under the usual spin-0 U(1)
gauge symmetry, is singled out as the unique massless
term by requiring the nonpropagation of the scalar
mode @�A�.

Regarding Eq. (55), since in the massless limit
d� ! 0, the constant E is left arbitrary. Consequently,
the derivative terms of Eq. (1) are invariant under the
following transverse antisymmetric shifts (after redefining
��� ! h���=E):

�ð0Þ
AAe�� ¼ ½Pð0Þ

AA�����h��� ¼ @��½���� � �T
��; (57)

where @��T
�� ¼ 0 and

�½���� ¼ @��½��� � @��½��� � @��½���: (58)

The symmetry (57) is a consequence of the fact that the
derivative terms in Eq. (2) only depend upon B�� through

the derivatives @�B��; see Eqs. (2) and (22).

It is clear from Eqs. (28), (30), (31), and (56) that S ¼ 1
and S ¼ 2=3 play a special role in the parameter space of
the general model (1). From now on we split our analysis
into three classes, namely, i) S � 1; 2=3, ii) S ¼ 1, and
iii) S ¼ 2=3.

A. S � 1; 2=3

In the massive case, if S � 1 we have from Eq. (56)
~A ¼ ~B ¼ ~C. Back in Eq. (46) the spin-1 symmetry, after
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redefining � ! h�= ~A, becomes a transverse linearized
reparametrization,2

�ð1Þe�� ¼ ½Pð1Þ
SS þ Pð1Þ

AA þ Pð1Þ
AS þ Pð1Þ

SA���
��h���

¼ @�C
T
�; (59)

where CT
� ¼ @�ð��� ����Þ satisfies @�CT

� ¼ 0.

If S � 2=3 we can obtain b1 ¼ b1ðb2; SÞ from Eq. (30)
and plug it back into Eqs. (47)–(50) in order to produce
relationships between the constants A, B, C such that we
can, after some rearrangements, write down the spin-0
symmetry,

�ð0Þe�� ¼ ðx	�� � 3y!��Þðx	�� � 3y!��Þ ���

4ð2=3� SÞ
¼ ð2Sþ b2 � 1Þh���� � 2ðSþ 2b2Þ@�@��;

(60)

where the spin-0 and spin-1 projection operators !�� and

	�� respectively are defined in Eq. (A1) and x ¼ 2Sþ
b2 � 1, y ¼ b2 þ 1=2, and � ¼ hðx	�� � 3y!��Þ���=

½4ð2=3� SÞ�.
Therefore, if S � 1 and S � 2=3, the local symmetries

of the massless theory become

�e�� ¼ @�C
T
� þ ð2Sþ b2 � 1Þh����

� 2ðSþ 2b2Þ@�@��þ �T
��: (61)

The transformation (61) suggests that we split the analy-
sis further into two subcases: S ¼ �2b2 and S � �2b2. If
we plug S ¼ �2b2 back into the massive constraints (30)
and (31), recalling that b2 � �1=3 due to S � 2=3, we
must have c ¼ m2=8, which violates our hypothesis (32)
and invalidates our particle content analysis in the massive
case. Indeed, if S ¼ �2b2, with b2 � �1=2; �1=3, it can
be shown that the massive theory also contains a scalar
particle in the spectrum besides the massive spin-2 mode.
This is out of the scope of this work and S ¼ �2b2 will
no longer be considered here except in the cases where
S ¼ 1ðb2 ¼ �1=2Þ and S ¼ 2=3ðb2 ¼ �1=3Þ, which are
considered in the next subsections.

If S � �2b2 we see from Eq. (35) that we can redefine
b2 as wewish. In particular, we can fix b2 ¼ 1� 2S, which
by the way holds for all models in the literature; see
Eqs. (8)–(10). The symmetries (61) of the massless theory
become linearized reparametrizations plus transverse anti-
symmetric shifts,

�e�� ¼ @��� þ �T
��; if b2 ¼ 1� 2S: (62)

In order to figure out the particle content of the massless
theory we introduce an auxiliary vector field C� and

rewrite Eq. (2) in the massless limit (6) as

Lm!0ðSÞ ¼ ð@�h��Þ2 þ ð1� 2SÞ@�h��@�h
þ

�
1

2
� S

�
hhhþ 1

2
h��hh��

þ ð1� SÞ½C�C� þ 2C�ð@�B�� þ @�h��Þ�:
(63)

If we perform the Gaussian integral over C� we recover

our original model (2) in the massless limit. If, however,
we first integrate over B�� in the path integral we have a

functional constraint assuring that C� ¼ @�
 for some

scalar field 
. Plugging this back into Eq. (63) and

changing variables 
 ¼ ’� h followed by h�� ! ~h�� þ
ð1� SÞ’���, we have the decoupled scalar-tensor theory,

Lm!0ðSÞ ¼ LLEH½~h��� � 3ðS� 1ÞðS� 2=3Þ@�’@�’:
(64)

Here LLEH is the usual linearized Einstein-Hilbert theory
(or massless FP theory). Therefore, we have a physical
massless spin-2 particle plus a physical massless scalar
particle as far as S < 2=3 or S > 1. Otherwise, the scalar
particle becomes a ghost or disappears at S ¼ 1 or S ¼
2=3. In particular, the massive spin-2 model (S ¼ 1=2 and
b2 ¼ 0) of Ref. [23] has a healthy scalar-tensor massless
limit. Regarding the symmetry (62), since the equations of
motion of Eq. (63) imply C� ¼ �@�e��, we deduce from

Eq. (62) and C� ¼ @�
 that �
 ¼ �@ � �. Consequently,
�’ ¼ �ðhþ�Þ ¼ 0. Actually, this was the guideline
for the definition of ’ in the first place. Moreover,

from h�� ¼ ~h�� þ ð1� SÞ’��� we have �~h�� ¼
�h�� ¼ 1

2 ð@��� þ @���Þ, which confirms the symmetry

of Eq. (64) under Eq. (62). In Sec. IV we return to the
S � 1; 2=3 family with nonzero mass.

B. S¼ 1

If S ¼ 1, or equivalently a1 ¼ 1=4, we see from Eq. (28)
that d� is a free parameter and from Eqs. (30) and (31) we
have, respectively,

b1 ¼ �ð3b22 þ 2b2 þ 1Þ=4; (65)

c ¼ m2½1þ 3ð2b2 þ 1Þ2�=8: (66)

Given our constraint c � m2=8 [see Eq. (29)], we see that
b2 ¼ �1=2 plays a special role. This is also expected from
the fact that S ¼ �2b2 at this point.
We see from Eq. (56) a peculiar feature of the S ¼ 1

case, namely, ~A, ~B, ~C are arbitrary which implies a maxi-
mal spin-1 symmetry in the massless limit, i.e., we have an
independent symmetry generated by each of the operators

Pð1Þ
AA, P

ð1Þ
SS , and Pð1Þ

AS þ Pð1Þ
SA. We also have the spin-0 sym-

metries (57) and (60) with S ¼ 1. In particular, from the

symmetry generated by Pð1Þ
AA and Pð0Þ

AA and the antisymmet-
ric closure relation (A11), it is clear that we have symmetry

2The role of this symmetry for describing massless spin-2
particles has been discussed in Ref. [25] see also Ref. [26].
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under arbitrary shifts in the antisymmetric sector
(�e�� ¼ �½���) which allows us to get rid of e½��� in the

S ¼ 1 case. Moreover, since the transformations generated

by Pð1Þ
AS lie in the antisymmetric sector, which can be

gauged away, we just need to worry about Pð1Þ
SS and Pð1Þ

SA,

which give rise to

�ð1Þ
SSe�� þ �ð1Þ

SAe�� ¼ @�C
T
� þ @�C

T
�; (67)

where the transverse vector is now given by

CT
� ¼ h@�ð��� þ���Þ � 2@�ð@�@����Þ

þ @�ð��� ����Þ: (68)

Altogether, from Eqs. (60) and (67) we have the whole set
of local symmetries of the massless S ¼ 1 case given by

�e�� ¼ @��� þ @��� þ ð1þ b2Þ���h�þ�½���;
(69)

where

�� ¼ CT
� � ð1þ 2b2Þ@��: (70)

If b2 ¼ �1=2 (S ¼ �2b2) we can redefine � ! 2�=h
and write down the symmetry of the massless theory,

�e�� ¼ @�C
T
� þ @�C

T
� þ ����þ�½��� if b2 ¼ �1=2:

(71)

The above case is known as WTDIFF theory (see
Ref. [21]), due to the Weyl symmetry and transverse
(linearized) diffeomorphisms. It is the only possible
description of a massless spin-2 particle in terms of one
symmetric rank-2 tensor which differs from the usual
massless Fierz-Pauli theory (linearized Einstein-Hilbert).
It admits a nonlinear extension known as unimodular grav-
ity [21]. If we add a mass term, the theory becomes
unstable [21].

If b2 � �1=2 (S � �2b2) we can bring b2 ! �1
(b2 ¼ 1� 2S) and end up with the usual massless Fierz-
Pauli theory describing an m ¼ 0 spin-2 particle which
admits the usual massive extension with mass term
m2ðe��e

�� � e2Þ. The symmetries of the massless theory

(69) become the usual linearized diffeomorphisms plus
arbitrary antisymmetric shifts �e��¼@���þ@���þ�½���.

C. S¼ 2=3

In this case we have a1 ¼ �1=12 and from Eqs. (30) and
(31) we have b2 ¼ �1=3 and b1 ¼ �1=6 while c is a free
parameter. The peculiar feature of this case is the maximal
set of spin-0 symmetries in the massless theory with arbi-
trary A, B, C; see Eqs. (47)–(50). Since d� ! 0 in the

massless limit, each of the spin-0 operators Pð0Þ
AA, P

ð0Þ
WW , P

ð0Þ
SS ,

Pð0Þ
SW þ Pð0Þ

WS generates a symmetry. Altogether it can be

shown that those spin-0 symmetries can be written as

�e�� ¼ @��� þ ���
þ�T
��
: (72)

The massless S ¼ 2=3 theory was first analyzed in
Ref. [22] and later in Ref. [24]. It describes one massless
spin-2 particle in terms of a nonsymmetric tensor. The
massive case was studied in Ref. [24] and describes one
massive spin-2 particle. We can extend the Weyl symmetry
to the massive case for the choice c ¼ m2=8. For more
details see Refs. [22,24].

IV. A NEW FAMILY OF MASSIVE SPIN-2 MODELS

In the last section we have seen that all one-parameter
models describing one massive spin-2 particle out of a
rank-2 tensor can be classified in three classes. Given
that two of them (S ¼ 1 and S ¼ 2=3) have already
appeared in the literature, we now focus on the new family
of models defined in terms of the free parameter a1
which we call3 Lða1Þ. The new family corresponds to the
coefficients

d1 ¼ 0; d2 ¼ �m2=2; a2 ¼ 1=2; a3 ¼ 1=4;

b1 ¼ �ða1 þ 1=4Þ; b2 ¼ �2ða1 þ 1=4Þ;
c ¼ m2=2: (73)

Explicitly, from Eq. (1) we have

Lða1Þ¼a1ð@�e��Þ2þ1

2
ð@�e��Þð@�e��Þþ1

4
ð@�e��Þ2

þ
�
a1þ1

4

�
@�eð@�e�2@�e��Þ

þ1

4
e��hðe��þe��Þ�m2

2
ðe��e

���e2Þ: (74)

The equations of motion of Eq. (74) become

heð��Þ � ð2a1 þ 1=2Þ½���ðhe� @�@�e��Þ � @�@�e�
¼ @ð�@�e�Þ� þ 2a1@

�@�e�
� þ 1

2
@�@�e�

�

�m2ð���e� e��Þ: (75)

Applying @� to Eq. (75), we derive the constraint

@�e
�� ¼ @�e: (76)

By plugging back Eq. (76) into Eq. (75) the antisymmetric
part of the resulting equation leads to another constraint,

e½��� ¼ 0: (77)

From the trace of Eq. (75), and using Eqs. (76) and (77), we
derive

e ¼ 0: (78)

3Alternatively we could use the sum S ¼ a1 þ 3=4 as a free
parameter.

D. DALMAZI PHYSICAL REVIEW D 87, 125027 (2013)

125027-6



Therefore, back in Eq. (76) we have the transversality
relation

@�e
�� ¼ 0 ¼ @�e

��: (79)

Finally, Eq. (75) becomes the Klein-Gordon equation,

ðh�m2Þeð��Þ ¼ 0: (80)

In conclusion we have a massive spin-2 particle with the
correct counting of degrees of freedom for arbitrary values
of a1. If a1 ¼ 1=4 (S ¼ 1) we recover the massive FP
theory, while a1 ¼ �1=12 (S ¼ 2=3) and a1 ¼ �1=4
(S ¼ 1=2) lead to the other two models from the literature
which describe massive spin-2 particles via a rank-2 tensor
(from Refs. [23,24], respectively). Thus, the one-parameter
family Lða1Þ intersects the other two classes S ¼ 1
(b2 � �1=2) and S ¼ 2=3 at the specific points where
the corresponding free parameters of those classes become,
respectively, d� ¼ m2=2 and c ¼ m2=2. So Lða1Þ con-
tains all known models for a massive spin-2 particle.

We finish this section by commenting on the van
Dam-Veltman-Zakharov mass discontinuity for the Lða1Þ
family. Since in the massive case the only singular term of
the propagator is of the same form as the massive FP theory
(a1 independent). Disregarding terms which are not
important for the light beams’ deviation by the sun we
have for the massless limit of the massive propagator

ðG�1
a1 Þsing���� ¼ lim

m!0

2

h�m2
ðPð2Þ

SSÞ����

¼ 2

h

�
������ þ ������

2
� ������

3

�

þ � � � ; (81)

where the dots (here and in the next formula) stand for
unimportant terms for the light beams’ deviation. The
discrepancy of the deviation angle will be the same as for
the massive FP theory 	ða1Þ ¼ 	ðFPÞ ¼ ð3=4Þ	GR.

On the other hand, for the massless modelLm!0ða1Þ the
relevant piece of the propagator is given by

ðGa1Þsing���� ¼
�
2

h
Pð2Þ
SS �

4Pð0Þ
SS

hð1þ 12a1Þ þ � � �
�
����

¼ 2

h

�
������ þ ������

2

� ð1þ 4a1Þ
ð1þ 12a1Þ������

�
þ � � � : (82)

Therefore, we have the deviation angle

	m¼0ða1Þ ¼
�

16a1
1þ 12a1

�
	GR: (83)

Thus, the massless theory only reproduces the GR result in
the trivial case a1 ¼ 1=4 where Lða1Þ ¼ LLEH. However,
since 	m¼0ða1Þ continuously approaches 	GR from above

as a1 ! ð1=4Þþ we may have a1 close enough to 1=4
such that the difference 	m¼0ða1Þ � 	GR is below the
experimental error bar. So we can not discard the massless
scalar-tensor theory Lm¼0ða1Þ based on the light beams’
deviation by the sun. Recall that S ¼ a1 þ 3=4, and con-
sequently the ghost-free bounds S � 1 or S 	 2=3 contain
the region where a1 is slightly above 1=4.

V. CONCLUSION

We have started with a second-order theory for a general
rank-2 tensor with ten free parameters. Requiring that we
only have one massive spin-2 particle in the spectrum we
are left with only one free parameter up to the local field
redefinitions (33) and (34). We have proved that in the
massless limit we always have one spin-0 plus one spin-1
local symmetry. The use of spin projection and transition
operators and their algebra (see appendix A) has helped us
in splitting the one-parameter family of models into three
classes: S ¼ 1, S ¼ 2=3, and S � 1; 2=3, where S ¼ a1 þ
a2 þ a3 is invariant under the field redefinitions (33) and
(34). In the massless limit, if S ¼ 1 the local spin-1 sym-
metry is maximal while S ¼ 2=3 corresponds to a maximal
spin-0 symmetry.
In the class S ¼ 1 the coefficient d� in Eq. (1) is the free

parameter. We can get rid of the antisymmetric part of the
tensor via a local gauge symmetry and work with a purely
symmetric tensor. If S ¼ 1 and b2 � �1=2 the one-
parameter family of models is equivalent—after a field
redefinition—to the well-known massive Fierz-Pauli
theory, and thus describes a massive spin-2 particle. The
special case S ¼ 1 and b2 ¼ �1=2 is unstable [21]. Its
massless limit is invariant under linearized Weyl and lin-
earized transverse reparametrizations. It is the WTDIFF
model of Ref. [21]. It describes a massless spin-2 particle
and it is the linearized version of unimodular gravity.
We remark that here we never have the so-called TDIFF
theories which are invariant only under transverse linear-
ized reparametrizations. This follows from our primary
assumption that our massive theory only describes a physi-
cal massive spin-2 particle while in TDIFF theories there is
always a scalar particle [21].
In the class S ¼ 2=3 the coefficient c in Eq. (1) becomes

a free parameter. The derivative terms are invariant under
a linearized Weyl transformation such that the trace
e ¼ ���e�� only appears nondynamically in the mass

term. Although the trace is nonzero off shell, as long as
we remain at the quadratic level (free theory) it decouples
and plays no role. So effectively we have a traceless
(though nonsymmetric) description of a massive spin-2
particle [24]. In the massless limit we have one massless
spin-2 particle (see Ref. [22] and also Ref. [24]).
In the third class of models, S � 1; 2=3, the parameter S

itself becomes the free parameter. There is no further
restriction on S in the massive theory. It does represent a
new one-parameter family of models describing a massive
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spin-2 particle. At the point S ¼ 1=2 we recover the model
of Ref. [23]. The massive theory has the same mass dis-
continuity problem as the massive Fierz-Pauli theory and
predicts the same incorrect deviation angle of the light
beams by the sun which is independent of S. In the mass-
less limit we have a scalar-tensor theory whose unitarity
requires S 	 2=3 or S � 1. For the scalar-tensor theory the
deviation angle can be made consistent with experimental
data if S is chosen slightly above one. General relativity is
recovered at S ¼ 1.

The one-parameter families S ¼ 2=3 and S � 1; 2=3 are
ghost- and tachyon-free although we have a coupling
between the antisymmetric and symmetric parts of the
rank-2 tensor. This is contrary to the claim of Ref. [19]
that this kind of coupling will necessarily lead to ghosts. In
the specific example of antisymmetric/symmetric coupling
chosen in Ref. [19] there is in fact a ghost but it is not the
general situation as shown here and in the earlier examples
of Ref. [22] (massless case) and Refs. [23,24] (massive
cases).

Finally, an arbitrary tensor e�� can be decomposed into

a traceless symmetric field (hT��), a pure trace piece (h���)

and an antisymmetric tensor (B��). Since a massive spin-2

particle requires on shell that h ¼ 0 ¼ B��, the fields h

and B�� are auxiliary. It is well known (see, for instance,

Ref. [17]) that we cannot set h ¼ 0 ¼ B�� off shell. So the

next minimal possibility is to set only B�� ¼ 0 off shell,

which is indeed possible and corresponds to the usual
massive Fierz-Pauli theory or linearized Einstein-Hilbert
theory. In our notation it corresponds to the S ¼ 1 case
with b2 � �1=2. It was shown in Ref. [24] that the next
simplest case with h ¼ 0 and B�� � 0, both off shell, is

also possible; this is the S ¼ 2=3 case. Here we have shown
that we are allowed to keep both auxiliary fields h and B��

nonvanishing off shell (S � 1; 2=3 case) without any
inconsistency as far as we deal with the free theory.
Since auxiliary fields may become dynamical when we
turn on interactions and lead to troubles like incorrect
counting of degrees of freedom (loss of constraints),
ghosts, and acausality (see, e.g., Refs. [3,27] and more
recently Refs. [10–13]), it is crucial to investigate the
addition of interactions to the massive spin-2 models
with S � 1. This is now in progress.
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APPENDIX A

After defining the spin-0 and spin-1 projection operators
as, respectively,

!�� ¼ @�@�
h

; 	�� ¼ ��� �
@�@�
h

; (A1)

one can define the projection and transition operators (see,
e.g., Ref. [19]). First we present the symmetric operators

ðPð2Þ
TTÞ���� ¼ 1

2
ð	��	�� þ 	��	

�
�Þ �

	��	��
3

; (A2)

ðPð1Þ
SSÞ���� ¼ 1

2
ð	��!�

� þ 	��!
�
� þ 	��!

�
�

þ 	��!
�
�Þ; (A3)

ðPð0Þ
TTÞ���� ¼ 1

3
	��	��; ðPð0Þ

WWÞ���� ¼ !��!��;

(A4)

ðPð0Þ
TWÞ���� ¼ 1ffiffiffi

3
p 	��!��;

ðPð0Þ
WTÞ���� ¼ 1ffiffiffi

3
p !��	��:

(A5)

They satisfy the symmetric closure relation

½Pð2Þ
TT þ Pð1Þ

SS þ Pð0Þ
TT þ Pð0Þ

WW����� ¼ ������ þ ������

2
:

(A6)

The remaining antisymmetric and mixed symmetric-
antisymmetric operators are given by

ðPð1Þ
AAÞ���� ¼ 1

2
ð	��!�

� � 	��!
�
� � 	��!

�
�

þ 	��!
�
�Þ; (A7)

ðPð1Þ
SAÞ���� ¼ 1

2
ð	��!�

� þ 	��!
�
� � 	��!

�
�

� 	��!
�
�Þ; (A8)

ðPð1Þ
ASÞ���� ¼ 1

2
ð	��!�

� � 	��!
�
� þ 	��!

�
�

� 	��!
�
�Þ; (A9)

ðPð0Þ
AAÞ���� ¼ 1

2
ð	��	�� � 	��	

�
�Þ: (A10)

They satisfy the antisymmetric closure relation

½Pð1Þ
AA þ Pð0Þ

AA����� ¼ ������ � ������

2
: (A11)

Adding up Eqs. (A6) and (A11), we have

½Pð2Þ
TTþPð1Þ

SSþPð0Þ
TTþPð0Þ

WWþPð1Þ
AAþPð0Þ

AA�����¼������:

(A12)
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APPENDIX B

Here we prove, with the help of the field redefinition
(34), that we can always choose ða2; a3Þ ¼ ð1=2; 1=4Þ as a
solution of Eq. (27) without loss of generality.

It is clear from Eqs. (38)–(40) that the combination
a1 þ a3 � a2 plays a special role. It is convenient to
rewrite Eq. (27) as

ðS� 1Þða1 þ a3 � a2Þ ¼ ða1 � a3Þ2: (B1)

If a1 þ a3 � a2 ¼ 0 we must have a1 ¼ a3. Back in
Eq. (28) we have—since Eq. (29) demands d� � 0—that
S ¼ a1 þ a2 þ a3 ¼ 1. Those equations fix a2 ¼ 1=2 and

a1 ¼ a3 ¼ 1=4. Regarding the hypothesis d� � 0 we note
that, since a1 þ a3 � a2 ¼ 0 ¼ a1 � a3, the antisymmet-
ric tensor B�� only appears in the Lagrangian (2) through

the trivial term d�B��B
��. Therefore there will be no

change in the physical content of the theory if we assume
d� � 0. We conclude that if a1 þ a3 � a2 ¼ 0 we auto-
matically have ða2; a3Þ ¼ ð1=2; 1=4Þ.
On the other hand, if a1 þ a3 � a2 � 0 we can always

move a2 from any given value to a2 ¼ 1=2 via Eq. (38) by
choosing A ¼ ð2a1 � a2Þ=½2ða1 þ a3 � a2Þ� and using
Eq. (27). Back in Eq. (40) we have [again using Eq. (27)]
the new value a3 ¼ ð4a1a3 � a22Þ=½4ða1 þ a3 � a2Þ� ¼
1=4. This completes the proof of Eq. (42).
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