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We develop a framework to test the equivalence principle under conditions where the quantum aspects

of nature cannot be neglected, specifically in the context of interference phenomena with unstable

particles. We derive the nonrelativistic quantum equation that describes the evolution of the wave function

of unstable particles under the assumption of the validity of the equivalence principle and when small

deviations are assumed to occur. As an example, we study the propagation of unstable particles in a COW

experiment, and we briefly discuss the experimental implications of our formalism.
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I. MOTIVATION

The equivalence principle (EP) plays a central role in
our understanding of nature. It lies at the basis not only of
the general theory of relativity, but of the notion of inertia
itself, since the practical realization of an inertial frame is
only possible by assuming the EP. It is thus not surprising
that testing such a principle should have a tradition that is
almost as old as modern physics. Experimental programs
have sought to explore its validity for the most diverse
kinds of physical systems and conditions [1–8], ranging
from space-bound experiments to tests using antimatter
[9–12]. One of the aspects where the principle has been
least explored, perhaps due to technical difficulties, is the
quantum realm, that is, those situations where the quan-
tum/gravity interface becomes an essential aspect of the
experiment. Among the most conspicuously quantum phe-
nomena are those associated with unstable particles, and
hence the focus of this paper will be tests of the EP with
unstable quantum systems.

Among the limited instances where the quantum/gravity
interface has been explored are the well-known COW
experiments [13] and the recent cold neutron experiments
[14]. Their results, which are in accordance with our
theoretical expectations, have led to a degree of confusion
resulting from an imprecise statement of the principle one
wishes to test [15–17]. In the classical context one of the
simplest versions of the EP is the universality of free fall.
This is often stated as the independence of the acceleration
of test objects on their initial velocity, mass or composition
[18–28]; i.e., the object’s acceleration should depend only
on its location. In the quantum context it is clear that the

terms must be modified, not only because the objects
cannot have precise position and initial velocity, but
because, even in the absence of gravity, the mass of a
particle also determines how the wave packet spreads
(see also Refs. [29,30]).
A recent discussion of such issues can be found in

Ref. [31] where four broad categories of the EP are con-
sidered, two of which are suitable for applicability to the
quantum context. The difference between the two is that
one refers to a situation where the gravitational field can be
considered homogeneous (isotropic and time indepen-
dent), and the other involves deviations from that. The
version we use is the first, which can be stated as follows:
Given a physical system contained in a spacetime region
with a constant gravitational field, the description of its
behavior is equivalent to that of the same system placed in
a spacetime region where gravity is absent but subjected to
a constant acceleration of corresponding magnitude.
The exact nature of this equivalence is not always com-

pletely trivial. For instance when the physical system in
question involves interaction with an external nongravita-
tional field, as in the case of an accelerated charged parti-
cle. In those cases, one has to realize that such field cannot
be considered as contained in the specified region and the
appropriate quantum state of the field must be carefully
identified [32–37].
Returning to unstable systems, we note that one central

characteristic of such systems is that they cannot be eigen-
states of the Hamiltonian and, as such, they have an intrin-
sic energy uncertainty inversely proportional to the mean
lifetime of the system. This is reflected in the fact that
unstable particles are characterized by a complex mass
~m ¼ m� i�=2, where the imaginary part is a measure of
the particle’s inverse lifetime. Thus, testing the EP with
unstable objects amounts to exploring how gravity affects
the intrinsic energy indefiniteness of such systems. Note
that even perfectly stable systems might be in states that
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are not energy eigenstates (e.g., a free particle in a highly
localized state), and we expect gravity to affect all types
of energy uncertainties in equal fashion. However, this
expectation relies on the very principle we want to test.

The issue can be characterized at the phenomenological
level as to whether the real and imaginary parts of the mass
couple to gravity in accordance with the EP. (Note that we
are not assuming that they should couple in the same form.)
As we shall see, the question of what the precise relation-
ship should be between the couplings of gravity to the real
and imaginary parts of the mass, assuming the EP, is a
rather nontrivial one. This is particularly relevant here
because we are interested in the nonrelativistic equation
describing unstable particles in the presence of gravity
where notions such as potential energy are well defined.
We note that even in the absence of gravity it is not
completely clear how to obtain the nonrelativistic equation
describing unstable particles. In fact, straightforward ap-
proaches to this question such as using the Schrödinger
equation that results from replacing all masses by the
complex mass are problematic. One issue is that, although
the resulting equation seems Galilean invariant, the proba-
bility density is in conflict with this symmetry. This prob-
lem is closely related to Bargmann’s superselection rule
[38]. These arguments indicate that it is not possible to
simply guess how the complex mass should enter into the
gravitational potential term of the evolution equation. The
only way to determine the exact form of such a term is to
start from a trusted basic framework which is fully com-
patible with the fundamental principles we wish to explore.
Thus we assume as our stating point quantum field theory,1

and then carefully take the nonrelativistic limit. In the
process of obtaining the desired equation, we will deal
with some subtleties that could be relevant in other
contexts.

II. FORMALISM

A. Starting point

The appropriate fundamental framework for the problem
involving unstable particles is quantum field theory. In fact,
strictly speaking, unstable particles should only be consid-
ered as virtual particles characterized by a their dressed
propagator [41]. The experimental question has to be posed

in terms of the probabilities of detecting certain out-states
with corresponding localized wave packets, having pre-
pared the in-states as suitable localized wave packets. The
issue of spacetime evolution is then transformed into a
question regarding the dependence of the probability
amplitudes on the parameters describing spacetime local-
ization of those wave packets. We do not reproduce all
those arguments here and refer the reader to Ref. [41] and
subsequent modifications [42]. Instead, we start our analy-
sis with the practical conclusion of those works which
show that, to a very high degree of precision, the situations
of interest can be described by the usual relativistic wave
equation for the unstable particles with a replacement of
the mass by a complex mass ~m. For simplicity, we work
with scalar particles � and we use units where c ¼ ℏ ¼ 1,
in which case the wave equation is

0 ¼ g��r�r��þ ~m2�; (1)

where g�� is the (inverse of the) spacetime metric and r�

is its associated covariant derivative. This equation can be
written in terms of ordinary derivatives as

0 ¼ g��@�@��� g���
�
��@��þ ~m2�; (2)

where �
�
�� are the Christoffel symbols. We note that at this

level there is no ambiguity of which mass should be com-
plex because there is only one mass in Eq. (2). In order to
take the nonrelativistic limit of this equation, we first need
to restrict Eq. (2) to the framework of single particle
relativistic quantum mechanics where � is taken to be a
wave function and not a quantum field; the context where
the probabilistic interpretation of� is justified is discussed
below.
Assuming that the EP holds, we can introduce a uniform

gravitational field by using the metric of the flat spacetime
associated with a frame which has constant acceleration ~a.
Following Ref. [43], this metric can be written as

ds2 ¼ ð1þ ~a � ~xÞ2dt2 � d~x2; (3)

where the standard notation for three-dimensional vectors
and Euclidean scalar product are used. As the EP is
assumed to hold at this stage, we can replace ~a � ~x by a
uniform Newtonian gravitational potential which we de-
note by Uð ~xÞ. Note that U is dimensionless and U � 0.
With this replacement Eq. (2) can be written as

0 ¼
€�

ð1þUÞ2 � r2�� rU � r�
1þU

þ ~m2�; (4)

where the overdots on � denote time derivatives, and we
again use the Euclidean notation for the three-dimensional
gradient and Laplacian. We turn now to obtain the non-
relativistic limit of this equation.

1Unstable particles can only be formally treated in the frame-
work of quantum field theory where the field’s self-energy,
which accounts for the dressing of the particle by the interac-
tions, modifies the simple poles present in the free theory. That,
in turn, affects the wave packet propagation in two ways: The
appearance of branch cuts in the propagator, which leads to a
well known power law decay of the wave packets [39,40], and
the displacement of the simple poles into the complex plane. In
this work we restrict our attention to situations where the
nonexponential decays associated with the branch cuts can be
neglected and we focus on the poles shift which can be charac-
terized by letting the mass become complex.
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B. Nonrelativistic limit

When the particle is free and the mass is real, the non-
relativistic limit of the Klein-Gordon equation can be
studied in terms of Fourier transformations of � in the
space and time variables.2 The Fourier variables associated
with t and ~x can be interpreted as those obtained by
performing the corresponding inverse Fourier transforma-
tions. In the present case, whereU � 0 and where the mass
is complex, the situation is much more delicate. To begin
with, the gravitational potential depends on ~x so a Fourier
transform would depend on momentum derivatives. This
issue requires some care but, in principle, could be over-
come. Amore difficult problem is that the Fourier variables
are real by definition. However, when dealing with a com-
plex mass, E and/or ~p must acquire an imaginary part in
order to solve the wave equation, thus forcing us to leave
the domain of standard Fourier transforms. One possibility
is to Fourier transform our solution only with respect t or ~x,
but not both. Even this approach raises further questions,
for instance: When should we Fourier transform with
respect to t and when with respect to ~x? How can we
take the nonrelativistic limit without a standard (i.e., real)
dispersion relation? And, what is the physical meaning of
the solutions to the nonrelativistic equation?

The answer to the first question is connected with the
specific experiment one is describing. It turns out that if the
experimental situation is such that the wave function is
known at a given point ~x for all t, namely, if it is described
in terms of boundary conditions, then it is convenient to
Fourier transform with respect to time, namely,

�ðt; ~xÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
Z

dEe�iEt’Eð ~xÞ; (5)

where, E is real and is integrated from �1 to 1. The
important point is that, being real, E can be interpreted as
the energy. On the other hand, when initial conditions are
given, i.e., when the wave function is known everywhere in
space at a particular time t, it is convenient to use a Fourier
transform with respect to ~x, and then ~p, which is real, can
be thought as the momentum. Note that situations that are
not associated with either of these experimental conditions
are probably best treated with a different method. In what
follows we consider the case where the wave function
information is presented in the form of boundary condi-
tions. If we were instead interested in experiments charac-
terized in terms of initial conditions the corresponding
nonrelativistic equation can be obtained mutatis mutandis.
We should emphasize that there is no reason to expect that
the nonrelativistic equations obtained in both cases coin-
cide, as we now discuss.

In order to obtain the nonrelativistic limit of Eq. (4)
without an explicit dispersion relation, we must first under-
stand what is the meaning of a limit of a differential
equation. We address this question by identifying a differ-
ential equation with the space of all of its solutions S. Next,
we note that a limiting procedure, such as the one we must
confront, only makes sense in connection with a selection
of a particular subset A � S which characterizes the
regime we are interested in. Assuming one has made an
adequate selection of A, we refer to the limiting equation as
the equation whose space of solutions coincides with A at a
certain predetermined degree of accuracy. Clearly, a differ-
ent selection of A would generically lead to a different
limiting equation. Moreover, due to the fact that a finite
degree of accuracy is involved, there would be, in princi-
ple, various equations that satisfy the above requirement.
Thus, in general, there would be no equation that could be
considered as the unique limit of the original equation.
Having clarified our approach to this issue, we now

proceed to characterize the subset of nonrelativistic solu-
tions corresponding to an experiment with unstable parti-
cles, in terms of the appropriate boundary conditions. In
order to do so, we first need to find the full set of solutions.
This is done by requiring �, as given in Eq. (5), to be a
solution of Eq. (4), which implies

0 ¼ 1ffiffiffiffiffiffiffi
2�

p
Z

dEe�iEt

��~k2E � ~m2

ð1þUÞ2 ’E � r2’E

� rU � r’E

1þU
þ ~m2’E

�
; (6)

where, we have defined

~k 2
E � E2 � ~m2: (7)

It follows that the Eq. (6) is satisfied, if and only if

~k 2
E’E ¼ �ð1þUÞ2r2’E � ð1þUÞrU � r’E

þ ~m2ð2UþU2Þ’E: (8)

Thus, a generic solution of Eq. (4) has the form of Eq. (5)
with ’E satisfying Eq. (8).
We define the nonrelativistic solutions as the subset

characterized by the fact that ’E has support when E is
in the interval [m, mþ K], where K � m. Again, the
nonrelativistic differential equation we are looking for is
defined as an equation whose solution space coincides with
the space of these nonrelativistic solutions; we now turn

to find this equation. Let kE be the real part of ~kE. The

condition that E is real translates to the fact that E2 ¼
~m2 þ ~k2E is real, which in turn implies that the imaginary

part of ~kE must be m�=2kE. Taking this into account, we
can write

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 þ ~k2E

q
¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2E

m2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

4k2E

s
: (9)

2The nonrelativistic limit of the Klein-Gordon equation with
real mass in noninertial frames presents some additional subtle-
ties which are discussed in Ref. [44].
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Writing E in this form allows us to show that the assump-
tion that it is contained in the interval defined by the
nonrelativistic limit is equivalent to the conditions

1 � k2E
m2

� �2

4k2E
: (10)

Note that in this step we separate its real part, m, from ~m.
As we shall see, this separation is what lies behind the
asymmetry between the real and imaginary parts of ~m in
the nonrelativistic equation, an asymmetry which is not
present in Eq. (4). Also observe that k2E=m

2 and �2=k2E are
real and dimensionless. With this in mind, it is justified to
expand Eq. (9), yielding

E

m
� 1þ k2E

2m2
� �2

8k2E
¼ ~m

m
þ

~k2E
2m2

; (11)

where in the first step we neglect terms of order k4E=m
4,

�4=k4E and ðk2E=m2Þð�2=k2EÞ ¼ �2=m2, and in the second

step we reinsert ~m and ~kE.
In order to find the equation that generates the non-

relativistic solutions we calculate

i@t�¼ 1ffiffiffiffiffiffiffi
2�

p
Z
dEEe�iEt’E¼ 1ffiffiffiffiffiffiffi

2�
p

Z
dE

�
~mþ

~k2E
2m

�
e�iEt’E;

(12)

where in the last step we use the fact that in the non-
relativistic regime, ’E has support in the region where

we can use Eq. (11). Using Eq. (8) we can replace ~k2E’E

by an E-independent operator acting on ’E, obtaining

i@t� ¼ 1ffiffiffiffiffiffiffi
2�

p
Z

dEe�iEt

�
~m� 1

2m
½ð1þUÞ2r2

� ð1þUÞrU � r	 þ ~m2

m

�
UþU2

2

��
’E

¼
�
~m� 1

2m
½ð1þUÞ2r2 � ð1þUÞrU � r	

þ ~m2

m

�
UþU2

2

��
�; (13)

where in the last equality we use the fact that the operator
inside the braces can be removed from the integral. The
important point is that we now have a Schrödinger equa-
tion, where the coefficients appearing in the kinetic and
potential terms are determined. The coefficient in the terms
involving spatial derivatives of the wave function is simply
the standard 1=2m, with the real part of the mass, and that
appearing in the purely potential terms turns out to be
~m2=m which is not simply proportional to either m or ~m.
Observe that, at the level of approximation we are working,
~m2=m � m� i�, which after some rearrangements
leads to

i@t� ¼
�
mþmU� 1

2m
ð1þUÞ2r2 � i�

2
� i�U

þ 1

2m
ð1þUÞrU � rþ ðm� i�ÞU

2

2

�
�: (14)

The first three terms in the right-hand side of this equation
can be identified as the rest energy, purely potential
(gravitational) energy, and (gravitationally adjusted)
kinetic energy terms. The fourth term is purely imaginary
(� is real and positive) and accounts for the particle’s
exponential decay. The fifth term involves the decay con-
stant and the Newtonian gravitational potential and it
describes the gravitational time-dilation of the decay rate,
and the last terms are higher order corrections.

C. Equivalence principle violation

The time evolution of an unstable particle in the pres-
ence of a uniform gravitational field under the assumption
that the EP holds is given by Eq. (14). Note that at this level
� appears in only two terms: as the standard imaginary part
of the mass of a free particle, and in connection with the
gravitational potential. With this equation in hand it is
now straightforward to postulate an equation that could
be used to parametrize violations of the EP by unstable
particles.
In order to phenomenologically characterize the viola-

tions of the EP by unstable particles we add to Eq. (14) a
general complex function of � and U that vanishes when
� ¼ 0 or U ¼ 0. To first order in � and U, including this
function is equivalent to adding a term�i��U where � is a
complex constant that parametrizes violations of the
EP by unstable particles (the �i factor is conventional).
In other words, the appropriate phenomenological equation
for studying possible violations of the EP by unstable
particles is

i@t� ¼
�
mþmU� 1

2m
ð1þUÞ2r2 � i�

2
� ið1þ �Þ�U

þ 1

2m
ð1þUÞrU � rþ ðm� i�ÞU

2

2

�
�; (15)

where � ¼ 0 would mean that the EP holds for unstable
particles.
We emphasize that the parameter � is purely phenome-

nological. As such, � could be determined, in a more
fundamental theory, by the details of the unstable system
(i.e., its internal degrees of freedom) and the parameters of
the underlying theory. For instance, when the unstable
particle is an atom in an excited state, the energy levels
between excited and unexcited states and the strength
interaction responsible for the decay should lead to a
particular value for �. However, these same details should
allow us to calculate �. The important point is that the
phenomenological term in Eq. (15), ��U, is assumed to
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incorporate all these aspects and we only need to keep in
mind that � varies from one system to another.

We note that the EP-violating phenomenological term,
��U, induces violations of several related symmetries.
Chief among them is Lorentz invariance, present because
the phenomenological term is introduced in a particular
frame. In this context we stress that our analysis has been
done in the framewhere the gravitational effects are simply
represented by a Newtonian potential (and where, in par-
ticular, there are no gravitomagnetic effects). However, it is
possible to look for alternative formulations where non-
trivial aspects of the gravitational environment are consid-
ered (for an example see Refs. [45–48]). As has been
shown in Ref. [49], a violation of Lorentz invariance can
lead to a EP violation. It is thus possible that the reverse
could also be true in which case unstable systems may be
good candidates for experiments searching for violations
of Lorentz invariance. Such violations could arise through
a variety of mechanisms [50,51].

Regarding the usual conservation laws, we remark that
our starting point is already an effective framework as the
degrees of freedom of the decayed products are neglected.
(This approximation is responsible for the lack of unitar-
ity in the evolution represented by the standard imaginary
part in the mass.) Thus, our analysis allows for a small
apparent violation of energy conservation associated
with the ignored degrees of freedom. On the other hand,
if one applies the corresponding transformations to both
the unstable particle wave function and the Newtonian
potential in Eq. (15), it is possible to check that our
formulation is invariant under spatial translations and
rotations. However, any spatial dependence of the exter-
nal potential would induce apparent deviations from the
momentum and angular momentum conservation of the
unstable system. Moreover, as our formalism does not
affect the diffeomorphism invariance in constant-time
hypersurfaces, our results are covariant under spatial
coordinate transformations in the same sense as in stan-
dard quantum mechanics.

D. Physical interpretation

Turning now to the question of the physical meaning
of the nonrelativistic solutions, we note that the probability
density associated with a relativistic wave function is
given by

�ðt; ~xÞ¼ i

2m
ð�
 _�� _�
�Þ

¼ 1

2�

Z
dEdE0EþE0

2m
’E’



E0e�iðE�E0Þt; (16)

where in the last step we focus on solutions that can be
written in the form of Eq. (5). The issue of when this
probability density coincides with the one obtained from
a solution to Eq. (14) à la Schrödinger is again related
to the particular experimental conditions that are being

studied. When the experiment consists of a detector placed
at a fixed spatial point ~x0 that collects data during a long
time interval (which we approximate as infinite), the
measurable quantity is

Z 1

�1
dt�ðt; ~x0Þ ¼ 1

2�

Z
dEdE0 Eþ E0

2m
’Eð ~x0Þ’


E0 ð ~x0Þ

�
Z 1

�1
dte�iðE�E0Þt

¼ 1

2�

Z
dEdE0 Eþ E0

2m
’Eð ~x0Þ’


E0 ð ~x0Þ
� 2��ðE� E0Þ

¼
Z

dE
E

m
j’Eð ~x0Þj2: (17)

In the nonrelativistic limit, j’Eð ~x0Þj2 decreases faster than
’Eð ~x0Þ as E approaches K; therefore, we can take E to its
lowest order in the nonrelativistic expansion, namely,
E ¼ m. In this case,Z 1

�1
dt�ðt; ~x0Þ¼

Z
dEj’Eð ~x0Þj2¼

Z 1

�1
dtj�ðt; ~x0Þj2; (18)

where the last step follows from inserting � as given by
Eq. (5). This fact is what ultimately allows us to interpret
the solutions of Eq. (14) as probability amplitudes in the
context of nonrelativistic quantummechanics. We note that
since � plays no role in this part of the analysis, one must
also deal with this issue when working with stable parti-
cles. The point is that there could be situations where the
relationship between the solutions of the relativistic equa-
tions and those of the corresponding limiting equation
might not be as direct as the one we have found here and
ensuring that this relationship is justified is paramount in
preventing the introduction of spurious terms. In order to
have a wave function interpretation, the derivation we
present is not only associated with the boundary conditions
described above, but also with a particular kind of mea-
surement. (See Ref. [52] for a discussion on the physical
interpretation of these conditions.)

III. EXPERIMENTAL OUTLOOK

In this section we show how the nonrelativistic Eq. (15)
can be used to make physical predictions. To that end we
calculate the propagation of a wave packet according to
this equation in the simplest interferometric experiment
sensitive to gravity, namely, a COW setting [13]. Typically,
to find the interference pattern one would evaluate the
difference of the interaction Hamiltonian integrated over
time along the two paths of the interferometer. However, in
the situation at hand concepts such as proper time along a
path are not well defined. This is not only due to the fact
that we are dealing with quantum systems, but because the
relevant states correspond to complex superpositions of
components with different energies. Moreover, the effects
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of gravity on the evolution of each component, and the
combined consequences on the full wave function, cannot
be reliably analyzed with arguments based on our classical
intuition. Thus, to be on the safe side, we make a longer
calculation, presented in Appendix A, where we study
wave packet propagation in the COW setting3 by imposing
flux conservation in each beam splitter and mirror.

In Fig. 1 we present the probability PðLÞ of detecting a
particle in a COWexperiment, over a long time interval, as
a function of the tilt angle � between the COW apparatus
and the local gravitational acceleration. We consider
Gaussian energy wave packets centered around E0 whose

width, �E, is such that �E � E0. Several values of the
real and imaginary parts of � are used, which are respec-
tively denoted by �R and �I, and we take the initial velocity
and the size of the experimental setting as in the original
COW experiment [13]. We also assume that the particle’s
mass coincides with the mass of the neutrons but, for
illustrative purposes, we take � to be much greater than
the corresponding value for neutrons.
As shown in Appendix A, PðLÞ can be written as

PðLÞ ¼
Z

e�	2

2 ðe�
uð	Þ þ e�
lð	Þ þ 2e��ð	Þ cos’ð	ÞÞd	:
(19)

In the particular experimental setup we study, the terms
containing �R in
u;l and � are suppressed by v2

0Uu;l which

is of order of 10�28, while the imaginary part of �, appears
suppressed by a factor �=m that is of order of 10�20.
Therefore, � has to be large in order to be noticeable in
the probability density plots. Moreover, the real part of �
enters only in 
u;l and �, affecting only the exponential

decaying factors. This is reflected in top plots in Fig. 1 as
the dependence of the peak heights in �R. On the other
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FIG. 1 (color online). The probability PðLÞ as a function of � for particles with initial velocity v0 ¼ 300 m=s, massm ¼ 939:6 MeV
and decay constant � ¼ 1:5� 104 s�1 in a COW configuration with length and height L ¼ h ¼ 3:5� 10�2 m. In all the plots, the
solid (black) line corresponds to the case where � ¼ 0. In the top plots �I ¼ 0 and the (blue) continuous, (magenta) dashed, (yellow)
dotted and (green) dot-dashed lines correspond to �R ¼ 0, 1016, 5� 1016 and 1017, respectively. In the bottom plots the
phenomenological parameters we use are �R ¼ 0 and �I ¼ 0, 1017, 5� 1017 and 1018 which are, respectively, used for the (blue)
continuous, (magenta) dashed, (yellow) dotted and (green) dot-dashed lines. The plots on the right show, in greater detail, a portion of
the corresponding plots on the left.

3In Appendix B we consider two limit cases: plane waves and
extremely localized wave packets. In the first case we recover the
usual plane wave COW interference multiplied by an exponen-
tial decay. For the second case the interference term contribution
to the probability vanishes as the wave packet localization
grows. This effect is caused by the relative delay of the wave
packets traveling in the two interferometer’s paths. Incidentally,
this result also suggests that the loss of contrast as the tilt angle
of the COW interferometer increases reported in Ref. [53] could
be, at least in part, due to difference in arrival times of the finite-
size wave packets.
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hand, the imaginary part of � only shows up in the phase ’
allowing a shift in the probability peaks position, as can
also be observed in Fig. 1.

From this analysis it seems that, even for extremely large
values of �, it would be difficult to detect its presence,
particularly since COW-like interferometers have an accu-
racy of the order of 1% [54]. Nevertheless, the nontrivial
dependence of PðLÞ with respect to � suggests that one
could devise experiments that are more sensitive to the
particular effects related with �. One interesting idea is to
use the techniques developed in the atomic interference
experiments of Refs. [55,56] where a remarkable accuracy
of three parts in 109 has been achieved.

An other possibility is to adapt experiments of the sort
envisioned in Ref. [57] for our purposes. Consider a tran-
sition from an excited state to a ground state separated by
an energy �E. Under appropriate conditions the transition
matrix element could acquire a phase �=�E, where � is the
width of the transition. For 181 m

74 W (T1=2 ¼ 14 �s; �E ¼
0:37 keV) we find �=�E � 10�13, which is comparable to
the sensitivity of experiments considered in Ref. [57]. Of
course, new technologies would be required to deal with
states having such short lifetimes. However, given the rapid
advances that have been achieved in recent years, such
experiments may be feasible in the foreseeable future.

We want to remark that in our derivation there is no
restriction on the type of unstable particles that could be
used. This fact allows us to consider any unstable particle
ranging from elementary particles and hadrons to atoms in
excited states and including radioactive nuclei. Still, the
experimental setup could restrict the type of particles. For
instance, if the time it takes the particle to traverse the
interferometer is much larger than the particles lifetime,
most particles will not survive the journey and will not
contribute to the interference pattern, while, on the other
hand, if the lifetime is much larger than the traveling time,
the particles will behave mostly like stable particles.

IV. CONCLUSIONS

In summary, we have obtained in Eq. (14) the
Schrödinger equation describing unstable particles in the
presence of gravity by assuming that the EP is valid.
In Eq. (15) we have proposed a natural extension of
Eq. (14), which suggests how to parametrize a class of
possible violations of the EP by unstable particles. In doing
so, it was imperative to prevent the introduction, through
the formalism itself, of aspects that might be mistakenly
identified as violations of the principle that we want to test.
This task was achieved by carefully taking the nonrelativ-
istic limit of the Klein-Gordon equation for particles with
complex mass as seen from a uniformly accelerated
frame. As it can be seen in Eq. (14), even in the absence
of EP violation, the real and imaginary parts of the mass do
not couple to the Newtonian potential in the same way,
which is a remarkable consequence of our formalism.

Additionally, our derivation indicates limitations in the
class of experiments where our treatment would be valid,
and also suggests the path to describe other conceivable
experiments.
Regarding the experimental perspectives of our model,

we have presented detailed predictions appropriate for a
COW-type experiment, along with definite signals to be
searched for. At first sight it seems that the sensitivity of
current interferometry experiments would not be sufficient
to look for significant bounds for EP violations by unstable
particles. However, there are some experiments, which
may be feasible in the near future, having the sensitivity
required to set nontrivial constraints on our parameter �.
We also want to emphasize that our treatment of the COW
experiment suggests an alternative resolution to the issue
of the disappearance of the interference pattern as the tilt
angle increases.
As a final thought we remark that the empirical tests

suggested by this paper lie at the heart of the interplay of
quantum mechanics and general relativity. The fact is that
unstable particles can only be described as superposition of
states, something intimately tied with the quantum aspects
of nature, while the EP is one of the pillars of our under-
standing of gravitation. Moreover, we should point out that,
at present, there is no compelling experimental evidence
that can be taken as guidance of how gravity is supposed to
interact with a system in quantum superposition. Thus, we
believe that the experiments we propose represent interest-
ing candidates fromwhich we can obtain empirical clues as
to how these two aspects of nature interact with each other.
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APPENDIX A: PROPAGATION OFWAVE PACKETS
IN A COW EXPERIMENT

In this Appendix we study the propagation of a wave
packet in a COW configuration according to Eq. (15). We
use a reference frame adapted to the experimental setup,
where x and z are the horizontal and vertical coordinates,
respectively (see Fig. 2). As the Newtonian potential is
constant in the horizontal segments of the interferometer,
the wave functions in these segments can be written as
superpositions of solutions of the form

�ðt; ~xÞ ¼ ei~px�iEt; (A1)

where E is a real constant. Note, however, that as discussed
in the text, the above expression cannot be considered as a
Fourier transform on both space and time coordinates,
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something that can be seen explicitly in the fact that ~p is
complex; it is just an ansatz for the solution of Eq. (15).
(Bear in mind that we are not deriving the nonrelativistic
equation but searching for its solutions.) By inserting our
ansatz (A1) into Eq. (15), we obtain

~p2 ¼ 2m

ð1þUÞ2
��

E�m�mU�m
U2

2
� �U�I

�

þ i�

�
Uð1þ �RÞ þ 1

2
þU2

2

��
; (A2)

where we have written � ¼ �R þ i�I, with �R, �I 2 R.
The solution of Eq. (15) in the vertical segments, �ðzÞ,
can be explicitly obtained; however, as it appears in both
arms of the interferometer, it is not relevant for this
calculation.

Our strategy is to first find how a plane-wave basis
propagates through the COW interferometer, which is later
used to form Gaussian wave packets. In order to do so, we
study the effect of each beam splitter and mirror by solving
a flux conservation equation. We start with the first beam
splitter which is located at the origin of the reference
frame. If we denote by I the initial beam, II the vertical
segment at the first beam splitter and III the beam that
passes the splitter in the original direction (see Fig. 2), then
the associated wave functions are

�Iðx; tÞ ¼ BIe
i~plx�iEt; (A3)

�IIðx; tÞ ¼ C�ðzÞe�iEt; (A4)

�IIIðx; tÞ ¼ BIIIe
i~plx�iEt; (A5)

where ~pl corresponds to ~p as defined in expression (A2)
for the Newtonian potential in the lower horizontal
segments, and BI, BIII and C are normalization constants.

At the beam splitter the flux conservation equation
implies

j ~jIj ¼ j ~jIIj þ j ~jIIIj; (A6)

where ~jI ¼ =ð�

Ir�IÞ=m, and there are corresponding

definitions for the other wave functions. (Here and sub-
sequently,< and = respectively denote the real and imagi-
nary parts of the argument.) Observe that the wave function
is discontinuous at the beam splitter; this is due to the
approximation that beams run over a line and because we
are neglecting the splitters’ width. If we assume that the
splitters divide the beams into two equal beams, we get
~jIII ¼ ~jI=2. Normalizing �Iðx; tÞ so that at the beam split-

ter j ~jIj ¼ 1, we obtain

1

2
¼ jCj2

m
=ð�
ð0Þ�0ð0ÞÞ ¼ jCj2

m
=ð�0ð0ÞÞ; (A7)

where we use Eq. (A4). In addition, we consider that
the phase in the two resulting beams is equal to the phase
in the incident beam, since the splitters add the same phase
to the two beams. Therefore, if we suppose that BI ¼ jBIj,
we have BIII ¼ BI=

ffiffiffi
2

p
and C ¼ jCj.

We first compute the evolution through the upper seg-
ment. We label IV the upper horizontal segment of the
arrangement (as shown in Fig. 2), and we assume

�IV ¼ BIVe
i~pux�iEt; (A8)

where ~pu means ~p at the upper segment. In this case the

flux conservation equation is j ~jIIj ¼ j ~jIV j, which implies

C2=ð�
ðhÞ�0ðhÞÞ ¼ jBIV j2<ð~puÞ; (A9)

where we use the fact that this mirror is located at the
point x ¼ 0, z ¼ h. Assuming that the phases of the
incoming and outgoing wave functions coincide, which is
justified since the two mirrors produce the same phase
shift, we find

�IV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ð�
ðhÞ�0ðhÞÞ
2=ð�0ð0ÞÞ<ð~puÞ

s
phaseð�ðhÞÞei~pux�iEt; (A10)

where we utilize the relations (A7) and (A9).
We now turn to the lower path. Labeling V the vertical

segment at x ¼ L, we can write

�V ¼ D�ðzÞe�iEt; (A11)

where D is a normalization constant. In this case the flux
conservation equation at the lower mirror, located at x ¼ L
and z ¼ 0, can be written as

FIG. 2. The COW setting under consideration where the
coordinate system and the labels for the different segments are
shown.
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jDj ¼ jBIIIje�=ð~plÞL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<ð~plÞ
=ð�0ð0ÞÞ

s
: (A12)

Moreover, by comparing the phase of �III and �V at this

point, we can check that the phase of D is ei<ð~plÞL.
Therefore,

�V ¼ ei~plL�iEt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2=ð�0ð0ÞÞ
s

�ðzÞ; (A13)

where we use BIII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=2<ð~plÞ

p
.

At the upper beam splitter, located at x ¼ L and
z ¼ h, we have to combine the wave functions �IV and
�V into a new horizontal wave function �E. However, we
must first consider the effect of the beam splitter over �V ,
which changes the flux direction into the x axis. Denoting
�VI ¼ BVIe

i~pux�iEt as the horizontal wave function pro-

duced from �V by the rotation, the condition j ~jV j ¼ j ~jVIj
implies

jBVIj ¼ e=ð~pu�~plÞL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

2<ð~puÞ
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

=ð�
ðhÞ�0ðhÞÞ
=ð�0ð0ÞÞ

s
: (A14)

The fact that we neglect the phase shift due to the splitter
allows us to set

BVI ¼ jBVIjei<ð~pl�~puÞLphaseð�ðhÞÞ; (A15)

and thus

�VI¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

2<ð~puÞ
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

=ð�
ðhÞ�0ðhÞÞ
=ð�0ð0ÞÞ

s

�eið~pl�~puÞLphaseð�ðhÞÞei~pux�iEt: (A16)

With this result we compute

�E ¼ �IV þ�VI ¼ �e�iEtei~puxð1þ e�i e�pLÞ; (A17)

where we define

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ð�
ðhÞ�0ðhÞÞ
2=ð�0ð0ÞÞ<ð~puÞ

s
phaseð�ðhÞÞ; (A18)

and f�p ¼ ~pu � ~pl.
We want to find how a wave packet with energy centered

at E0 propagates through this arrangement. This wave
packet can be described by the wave function

� ¼
Z FðEÞ

�
�EdE; (A19)

where FðEÞ=� is a function peaked at E0 (the factor 1=� is
conventional). If the detector is placed at x ¼ L, namely,
next to the upper beam splitter, and assuming that it
captures particles for a long time (which is approximated
as infinite), the nonrelativistic probability for the detector
at x ¼ L to capture a particle is

PðLÞ ¼
Z 1

�1
j�ðL; tÞj2dt

¼ 2�
Z

jFðEÞj2e�2=ð~puÞL½1þ e2=ð e�pÞL
þ 2 cos ð<ðf�pÞLÞe=ð e�pÞL	dE: (A20)

As in Eq. (17), we use the fact that the integral over t gives
a Dirac delta function to integrate E0. Note that the inter-
ference involves only components with the same energy, as
it is expected. We write the Gaussian wave packet centered
at E0, and having width �E ¼ 1=�t, as

FðEÞ ¼
0
@ ffiffiffiffi

2

�

s
�t

N�

1
A1=2

e�1
4�t

2ðE�E0Þ2 ; (A21)

where N� is such thatZ
jFðEÞj2dE ¼ 1: (A22)

Defining 	 ¼ �tðE� E0Þ, Eq. (A20) reads, up to a nor-
malization constant, as

PðLÞ ¼
Z

e�	2

2 ðe�
u þ e�
l þ 2e�� cos’Þd	; (A23)

where we define


l;u ¼ 2=ð~pl;uÞL; (A24)

� ¼ =ð~pl þ ~puÞL; (A25)

’ ¼ <ðf�pÞL: (A26)

In the approximation where the wave packets are narrow,
we can work to first order in ðE� E0Þ=E0 ¼ 	=ðE0�tÞ. If
we also neglect terms quadratic in �=m and U, but retain
those terms that go like �U=m, we obtain


l;u ¼ L�

v3
0

ðUl;u þ v2
0½1þUl;uð1þ 2�RÞ	Þ

� 	L�

2v3
0E0�t

ð3Ul;u þ v2
0½1þUl;uð1þ 2�RÞ	Þ;

(A27)

� ¼ L�

2v3
0

ðhUi þ v2
0½1þ hUið1þ 2�RÞ	Þ

� 	L�

mv5
0E0�t

ð3hUi þ v2
0½1þ hUið1þ 2�RÞ	Þ; (A28)

’¼mL�U

v0

�
1þ��I

m
þv2

0

�
� 	mL�U

2v2
0E0�t

�
1þ �

m
�I�v2

0

�
:

(A29)
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In Eqs. (A27)–(A29) we have introduced the initial speed

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0=m

p
, average potential hUi ¼ ðUu þUlÞ=2 and

potential difference �U ¼ Uu �Ul. At this point it is
possible to observe that in the limit where � ¼ 0,
�E ¼ 1=�t ¼ 0 and v0 � 1, we recover the usual
expressions for a COW experiment. Using these limits
along with U ¼ gz and h ¼ h0 cos �, we find


l;u ¼ 0; (A30)

� ¼ 0; (A31)

’ ¼ mgh0L cos�

v0

� ’COW: (A32)

By inserting Eqs. (A27)–(A29) into Eq. (A23), the explicit
integral can be computed. Its full expression is too long to
be written explicitly, but it has been used to make the plots
shown in Fig. 1 of PðLÞ as a function of the angle �
between the COWapparatus and the gravitational potential
gradient, and for different values of �.

APPENDIX B: LIMITING CASES

In this Appendix we calculate the probability of detect-
ing a particle in the COW configuration of Appendix A,
where the initial energy wave packets are extremely
narrow or wide. This is done to fill the gaps left in our
previous calculation and to test if the results match our
intuition. We expect that, when the state has a well-
defined energy (and it is widely distributed in space),
the probability (A23) reduces to the typical interference
pattern between two plane waves times a suitable decay-
ing factor. On the other hand, when the initial state is
highly localized (in space), the interference pattern should
disappear as the wave packet components traveling
in the two interferometer segments do not arrive at the
detector simultaneously. In the rest of the Appendix we
focus on the interference term contribution to the proba-
bility, which is given, up to a normalization constant, by
the third term in the full detection probability (A23),
namely,

PintðLÞ ¼
Z

e�	2

2 e�� cos’d	: (B1)

1. Small energy uncertainty

This limit can be easily obtained from the last part of
Appendix A by taking �E ¼ 1=�t ! 0 in Eqs. (A28) and
(A29). We find

� ¼ L�

2v3
0

ðhUi þ v2
0½1þ hUið1þ 2�RÞ	Þ; (B2)

’ ¼ mL�U

v0

�
1þ ��I

m
þ v2

0

�
¼ ’COW

�
1þ ��I

m
þ v2

0

�
;

(B3)

which are independent of 	. Thus, it can be easily checked
that the interference term contribution to the probability
corresponds to the typical interference term between two
plane waves times a �-dependent decaying exponential, as
expected.

2. Large energy uncertainty

We define �t as the difference between the time at which
the center of the wave packets traveling along the upper
and lower arms of the interferometer arrive at the detector.
In order to determine �t we use the stationary phase
approximation; that is, given the wave packet

�iðx; tÞ ¼
Z

FðEÞei#iðx;t;EÞdE; (B4)

we define its center as the spatial point xmðtÞ, where
the amplitude of the above expression reaches its maxi-
mum. This occurs when d#i=dE around E0 is small,
since under such conditions there is constructive interfer-
ence. If we define the phases of the upper and lower wave
packet as

#l ¼ <ð~puÞx�<ðf�pÞL� Et; (B5)

#u ¼ <ð~puÞx� Et; (B6)

it is not difficult to see that at x ¼ L,

�t ¼ @

@E
ðL<ðf�pÞÞ��������E0

¼ @’

@E

��������E0

; (B7)

where in the last step we use the definition of ’ given in
Eq. (A26).
It can be explicitly checked that in the limit �E ¼

1=�t ! 1, the expressions for ’ and � take the form

2 4 6 8 10 12 14

0.4

0.2

0.2

0.4

0.6

0.8

1.0

Pint

FIG. 3 (color online). The interference term contribution to the
probability Pint as a function of� with � ¼ 0. It can be observed
that for � � 10 the probability of interference tends to zero.
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� ¼ v0�Lð1þ hUið1þ 2�RÞÞ
ffiffiffiffiffiffiffiffiffiffiffi
	

E0�t

s
; (B8)

’ ¼ �
ffiffiffi
	

p
; (B9)

where we define

� ¼ 2v2
0

v2
0 � 1� �I�=m

ffiffiffiffiffiffi
E0

�t

s
: (B10)

Thus, the interference term contribution to the probability
becomes

Pint ¼
Z

e�1
2	

2
e�� cos ð� ffiffiffi

	
p Þd	: (B11)

Observe that if �t ! 0 then � ! 1, and therefore
Eq. (B11) is the integral of a rapidly oscillating cosine
with a decreasing exponential envelope, which, as it is well
known, vanishes. Note also that � as given in Eq. (B8) is a
positive definite function and, thus, the previous argument
applies for any value of �. In order to show that the
interference pattern is erased when �t � �t, we fix
� ¼ 0 in Fig. 3 where the dependence of Pint on � is
shown. This plot shows that the interference pattern van-
ishes for large values of � which, in turn, occurs
when �t ! 0. A similar effect is found in Ref. [58] where
the loss of interference is interpreted as a measure
of both relativistic time-dilation and the complementary
principle.
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