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Diquarks with JP ¼ 0�, 1� containing a heavy (charm or bottom) quark and a light quark are

investigated using QCD Laplace sum rules. Masses are determined using appropriately constructed gauge

invariant correlation functions, including for the first time next-to-leading order perturbative contribu-

tions. The JP ¼ 0þ and 1þ charm-light diquark masses are, respectively, found to be 1:86� 0:05

and 1:87� 0:10 GeV, while those of the 0þ and 1þ bottom-light diquarks are both determined to be

5:08� 0:04 GeV. The sum rules derived for heavy-light diquarks with negative parity are poorly behaved

and do not permit unambiguous mass predictions, in agreement with previous results for negative parity

light diquarks. The scalar and axial vector heavy-light diquark masses are degenerate within uncertainty,

as expected by heavy quark symmetry considerations. Furthermore, these mass predictions are in good

agreement with masses extracted in constituent diquark models of the tetraquark candidates Xð3872Þ and
Ybð10890Þ. Thus these results provide QCD support for the interpretation of the Xð3872Þ and Ybð10890Þ as
JPC ¼ 1þþ tetraquark states composed of diquark clusters. Further implications for tetraquarks among the

heavy quarkoniumlike XYZ states are discussed.
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I. INTRODUCTION

The discovery of the Xð3872Þ by the Belle Collaboration
[1] and its subsequent confirmation by the CDF [2], D0 [3],
BABAR [4], and LHCb [5] Collaborations initiated a new
era in hadron spectroscopy. Since then, hadrons have been
found in the charmonium and bottomonium spectra that are
difficult to reconcile as conventional heavy quarkonia.
These are called heavy quarkoniumlike or XYZ states,
and a comprehensive review of the current experimental
situation is given in Ref. [6]. The Xð3872Þ exemplifies the
difficulties in interpreting these states: its mass is M ¼
3871:68� 0:17 MeV, its width is �< 1:2 MeV [6], and
the LHCb Collaboration has clearly established that its
quantum numbers are JPC ¼ 1þþ [7]. These properties
pose problems for a conventional charmonium interpreta-
tion of the Xð3872Þ [8]. Given the proximity of its mass to
that of �DD�, the Xð3872Þ has been widely interpreted as a
four-quark molecular state [9–16]. A complementary in-
terpretation is that the Xð3872Þ is a tetraquark [17–21]. In
addition to the Xð3872Þ, several XYZ states that are four-
quark candidates are discussed in Ref. [22].

Molecules and tetraquarks have very different internal
quark structures. In the molecular scenario, two color-
singlet mesons form a weakly bound conglomerate,
whereas in the tetraquark scenario a diquark and antidi-
quark form a tightly bound four-quark state. A diquark is a
strongly correlated pair of quarks within a hadron (see
Ref. [23] for a review of applications). Because single
gluon exchange leads to an attractive interaction between
quarks in a color antitriplet configuration, diquarks are
identical to antiquarks in terms of color. In Ref. [24] all

possible diquark configurations were classified, and it was
shown that due to spin interactions, the scalar is the most
strongly bound, followed by the vector. However, these
spin interactions scale as the inverse of the quark mass, and
hence scalar and vector diquarks that contain one or more
heavy quarks should be degenerate.
The tetraquark and molecular currents used in QCD sum

rule analyses are related through Fierz transformations,
leading to ambiguities in their interpretation which can
be addressed through the diquark scenario [25] (Ref. [26]
provides a review of the numerous QCD sum rule studies
of tetraquarks and molecules among the XYZ states). In
addition, the renormalization of four-quark operators is
complicated by operator mixing [27,28]. Conversely, the
renormalization of the diquark operator is multiplicative
and has been studied to two-loop order [29]. For this
reason, QCD sum rule studies of diquarks can be extended
to higher orders much more easily. The first QCD sum rule
studies of diquarks were given in Refs. [30,31], followed
by Refs. [25,32,33]. The Bethe-Salpeter [34,35], Dyson-
Schwinger [36], and effective field theory approaches [37]
have also been used to determine diquark masses.
Reference [33] used QCD sum rules to investigate heavy-
light diquarks with JP ¼ 0þ and 1þ. In this paper we will
build upon previous work by including next-to-leading
order perturbative contributions and negative parity di-
quarks in our analysis.
Diquarks are clearly not hadrons, thus their masses must

be regarded as constituent masses. Constituent diquark
models have been used to study tetraquarks among the
XYZ states. In Ref. [17] Maiani et al. interpret the
Xð3872Þ as a tetraquark composed of charm-light diquarks,
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and using its mass determine both the scalar and vector
charm-light constituent diquark masses to be 1.93 GeV.
Reference [38] points out that the Z�

c ð3895Þ, which was
very recently discovered by the BESIII [39] Collaboration
and quickly confirmed by the Belle [40] and CLEO [41]
Collaborations, was predicted in Ref. [17]. The confirma-
tion of this charged charmoniumlike state strongly sup-
ports the existence of hadrons outside the constituent quark
model. Similarly, Ali et al. [42] interpret the Ybð10890Þ
discovered by Belle [43] as a tetraquark composed of
bottom-light diquarks, determining the scalar and vector
bottom-light diquark masses to be 5.20 GeV. The charged
bottomoniumlike states Z�

b ð10610Þ and Z�
b ð10650Þ [44]

are also suggested to be tetraquarks. Important features
of the analyses in Refs. [17,42] are the use of heavy-light
diquarks whose constituent masses are extracted from fits
to tetraquark candidates and the equality of scalar and
vector heavy-light diquark masses. In this paper we seek
to determine if these heavy-light diquark masses are sup-
ported by QCD sum rule analyses, thereby providing a
QCD-based test of the heavy-light diquark model of tetra-
quark states. Because our aim is to compare our results
with the heavy-light diquark masses determined in
Refs. [17,42], our focus is on heavy-light diquarks.

The remainder of the paper is organized as follows: in
Sec. II we calculate the JP ¼ 0�, 1� heavy-light diquark
correlation functions, in Sec. III we construct and analyze
the corresponding QCD Laplace sum rules, and in Sec. IV
we make concluding remarks and discuss the phenomeno-
logical implications of our results.

II. HEAVY-LIGHT DIQUARK
CORRELATION FUNCTION

The heavy-light diquark correlation function is
defined as

�ðQ2Þ ¼ i
Z

d4xeiq�xh0jT½J�ðxÞS�!½x; 0�Jy!ð0Þ�j0i; (1)

where Q2 ¼ �q2 is the Euclidean momentum, and �, !
are color indices. The heavy-light diquark currents are

J� ¼ ����Q
T
�COq�; (2)

where C is the charge conjugation operator, T denotes the
transpose, Q is a heavy (charm or bottom) quark field, and
q is a light quark field [30,31]. The Lorentz structuresO ¼
�5, I, ��, ���5, respectively, couple to scalar (JP ¼ 0þ),
pseudoscalar (0�), axial vector (1þ), and vector (1�)
heavy-light diquarks. We denote these as S, P, A, and V,
respectively. The axial vector and vector correlation func-
tions are given by

�ðA;VÞðqÞ ¼ 1

d� 1

�
q�q�

q2
� g��

�
�ðA;VÞ

�� ðqÞ; (3)

where d is the number of spacetime dimensions. Following
Refs. [25,30–33], the diquark correlation function (1) in-
cludes a path-ordered exponential, or Schwinger string,
defined as

S�!½x; 0� ¼ P exp

�
ig

�a
�!

2

Z x

0
dz�Aa

�ðzÞ
�
; (4)

where P denotes path-ordering and g ¼ ffiffiffiffiffiffiffiffiffiffi
4��

p
is the

strong coupling. Reference [30] demonstrated that the
correlation function (1) is gauge invariant to leading order
for light quark currents. We will show that this is also true
for heavy-light diquark currents (2).
First we calculate perturbative contributions to the

heavy-light diquark correlation function, which are shown
in Fig. 1. We include Oð�Þ perturbative contributions that
have not been calculated previously. To leading order the
Schwinger string (4) generates a trace over the color in-
dices in (1), and this trace has been performed in calculat-
ing perturbative contributions. We will also consider a
higher order contribution from the Schwinger string that
is gauge dependent and should cancel the gauge depen-
dence of the perturbative contributions. Thus perturbative
contributions are calculated in a general covariant gauge in
order to verify the gauge independence of the correlation
function (1). The gluon propagator is taken to be

DAB
��ðkÞ ¼ �i	AB½Dð0Þ

��ðkÞ �Dð1Þ
��ðkÞ�;

Dð0Þ
��ðkÞ ¼ g��

k2
; Dð1Þ

��ðkÞ ¼ ð1� aÞ k�k�
k4

;
(5)

FIG. 1. Feynman diagrams representing the leading order and next-to-leading order perturbative contributions to the heavy-light
diquark correlation function (1). An insertion of the diquark current is represented by the � symbol, bold lines represent heavy quark
propagators, thin lines represent light quark propagators, and wavy lines represent gluon propagators. An additional diagram where the
light and heavy quark propagators are exchanged is not shown. These and all subsequent Feynman diagrams were created using JAXO-

DRAW [75].
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where a denotes the gauge parameter and the functions

Dð0Þ
��, Dð1Þ

�� are defined for later convenience. As in
Refs. [45,46] we calculate the entire correlation function,
rather than only the imaginary part. This approach is
essential in order to deal with gauge invariance and renor-
malization issues properly in this calculation. Results for
the loop integrals that are encountered are given in
Refs. [47–49]. The number of distinct integrals to be

calculated can be significantly reduced using the
MATHEMATICA package TARCER [50], which implements

the generalized recurrence relations developed in
Refs. [51,52]. Finally, the epsilon expansion can be per-
formed using the MATHEMATICA package HypExp [53,54].

Using the MS scheme and working in d ¼ 4þ 2� dimen-
sions, the perturbative result for each channel can be
parametrized as

�ðiÞ
pert;BðwÞ ¼

m2
B

�2

wþ 1

w2

�
b0 log ð1þ wÞ þ �

�
b1 log ð1þ wÞ þ b2log

2ð1þ wÞ þ b3Li2

�
w

1þ w

��

þ �

�

�
b4
�

log ð1þ wÞ þ b5 log ð1þ wÞLi2
�

w

1þ w

�
þ b6 log ð1þ wÞ þ b7log

2ð1þ wÞ þ b8log
3ð1þ wÞ

þ b9Li3ð�wÞ þ b10Li2

�
w

1þ w

�
þ b11Li3

�
w

1þ w

�
þ a

�
b12
�

log ð1þ wÞ þ b13 log ð1þ wÞ

þ b14log
2ð1þ wÞ þ b15Li2

�
w

1þ w

����
;

w ¼ Q2

m2
: (6)

Here the subscript B indicates bare quantities, i ¼ S, P, A,
V denotes each distinct channel, Li3 and Li2 denote the
trilogarithm and dilogarithm functions [55], and we have
omitted terms corresponding to dispersion relation sub-
traction constants. The coefficients bi are functions of w,
which are given for each channel in Table I.

Some comments must be made regarding the form of (6).
First, terms proportional to the gauge parametera have been

retained to allow comparison with contributions from the
path-ordered exponential (4), so as to ensure that the corre-
lation function (1) is gauge invariant. Second, the term b4 in
(6) is a nonlocal divergence that cannot be removed through
application of the Borel transform when the sum rules are
constructed. This term must be dealt with through renor-
malization, necessitating inclusion of the terms b1, b2,
and b3 which will lead to renormalization-induced

TABLE I. Coefficient functions bi for the bare perturbative result (6). Here Lm ¼ log ½m2

�2�.
JP 0� 1�

b0
3
4wð1þ wÞ 1

4 ð1þ wÞð2w� 1Þ
b1

3
4wð1þ wÞðLm � 2Þ 1

12 ð1þ wÞ½8� 10wþ ð6w� 3ÞLm�
b2

3
8wð1þ wÞ 1

8 ð1þ wÞð2w� 1Þ
b3 � 3

4wð1þ wÞ � 1
4 ð1þ wÞð2w� 1Þ

b4 � 3
4wð5þ wÞ � 3

2 ðw� 1Þ
b5 wð1þ wÞ 1

3 ð1þ wÞð2w� 1Þ
b6

w
24 ½273þ 87wþ 2�2ð1þ wÞ � 36ð5þ wÞLm� 1

36 ½9w2 þ 90w� 201þ �2ð2w2 þ w� 1Þ � 108ðw� 1ÞLm�
b7 � 2þ27wþ34w2þ6w3

8ð1þwÞ
13þ2w�16w2

12ð1þwÞ
b8

1
4wð1þ wÞ 1

12 ð1þ wÞð2w� 1Þ
b9

3
2wð1þ wÞ 1

2 ð1þ wÞð2w� 1Þ
b10

wð15þ20wþ8w2Þ
4ð1þwÞ

5w3þ8w2�w�9
6ð1þwÞ

b11
3
2wð1þ wÞ 1

2 ð1þ wÞð2w� 1Þ
b12

1
4wð1þ wÞ 1

12 ð1þ wÞð2w� 1Þ
b13

1
8w½4ð1þ wÞLm � 7� 9w� 1

24 ½11� 3w� 16w2 þ 4ð2w2 þ w� 1ÞLm�
b14

wð3þ4wþ2w2Þ
8ð1þwÞ

4w3þ6w2�3
24ð1þwÞ

b15 � wð1þ4wþ2w2Þ
4ð1þwÞ

1�6w2�4w3

12ð1þwÞ

HEAVY-LIGHT DIQUARK MASSES FROM QCD SUM RULES . . . PHYSICAL REVIEW D 87, 125018 (2013)

125018-3



contributions. A similar methodology was also needed in
Ref. [56]. Finally, note that (6) has a branch cut on w 2
ð�1;�1�, as it must. However, after using the package
HypExp some functions are generated that do not have this
branch structure. This anomalous branch structure is spu-
rious and is eliminated when polylogarithm identities are
used [55].

We now turn our attention to contributions from the
Schwinger string (4). Following Refs. [30,31], we define

S�!½x; 0� ¼ 	�! þ ig
�a
�!

2

Z 1

0
d
Aa

�ð
xÞx�

� g2
�a
��

2

�b
�!

2

Z 1

0
d


Z 


0
d
0:Aa

�ð
xÞ
� Ab

�ð
0xÞ:x�x� þOðg3Þ; (7)

where : : denotes normal ordering. As in [30,31] the in-
tegration path between points 0 and x in (4) has been
chosen to be a straight line.1 As mentioned earlier, the
leading order term in (7) leads to a trace over the diquark
current color indices in (1), which was done in calculating
(6). To the order that we are working, the quadratic term in
g is irrelevant because it cannot be used to form a gluon
propagator. However, the linear term leads to a nontrivial
contribution to the correlation function, which is shown in
Fig. 2. This contribution has the form

�ðiÞ
stringðQ2Þ �

Z
d4xeiq�x

Z
d4z

Z 1

0
d
x�DAB

��ð
x� zÞ . . . ;
(8)

where q is the external momentum, z denotes the location
of the quark-gluon interaction in Fig. 2, and the ellipses
indicate 
-independent terms that are not shown. The 

integration in (8) cannot be evaluated readily. In momen-
tum space the gluon propagator in (8) unavoidably leads to
terms of the form

�ðiÞ
stringðQ2Þ�

Z ddk1
ð2�Þd

Z ddk2
ð2�Þd

�
Z 1

0
d
DAB

��ðk1Þ @

@q�
Sðq�k2�
k1Þ...; (9)

where the 
 and loop integrations are coupled. Most of
these integrals can be decoupled using the scaling proper-
ties of d-dimensional momentum integrals [57], but un-
fortunately a few cannot be. However, for the gauge
dependent terms in (9) this obstacle can be circumvented.
Note that the quark propagator in (9) satisfies the identity

k1 � @

@q
Sðq� k2 � 
k1Þ ¼ � d

d

Sðq� k2 � 
k1Þ: (10)

The Dð1Þ
��ðk1Þ part of the gluon propagator (5) provides a

factor of k�1 , and hence the 
 integration in (9) can be

performed using (10). Note that this approach cannot be

used to calculate terms in (9) that correspond to theDð0Þ
��ðk1Þ

piece of the gluon propagator (5). Based upon the result of
Ref. [30] we have assumed that there is no contribution
from the Schwinger string in Landau gauge. The remaining
loop integrations can be performed using the same methods
that were used to calculate the perturbative contributions. It
should be noted that because of the bosonic nature of the
diquark currents and gauge field, the integration over 
 in
(7) must be symmetric about the point 
 ¼ 1

2 , meaning that

the gauge configurations corresponding to 
 and 1� 
 are
equivalent. Thus the 
 integration double counts and we
have introduced an overall factor of 1

2 accordingly.

In order to check the validity of the methods described,
we have used them to reproduce the result of Ref. [30],
verifying that the correlation function (1) for light diquark
currents is gauge independent to order �. Using the ap-
proach described above we have calculated the gauge
dependent contributions of the Schwinger string (7) to
the heavy-light diquark correlation function (1). We find
that these precisely cancel the gauge dependent terms b12,
b13, b14, and b15 in the perturbative contribution (6). This
verification of gauge independence emerges from the man-
ifestly gauge invariant formalism of the Schwinger string,
confirming that the heavy-light diquark correlation func-
tion (1) is suitable for use in a QCD sum rule analysis.
Now we must renormalize the bare result (6). To the

order that we are working, this can be done through renor-
malization of the heavy quark mass and the diquark cur-
rent. The one-loop expression for the renormalized quark
mass is [49]

mB ¼ Zmm; Zm ¼ 1þ �

��
: (11)

The renormalization of the scalar diquark current was
studied in Ref. [29]. A distinct benefit of using a diquark
current rather than a four quark current is that, unlike four
quark currents, the diquark current renormalizes multipli-
catively. In Ref. [29] it was shown that the renormalization
factors of the scalar diquark and meson operators are

FIG. 2. Feynman diagrams representing the contribution of the
Schwinger string to the heavy-light diquark correlation function.
An insertion of the Schwinger string operator is represented by
the 	 symbol. The dashed line is not a particle propagator.
Instead, it indicates the straight line integration path between
points 0 and x used in equation (7). An additional diagram where
the light and heavy quark propagators are exchanged is not
shown. All other notations are identical to Fig. 1.

1In Ref. [31] it was argued that any deviations from a straight
line would correspond to additional Wilson loops and hence
would not correspond to the lowest energy configuration.
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proportional at one-loop level. This relationship can be
extended to the pseudoscalar, axial vector, and vector
channels in order to determine the renormalization factors
of those diquark operators. Given our explicit demonstra-
tion of gauge independence and that the Schwinger string
contributions are zero in Landau gauge [30], we calculate
the renormalization factors in Landau gauge.2 The results
are as follows:

½JðiÞ� �R ¼ ZðiÞ
d ½JðiÞ� �B; ZðSÞ

d ¼ 1þ �

2��
;

ZðPÞ
d ¼ 1þ �

2��
; ZðAÞ

d ¼ 1; ZðVÞ
d ¼ 1:

(12)

Note that the axial vector and vector diquark operator
renormalization factors are trivial, in analogy with the
corresponding meson operators. Finally, the renormalized
perturbative result for each distinct heavy-diquark channel
can be expressed as

�ðiÞ
pertðwÞ ¼ m2

�2

wþ 1

w2

�
c0 log ð1þ wÞ þ �

�

�
c1 log ð1þ wÞ

þ c2log
2ð1þ wÞ þ c3log

3ð1þ wÞ
þ c4 log ð1þ wÞLi2

�
w

1þ w

�
þ c5Li2

�
w

1þ w

�

þ c6Li3ð�wÞ þ c7Li3

�
w

1þ w

���
: (13)

The heavy quark mass and strong coupling are implicitly
functions of the renormalization scale �, and the coeffi-
cients ci are functions of w that are given in Table II.

The imaginary part of (13) can be easily determined via
analytic continuation. The result is

Im�ðiÞ
pertðxÞ¼ m2

4�x

�
f0þ�

�

�
f1þf2 logðxÞþf3 logð1�xÞ

þf4 logðxÞlogð1�xÞþf5Li2ðxÞ

þf6 log

�
m2

�2

���
; 0<x<1; (14)

where the coefficients fi are functions of x as given in
Table III.
Now we consider contributions to the heavy-light di-

quark correlation function from the QCD condensates.
Following Ref. [30,31], we calculate these contributions
using fixed-point gauge techniques because the Schwinger
string (7) does not contribute to the condensates due to the
x�Aa

� ¼ 0 gauge condition. We note that the manifestly

gauge invariant nature of the correlation function (1) con-
taining the Schwinger string implies that the fixed-point
gauge results will be equivalent to those obtained in other
methods [58]. First we consider the contribution from the
quark condensate h �qqi, which is shown in Fig. 3. For this
contribution we find

�ðS;AÞ
�qq ðQ2Þ ¼ �2

mh �qqi
Q2 þm2

;

�ðP;VÞ
�qq ðQ2Þ ¼ ��ðS;AÞ

�qq ðQ2Þ:
(15)

When the QCD Laplace sum rules are constructed in

Sec. III, we will need to calculate the Borel transform B̂ of
(15) and all additional condensate contributions. The fol-
lowing result is useful in order to calculate Borel trans-
forms of the condensate contributions [49]

B̂

�

� ð�Q2Þk
Q2 þm2

�
¼ m2ke�m2�: (16)

TABLE II. Coefficient functions ci for the renormalized perturbative result (13). All notations are identical to those in Table I.

JP 0� 1�

c0
3
4wð1þ wÞ 1

4 ð1þ wÞð2w� 1Þ
c1

1
24w½165þ 51wþ 2�2ð1þ wÞ � 18ð5þ wÞLm� 1

36 ½9w2 þ 90w� 93þ �2ð2w2 þ w� 1Þ � 54ðw� 1ÞLm�
c2 � 2þ12wþ16w2þ3w3

8ð1þwÞ
4þ2w�7w2

12ð1þwÞ
c3

1
4wð1þ wÞ 1

12 ð1þ wÞð2w� 1Þ
c4 wð1þ wÞ 1

3 ð1þ wÞð2w� 1Þ
c5

w2ð2þ5wÞ
4ð1þwÞ

5w3�w2�w
6ð1þwÞ

c6
3
2wð1þ wÞ 1

2 ð1þ wÞð2w� 1Þ
c7

3
2wð1þ wÞ 1

2 ð1þ wÞð2w� 1Þ

TABLE III. Coefficient functions fi for the imaginary part of
the renormalized perturbative result (14).

JP 0� 1�

f0 3ð1� xÞ2 2� 3xþ x3

f1
1
2 ð17� 72xþ 55x2Þ 1

3 ð3� 33x� x2 þ 31x3Þ
f2 3� 16xþ 12x2 � 2x3 2

3 xð�7� 2xþ 4x2Þ
f3 2ðx� 4Þð1� xÞ2 � 2

3 ð1� xÞ2ð5þ 4xÞ
f4 2ð1� xÞ2 2

3 ð2� 3xþ x3Þ
f5 4ð1� xÞ2 4

3 ð2� 3xþ x3Þ
f6 �3ð1� 6xþ 5x2Þ 6xð1� x2Þ

2This is the approach that was implicitly used in Refs. [30,31].
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This result can be extended to cases where the denominator
is raised to a higher power by differentiating (16) with
respect to m2. Using this result, the quark condensate
contributions to the sum rules are given by

BðS;AÞ
�qq ðk; �Þ 
 B̂

�
½ð�Q2Þk�ðS;AÞ

�qq ðQ2Þ�
¼ �2m2kmh �qqie�m2�;

BðP;VÞ
�qq ðk; �Þ ¼ �BðS;AÞ

�qq ðk; �Þ:
(17)

Next, we determine contributions from the gluon con-
densate h�G2i ¼ h�Ga

��G
��
a i, which are shown in Fig. 4.

For these contributions we find

�ðS;PÞ
GG ðQ2Þ ¼ h�G2i

24�

1

Q2 þm2
;

�ðA;VÞ
GG ðQ2Þ ¼ h�G2i

24�

�
1

Q2
� 3

Q2 þm2

�m2

Q4
log

�
1þQ2

m2

��
: (18)

The Borel transforms of these are

BðS;PÞ
GG ðk; �Þ ¼ h�G2i

24�
m2ke�m2�;

BðA;VÞ
GG ðk; �Þ ¼ � h�G2i

8�
m2ke�m2�:

(19)

In calculating (19) for the axial vector and vector channels
we have not included the logarithmic term in (18). This

term will lead to an imaginary part and hence the gluon
condensate will have a continuum contribution in these
channels. This can be calculated an identical fashion to
(14), with the result

Im�ðA;VÞ
GG ðxÞ ¼ h�G2i

24m2
x2; 0< x < 1: (20)

The contributions of the mixed condensate h �q�Gqi ¼
hg �q �a

2 ���Ga
��qi are

�ðSÞ
�qGqðQ2Þ ¼ 1

2
mh �q�Gqi

�
m2 �Q2

ðQ2 þm2Þ3
�
;

�ðPÞ
�qGqðQ2Þ ¼ � 1

2
mh �q�Gqi

�
3m2 þQ2

ðQ2 þm2Þ3
�
;

�ðAÞ
�qGqðQ2Þ ¼ mh �q�Gqi

�
m2

ðQ2 þm2Þ3
�
;

�ðVÞ
�qGqðQ2Þ ¼ ��ðAÞ

�qGqðQ2Þ:

(21)

Note that (21) includes a term that arises from the fixed-
point gauge expansion of the vacuum expectation value
h �qðxÞqð0Þi in Fig. 3. This is separate and distinct from the
term that is represented in Fig. 5. The contributions of the
mixed condensate to the sum rules can be calculated using
(16), yielding

BðSÞ
�qGqðk;�Þ¼

1

2
mh �q�Gqim2ðk�1Þe�m2�

�½k2�2km2�þm2�ðm2��1Þ�;
BðPÞ

�qGqðk;�Þ¼�1

2
mh �q�Gqim2ðk�1Þe�m2�

�½k2�2kð1þm2�Þþm2�ð1þm2�Þ�;

BðAÞ
�qGqðk;�Þ¼

1

2
mh �q�Gqim2ðkþ1Þe�m2�

�
�2�2k�

m2
þkðk�1Þ

m4

�
;

BðVÞ
�qGqðk;�Þ¼�BðAÞ

�qGqðk;�Þ: (22)

Finally we consider the dimension-six quark conden-
sate, �h �qqi2, which arises purely from a higher order term
in the fixed-point gauge expansion of the vacuum expec-
tation value h �qðxÞqð0Þi in Fig. 3. For this we find

FIG. 3. Feynman diagrams representing the dimension-four
quark condensate mqh �qqi contribution to the heavy-light diquark
correlation function. Solid dots represent field condensates. All
other notations are identical to Fig. 1.

FIG. 4. Feynman diagrams representing the dimension-four
gluon condensate h�G2i contribution to the heavy-light diquark
correlation function. An additional diagram where the light and
heavy quark propagators are exchanged is not shown. All nota-
tions are identical to those in Fig. 3.

FIG. 5. Feynman diagram representing one of the dimension-
five mixed condensate hg �q�Gqi contributions to heavy-light
diquark correlation function. All notations are identical to Fig. 1.
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�ðSÞ
�qq�qqðQ2Þ ¼ � 16�

27
�h �qqi2

�
m4

ðQ2 þm2Þ4
�
;

�ðPÞ
�qq�qqðQ2Þ ¼ �ðSÞ

�qq�qqðQ2Þ;
�ðAÞ

�qq�qqðQ2Þ ¼ ��ðSÞ
�qq�qqðQ2Þ;

�ðVÞ
�qq�qqðQ2Þ ¼ ��ðSÞ

�qq�qqðQ2Þ;

(23)

where we have assumed vacuum saturation. The contribu-
tions of the dimension-six quark condensate to the sum
rules are given by

BðS;PÞ
�qq�qqðk; �Þ ¼ � 8�

81
�h �qqim2ðkþ2Þe�m2�

�
�3 � 3k�2

m2

þ 3kðk� 1Þ�
m4

� kðk� 1Þðk� 2Þ
m6

�
;

BðA;VÞ
�qq�qq ðk; �Þ ¼ �BðS;PÞ

�qq�qqðk; �Þ: (24)

We do not consider the dimension-six gluon condensate in
this analysis. In Sec. III we will see that the gluon conden-
sate is a subleading contribution to the heavy-light diquark
sum rules, hence we expect higher-dimensional gluon con-
densates are suppressed and can be ignored.

III. QCD LAPLACE SUM-RULE ANALYSIS

We now proceed to the QCD Laplace sum rules analysis
of JP ¼ 0�, 1� heavy-light diquarks. Refs. [59,60] are the
original papers presenting the QCD sum rules technique,
and reviews of its methodology are given in Refs. [61,62].
Using a resonance plus continuum model for the hadronic
spectral function

hadðtÞ ¼ resðtÞ þ �ðt� s0ÞIm�ðtÞ; (25)

where s0 is the continuum threshold, the Laplace sum rules
take the form

R kð�; s0Þ ¼ 1

�

Z 1

t0

tk exp ½�t��resðtÞdt; (26)

where t0 is the hadronic threshold. The left-hand side of
(26) is given by

R kð�; s0Þ 
 B̂

�
½ð�Q2Þk�ðQ2Þ� � 1

�

�
Z 1

s0

tk exp ½�t��Im�ðtÞdt: (27)

We now construct the heavy-light diquark sum rules.
Using the results obtained above for the perturbative (14),
quark condensate (17), gluon condensate (19) and (20),
mixed condensate (22), and dimension-six quark conden-
sate (24) contributions, the QCD Laplace sum rules are
given by

RðiÞ
k ð�;s0Þ¼

m2

�

Z s0=m
2

1
ðm2zÞk

�
Im�ðiÞ

pert

�
1

z

�
þIm�ðiÞ

GG

�
1

z

��
�e�m2�zdzþBðiÞ

�qqðk;�ÞþBðiÞ
GGðk;�Þ

þBðiÞ
�qGqðk;�ÞþBðiÞ

�qq�qqðk;�Þ: (28)

The mass and coupling in (28) are implicitly functions of

the renormalization scale � in the MS-scheme and renor-
malization group improvement may be implemented by
setting � ¼ 1=

ffiffiffi
�

p
[63]. In order to extract mass predic-

tions for heavy-light diquarks we utilize a single narrow
resonance model,

1

�
resðtÞ ¼ f2	ðt�M2Þ: (29)

Equation (26) then yields

R kð�; s0Þ ¼ f2M2k exp ð�M2�Þ; (30)

from which the heavy-light diquark mass M can be deter-
mined via the ratio

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1ð�; s0Þ
R0ð�; s0Þ

s
: (31)

Prior to extracting mass predictions we must discuss the
QCD parameters occurring in the sum rules. We use one-

loop MS expressions for the running coupling, charm, and
bottom quark masses,

�ð�Þ ¼ �ðMÞ
1þ A�ðMÞ

� log ð�2

M2Þ
; mð�Þ ¼ �m

�
�ð�Þ
�ð �mÞ

�
1=A

;

�m ¼ mð� ¼ mÞ: (32)

In the charm-light diquark analysis we take

M ¼ M� ¼ 1:77 GeV; �ðM�Þ ¼ 0:33� 0:01;

A ¼ Ac ¼ 25

12
; �mc ¼ 1:28� 0:03 GeV;

(33)

while in the bottom-light diquark analysis we use

M ¼ MZ ¼ 91:188 GeV; �ðMZÞ ¼ 0:1184� 0:0007;

A ¼ Ab ¼ 23

12
; �mb ¼ 4:18� 0:03 GeV: (34)

All of these parameters are taken from Ref. [6], apart from
Ac and Ab which are given in Ref. [49]. We set � ¼ 1=

ffiffiffi
�

p
in order to implement renormalization group improvement
as described above.
We now specify the values used for the QCD conden-

sates. Beginning with the quark condensate, we define

mh �qqi ¼ mð2 GeVÞ
mqð2 GeVÞmqh �qqi; (35)

where m denotes the charm or bottom quark mass and we
use the PCAC relation mqh �qqi ¼ � 1

2 f
2
�m

2
�. The numeri-

cal values are again taken from Ref. [6],
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mqð2 GeVÞ ¼ 1

2
½muð2 GeVÞ þmdð2 GeVÞ�

¼ 0:0038� 0:0006 GeV;

f� ¼ 0:093 GeV; m� ¼ 0:139 GeV;

(36)

rc ¼ mcð2 GeVÞ
mqð2 GeVÞ ¼ 305� 59;

rb ¼ mbð2 GeVÞ
mqð2 GeVÞ ¼ 1229� 210;

(37)

where the heavy quark mass at 2 GeV is determined using
(32). The mixed condensate is similarly defined as

mh �q�Gqi ¼ M2
0mh �qqi; (38)

where M2
0 ¼ ð0:8� 0:1Þ GeV2 [64] and mh �qqi is as de-

fined in (35). The gluon condensate is taken to be [65]

h�G2i ¼ ð7:5� 2:0Þ � 10�2 GeV4: (39)

Finally, the dimension-six quark condensate is

�h �qqi2 ¼ ð5:8� 0:9Þ � 10�4 GeV6; (40)

which implicitly includes deviation from ideal vacuum
saturation [66]. In condensate contributions there are addi-
tional factors of the quark mass that are not included in the
definitions (35) or (38), such as the factors of m2k in (17),
for instance. We define these masses in terms of the pole
mass following the approach of Ref. [67], utilizing the

known relationship between the pole mass and MS mass
[68–71],

m ¼ mð�Þ
�
1þ

�
4

3
� log

�
�m2

�2

��
�ð�Þ
�

�
; (41)

wheremð�Þ and �ð�Þ are determined via (32) and �m is the

one-loop MS charm or bottom quark mass.
In order to extract mass prediction for heavy-light di-

quarks using (31) we must first establish a permissible
range of values for the Borel scale � and the continuum
threshold s0. We adopt the approach developed in
Ref. [72], whereby the Hölder inequalities [73,74]

��������
Z t2

t1

fðtÞgðtÞd�
�������� �

�Z t2

t1

jfðtÞjpd�
�
1=p

�
�Z t2

t1

jgðtÞjqd�
�
1=q

;

1

p
þ 1

q
¼ 1; p; q � 1;

(42)

are used to constrain the values of � and s0. The key
observation of Ref. [72] is that because Im�ðQ2Þ is related
to a physical hadronic spectral function via duality,
Im�ðQ2Þ must be positive and hence it can serve as the
integration measure in (42). It can be shown that the sum
rules (28) must satisfy

R2ð�; s0Þ=R1ð�; s0Þ
R1ð�; s0Þ=R0ð�; s0Þ

� 1;
R3ð�; s0Þ=R2ð�; s0Þ
R2ð�; s0Þ=R1ð�; s0Þ � 1;

(43)

where the first and second inequalities come from requir-
ing thatR0ð�; s0Þ andR1ð�; s0Þ satisfy the Hölder inequal-
ities, respectively. The inequalities in (43) can be used to
set a lower bound on the Borel massMB ¼ 1=

ffiffiffi
�

p
or to set a

lower bound on the continuum threshold s0. The con-
straints set by the first inequality in (43) are more restric-
tive than those set by the second, hence we rely solely upon
the first. We fix an upper bound on MB by requiring that
continuum contributions are less than 50% of total contri-
butions to the sum rule [60],

fcontð�; s0Þ ¼ R1ð�; s0Þ=R0ð�; s0Þ
R1ð�;1Þ=R0ð�;1Þ ; (44)

and require that fcont � 0:5. Using (43) and (44) we can
define a range of MB values over which the sum rule is
considered reliable, i.e., the sum rule window. We also
require that the mass prediction Mð�; s0Þ extracted from
(31) exhibits � stability, that is,

d

d�
Mð�; s0Þ ¼ 0 (45)

within the sum rule window. However, note that the bounds
on the Borel scale that are determined using (43) and (44)
will vary depending on the value of s0. Typically the sum
rule window widens as s0 is increased. Thus we first seek a
minimum value smin

0 , which we take to be the smallest

value of s0 in whose sum rule window � stability (45) is

TABLE IV. Mass predictions and sum rule parameters for charm-light ([cq]) and bottom-light ([bq]) diquarks with positive parity.
Mmax is an upper bound on the mass, determined from s0 ! 1. The minimal value of the continuum threshold is smin

0 , the optimal

value determined by(46) is s
opt
0 , the sum rule window boundaries are Mmin

B and Mmax
B .

[Qq] JP M (GeV) Mmax (GeV) smin
0 (GeV2) Mmin

B (GeV) Mmax
B (GeV) s

opt
0 (GeV2)

[cq] 0þ 1:86� 0:05 2.02 5.0 1.2 1.6 5.0

1þ 1:87� 0:10 2.07 5.0 1.3 1.6 5.0

[bq] 0þ 5:08� 0:04 5.32 30 2.1 3.8 30

1þ 5:08� 0:04 5.32 30 2.2 3.8 30
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satisfied. If there are no values of s0 that exhibit � stability,
we consider the sum rule to be unstable. Once the mini-
mum value of s0 has been found, we determine the optimal

value sopt0 using the following criterion:

�2ðs0Þ¼
X
j

0
@ 1

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1ð�j;s0Þ
R0ð�j;s0Þ

s
�1

1
A2

; s0� smin
0 : (46)

The optimal value sopt0 is that for which (46) is minimized.

We adopt a conservative approach, where (46) is calculated
over the sum rule window corresponding to the minimal
value of s0. In some cases we can obtain an upper bound on
the mass prediction (31) by taking s0 ! 1, however in
order to extract such a bound the requirements described
above must be satisfied.

We also determine the uncertainty in our mass predic-
tions due to uncertainties in the QCD parameters. In order
of significance these are rc (37), �mc (33), �ðM�Þ (33), and
M2

0 (38) in the charm analysis, whereas in the bottom

analysis they are rb (37), �mb (33), M2
0 (38), and �ðMZÞ

(33). Uncertainties in h�G2i and �h �qqi2 are insignificant
in both cases and we have made no attempt to estimate
contributions to these uncertainties from higher loop
effects. The resulting mass predictions and uncertainties

for heavy-light diquarks with positive parity are summa-
rized in Table IV. None of the negative parity heavy-light
diquark sum rules exhibit � stability, therefore we have
been unable to extract mass predictions in these channels.
Fig. 6 shows the mass predictions for JP ¼ 0þ and 1þ
charm-light diquarks while those for bottom-light diquarks
are shown in Fig. 7.

IV. CONCLUSIONS

In this paper we have used QCD Laplace sum rules to
study heavy-light diquarks with JP ¼ 0�, 1�. Our calcu-
lations extend previous sum rule work [33] by including
higher-loop perturbative contributions which necessitate
renormalization of the diquark currents. We have success-
fully extracted mass predictions for positive parity charm-
light and bottom-light diquarks, which are summarized in
Table IV. However, the sum rules derived for negative
parity channels are poorly behaved, and do not permit
unambiguous mass predictions, similar to what was found
for light diquarks [31].
The mass predictions for the JP ¼ 0þ and 1þ heavy-

light diquarks are degenerate within uncertainty, as would
be expected by heavy-quark symmetry [17]. Our predicted
JP¼0þ and 1þ charm-light diquark masses of 1:86� 0:05

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
MB GeV

1.85

1.90

1.95

2.00

2.05

2.10

2.15
1 0 GeV

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
MB GeV

1.85

1.90

1.95

2.00

2.05

2.10

2.15
1 0 GeV

FIG. 6. Mass predictions for JP ¼ 0þ (left) and 1þ (right) charm-light diquarks. Solid lines correspond to s
opt
0 , yielding the results in

Table IV. In both plots the uppermost dashed lines correspond to s0 ! 1 which provides an upper mass bound and the middle dotted
line corresponds to s0 ¼ 6:0 GeV2.

2.0 2.5 3.0 3.5 4.0
MB GeV5.0

5.1

5.2

5.3

5.4
1 0 GeV

2.0 2.5 3.0 3.5 4.0
MB GeV5.0

5.1

5.2

5.3

5.4
1 0 GeV

FIG. 7. Mass predictions for JP ¼ 0þ (left) and 1þ (right) bottom-light diquarks. Solid lines correspond to s
opt
0 , yielding the results

in Table IV. In both plots the uppermost dashed lines correspond to s0 ! 1 and the middle dotted line corresponds to s0 ¼ 35 GeV2.
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and 1:87� 0:10 GeV are in superb agreement with the
constituent charm-light diquark mass of 1.93 GeV deter-
mined by Maiani et al. [17] from a fit to the Xð3872Þ.
Additionally, we predict both the JP ¼ 0þ and 1þ
bottom-light diquark masses to be 5:08� 0:04 GeV in
reasonable agreement with the constituent bottom-light
diquark mass of 5.20 GeV determined by Ali et al. [42]
from a fit to the Ybð10890Þ. Given the agreement between
these constituent diquark masses and our QCD-based cal-
culations, our results provide QCD support for the identi-
fication of the Xð3872Þ and Ybð10890Þ as JPC ¼ 1þþ
tetraquarks composed of diquark clusters. Furthermore,
because the constituent heavy-light diquark is such an
important input for constituent diquark models of tetra-
quarks, we interpret this agreement as indirect support for
the predictions of these models. Specifically, our results
strengthen the case for the tetraquark interpretation of the
chargedXYZ statesZ�

c ð3895Þ,Z�
b ð10610Þ, andZ�

b ð10650Þ.

In this work we have focused on heavy-light diquarks so
as to examine the constituent diquark masses determined in
Refs. [17,42]. However, the methods used in this paper
could be extended to doubly-heavy diquarks to study di-
quark clustering within other tetraquarks or within heavy
baryons.
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