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We investigate the a theorem for nonsupersymmetric gauge-Yukawa theories beyond the leading order

in perturbation theory. The exploration is first performed in a model-independent manner and then applied

to a specific relevant example. Here, a rich fixed point structure appears including the presence of a

merging phenomenon between nontrivial fixed points for which the a theorem has not been tested so far.
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I. INTRODUCTION

The recent work by Komargodski and Schwimmer [1,2]
on the a theorem has attracted much interest. The a theo-
rem is thought to be the generalization to four dimensions
of Zamolodchikov’s c theorem [3] which establishes the
irreversibility of the renormalization group (RG) flow in
two dimensions. Several extensions of the work of
Zamolodchikov to four dimensions have been proposed.
In particular, Cardy pointed to the function a given by the
integral of the trace of the energy-momentum tensor over
the four-sphere [4]. He then conjectured that a has prop-
erties similar to its two-dimensional cousin c. Cardy’s
conjecture was tested within the framework of perturbation
theory in [5–7]. It was discovered that the a function is not
monotonically decreasing along the RG flow, and an alter-
native function, denoted here by ~a, was devised to be
monotonically decreasing in perturbation theory. A nice
property of ~a is that it coincides with Cardy’s a function at
fixed points, where the � functions vanish.

Komargodski and Schwimmer suggested a nonperturba-
tive proof of the a theorem by introducing a dilatonic field
[1,2] whose scattering amplitude is related to the a func-
tion. In fact, the analyticity of the amplitude supports the
monotonicity of the ~a function (not a) along the RG flow.1

Establishing the existence of a function that is monotonic
along the RG flow can lead to relevant constraints on the
dynamics of a given gauge theory. In supersymmetry, the
existing relation between a and the R-charge [10,11] found
use in the a-maximization [12]. Using holographic meth-
ods, the a theorem could be tested and verified in the
context of supersymmetry [13,14]. The generalization, us-
ing holography, to arbitrary space-time dimensions was
explored in [15]. More recently, the relation between scale

and conformal invariance in four dimensions was eluci-
dated in the context of the a theorem [16,17].
The goal of this work is to extend the perturbative

analyses of the a theorem for nonsupersymmetric gauge
theories with fermions and gauge singlet scalars, interact-
ing via Yukawas, to the maximum known order in pertur-
bation theory. This allows us to investigate the details of
the a theorem, particularly for nonstandard fixed point
structures.
The paper is structured as follows. In Sec. II we intro-

duce the essential tools and discuss the generic expression
of the ~a function relevant for its determination to three
loops in the gauge coupling. Concrete examples are pre-
sented in Sec. III where we explicitly evaluate ~a at the
Banks-Zaks (BZ) fixed point (FP) for a gauge-Yukawa
theory to the leading and the next-to-leading order in
perturbation theory. We then discover, for a certain non
asymptotically free gauge theory, the appearance of a
perturbative UV fixed point, and at the next-to-leading
order also the appearance of another infrared (IR) fixed
point. By changing the number of matter fields we observe
the merging and disappearance of both fixed points. This
rich structure of fixed points constitutes an interesting
playground for elucidating the properties of the ~a function
in gauge theories. We conclude in Sec. IV and provide a
number of technical details in the Appendix.

II. THE a THEOREM BEYOND THE
LEADING ORDER

In four dimensions and for a general quantum field
theory the vacuum expectation value of the trace of the
energy-momentum tensor for a locally flat metric g�� reads

hT�
� i ¼ cW2ðg��Þ � aE4ðg��Þ þ � � � ; (1)

where a and c are real coefficients, E4ðg��Þ the Euler

density and Wðg��Þ the Weyl tensor. The dots represent

contributions coming from operators that can be con-
structed out of the fields defining the theory. Their contri-
bution is proportional to the � functions of their couplings.
The coefficient a is the one used in Cardy’s conjecture, and
for a free field theory it is [18]
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1The relation between the trace anomaly and the amplitude of

the three point function of the energy-momentum tensor was
already pointed out in [8,9].
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afree ¼ 1

90ð8�Þ2
�
ns þ 11

2
nf þ 62nv

�
; (2)

where ns, nf and nv are, respectively, the number of real

scalars, Weyl fermions and gauge bosons.
The change of a along the RG flow is directly related to the

underlying dynamics of the theory via the � functions. This
can be shown by exploiting the Abelian nature of the trace
anomaly which leads to the Weyl consistency conditions in
much the same manner as the well known Wess-Zumino
consistency conditions [19]. As discussed in the introduction
and following the work of Jack and Osborn [5,6], rather than
using a one uses the function ~a related to it by

~a ¼ aþWi�i; (3)

whereWi is a one-form which depends on the couplings of
the theory. The Weyl consistency conditions2 imply for ~a

@i~a ¼ ��ij�j þ ð@iWj � @jWiÞ�j; (4)

where �ij can be viewed as a metric in the space of

couplings. The positivity of the metric � is established in
perturbation theory, and therefore in this regime the func-
tion ~a is monotonic along the RG flow

�
d~a

d�
¼ �i@i~a ¼ ��ij�i�j � 0: (5)

The irreversibility of the RG flow has been conjectured to
be valid beyond perturbation theory.

In the next subsections, capitalizing on the work of Jack
and Osborn [6], we will construct ~a for gauge theories
featuring fermionic matter interacting with gauge singlet
scalar fields via Yukawa interactions to the highest known
order in perturbation theory.

A. Gauge-Yukawa theories

We consider the following Lagrangian skeleton:

L ¼ � 1

4g2
F��F

�� þ i�y
i �

�D��i þ 1

2
@��a@

��a

� ðyaij�c
i�j�a þ H:c:Þ � 1

4!
�abcd�a�b�c�d; (6)

where we dropped the gauge indices for F�� and the Weyl

fermions �i. The fermions transform according to a given
representation R of the underlying gauge group. The real
scalars � are singlets with respect to the gauge group. The
indices run over the number of matter fields. To exemplify
our results we will consider gauge theories for which the
Yukawa and quartic interactions depend each on a single
parameter as follows:

yaij � yTa
ij; �abcd � �Tabcd; (7)

where the T are tensors specified in a given theory. There
are therefore three couplings in our setup: gauge g, Yukawa
y and quartic �. We define

	g ¼ g2

ð4�Þ2 ; 	y ¼ y2

ð4�Þ2 ; 	� ¼ �

ð4�Þ2 : (8)

The generic structure of the associated � functions (�	 ¼
@	=@ ln�) reads3

�	g
¼�2	2

g½b0þb1	gþby	yþb2	
2
gþb3	g	yþb4	

2
y�;
(9)

�	y
¼ 2	y½c1	y þ c2	g þ c3	g	y þ c4	

2
g þ c5	

2
y

þ c6	y	� þ c7	
2
��; (10)

�	�
¼ d1	

2
� þ d2	�	y þ d3	

2
y: (11)

The expansion to three loops in the gauge coupling, two
loops in the Yukawa and one in the quartic coupling leads
to a consistent expression for ~a to order 	3. If the scalars
were charged under the gauge group, terms proportional to
	g	� would appear.

Having established the generic form of the � functions,
we move to determining the metric � and one-form W.
They can be found by examining the relevant Feynman
diagrams which enter the computation of the trace anom-
aly, as shown in the Appendix. We find

� ¼

�gg

	2
g
ð1þ A	g þ B1	

2
g þ B2	g	yÞ B0 0

B0
�yy

	y
ð1þ B3	y þ B4	gÞ 0

0 0 ���

0
BBB@

1
CCCA: (12)

The coefficient �gg enters at the one-loop order, A and �yy

at two loops, while ��� and the Bi’s appear only at three
loops. Similarly, the one-form W takes the form

Wg ¼ 1

	g

ðD0 þD1	g þ C1	
2
g þ C2	g	yÞ;

Wy ¼ D2 þ C3	y þ C4	g; W� ¼ D3	�:
(13)

2It is worth mentioning that the Weyl consistency conditions
used above assume that the trace of the energy-momentum
tensor vanishes when all the � functions are zero simultaneously.
Exceptions are known to exist [20] and in this case one modifies
the consistency conditions [16,17] in order to build ~a.

3The factors of 2 in the definition of the gauge and Yukawa �
functions follow from the definitions (8). One has for example
�	g

=	g ¼ 2�g=g.
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The general structure of � confirms that it is sufficient for
all our purposes to consider the Yukawa � function (10) to
two-loop order and the quartic one (11) to one-loop only.

The leading coefficients �gg, �yy and ��� are [6]

�gg ¼ dðGÞ
128�2

; �yy ¼ 1

128�2

�
1

3
Ta
ijT

a�
ij

�
;

��� ¼ 1

128�2

�
1

72
TabcdTabcd

�
;

(14)

where we used the tensors T defined in Eq. (7) and dðGÞ
denotes the dimension of the adjoint representation G of
the underlying gauge group, i.e., the number of gluons. A is
given by [6]

A ¼ 17C2ðGÞ � 10

3
NRTðRÞ; (15)

where C2ðGÞ is the quadratic Casimir of the adjoint,NR the
number of Weyl fermion in the representation R and TðRÞ
is the trace normalization satisfying TðRÞ
ab ¼ TrðRaRbÞ,
Ra being the generators of the fermions under the gauge
group. With these coefficients, the metric � is positive
definite near the origin of the coupling constant space. It
is however clear that in the absence of a theorem, the
positivity of � away from the origin is not guaranteed.
The remaining coefficients of � and W are yet to
be determined but, as we shall show, they are not
needed to determine ~a at the fixed points to the order
investigated here.

B. Power of the consistency relations and the ~a function

The system of first order differential equations in (4)
allows to derive the following conditions relating the dif-
ferent coefficients of the � functions as well as � and W:

�ggby ¼��yyc2; �yyc6 ¼ ���d3; 4�yyc7 ¼ ���d2;

2�ggb4 þ�yyðB4c1 þB3c2 þ c3Þ ¼ 2ðB0 �C2 þC4Þc1;
�ggðB2b0 þAby þ b3Þ þ 2�yyðB4c2 þ c4Þ

¼ ðB0 �C2 þC4Þc2 þ 2ðB0 þC2 �C4Þb0: (16)

The equations in the first line above can be used to either
test or determine some of the higher order coefficients of
the � functions since we know the metric factors. The
remaining equations can be used in a similar fashion.
However, given that the Bi coefficients have not been
explicitly computed we use the knowledge of the � func-
tions to deduce, for example, B3 and B4 assuming that c2
does not vanish.

For ~a to cubic order in the couplings, and using the
consistency relations above, we have

~a ¼ afree þ ~að1Þ þ ~að2Þ þ ~að3Þ þ � � � ; (17)

where afree is the free-field theory value (2), and the one-,
two- and three-loop coefficients are

~að1Þ ¼ �2�ggb0	g; (18)

~að2Þ ¼ ��ggðb1 þ Ab0Þ	2
g � 2�ggby	g	y þ �yyc1	

2
y;

(19)

~að3Þ ¼ ��gg

�
2

3
ðb2 þ Ab1Þ	3

g þ ðb3 þ AbyÞ	2
g	y

þ 2b4	g	
2
y þ 1

3

c1
c2

�
4b4 � c1

c2
ðb3 þ AbyÞ

�
	3
y

�

þ �yy

�
2

3

�
c5 � c1

c2
c3 þ

�
c1
c2

�
2
c4

�
	3
y þ c6	

2
y	�

þ 2c7	y	
2
�

�
þ 1

3
���a1	

3
� þ

�	g

	2
g

fð	3
i Þ

þ �2
	y

	y

B0 � C2 þ C4

4c2
; (20)

where we defined

fð	3
i Þ ¼ �gg

�
B1

3
	3
g þ B2

2
	2
g	y � B2

6

�
c1
c2

�
2
	3
y

�

þ B0 þ C2 � C4

3

�
c1
c2

�
2
	3
y: (21)

Remarkably, the unknown coefficients Bi and Ci appear

only in the last two terms of ~að3Þ, where they are multiplied
by � functions and hence vanish at fixed points.4 This was
also observed to occur in supersymmetric theories [21].
It is instructive to calculate a to the second order using

(3) and recalling that the leading coefficients entering the
one-form W are D0 ¼ �gg, D1 ¼ 1

2A�gg, and D2 ¼ 1
2�yy

[6]. We find the simple expression

a ¼ afree þ �ggðb1	2
g þ by	g	yÞ þOð	3

i Þ; (22)

where, remarkably, the term linear in 	g, the one quadratic

in 	y as well as the term linear in A canceled out. Because

the signs of b1 and by depend on the gauge theory, a is not

generally a monotonically decreasing function along the
perturbative RG flow.

C. ~a at fixed points

We can now move to the study of the fixed points and
determine the variation of ~a between two of them. A
convenient way to search for the zeros of the system of
� functions (9)–(11) is to first solve analytically for �	�

¼
0 which permits to relate 	� to 	y, then set to zero �	y

further relating 	y to 	g, so that finally we can search for

the zeros of the following effective � function in 	g:

4We have taken the liberty of adding higher order terms in
order to rewrite the coefficients as � functions. These terms are
irrelevant when computing ~a between perturbative fixed points.
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�eff
	g

¼ �2	2
g½b0 þ beff1 	g þ beff2 	2

g�; (23)

where

beff1 ¼ b1 � c2
c1

by; (24)

beff2 ¼ b2� c2
c1

b3þ
�
c1
c2

�
2
b4�

by
c1

�
c4� c2

c1
c3þ

�
c2
c1

�
2
ceff5

�
;

(25)

with

ceff5 ¼ c5 � d3
d1

c7 � d2
2d1

�
c6 � d2

d1
c7

�0@1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4d1d3

d22

s 1
A:

(26)

At this order in perturbation theory, there can be at most two
perturbative fixed points for each sign in ceff5 , if both b0 and
beff1 are tuned to be small. An example of this is provided in
the following section. Using Eqs. (24) and (25), the differ-
ence in the function ~a—or equivalently a—between the UV
and IR fixed points can then be written as

�~aperturbative � ð~aUV � ~aIRÞperturbative
¼�2�gg

�
b0ð	UV

g �	IR
g Þ

þ 1

2
ðbeff1 þAb0Þðð	UV

g Þ2 �ð	IR
g Þ2Þ

þ 1

3
ðbeff2 þAbeff1 þBb0Þðð	UV

g Þ3 �ð	IR
g Þ3Þ

�
;

(27)

where	UV
g and	IR

g denote the values of the gauge coupling

at the UV and IR fixed point, respectively, and we defined

B � B1 � c2
c1

�
B2 þ B0

�gg

�
: (28)

This expression reduces to the case of a gauge theory
without Yukawa interactions by replacing beff1 and beff2

with b1 and b2.
Inspecting the effective � function, there is a perturba-

tive fixed point for small b0, which reads

	BZ
g ¼ � b0

beff1

þOðb20Þ: (29)

For positive b0 and negative beff1 , this is the usual Banks-
Zaks IR fixed point. The situation in which the BZ fixed
point is of UV nature is equally possible. This occurs by
reverting the signs of both b0 and beff1 . The trivial fixed
point at the origin will be in the first case an UV fixed point
and in the second an IR one. The finite change in ~a between
the UV and IR fixed points can be computed either way,
and one obtains

�~aBZ ¼ ��gg

b20
beff1

: (30)

Here the sign reflects the sign of b0, and�~a is then positive
for any physical fixed point. However, �~a can formally
become negative when the value of the coupling 	g at the

fixed point is on the unphysical negative axis.
To three-loop order in the effective � function, one can

have the two following physical zeros:

	BZ
g ¼ � beff1

2beff2

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4b0b

eff
2

ðbeff1 Þ2
s 1

A;

	BZ
g ¼ � beff1

2beff2

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4b0b

eff
2

ðbeff1 Þ2
s 1

A:
(31)

For small values of b0, the solution with negative sign
corresponds to the usual BZ fixed point, with the following
corrections:

	BZ
g ¼ � b0

beff1

�
1þ b0b

eff
2

ðbeff1 Þ2 þOðb20Þ
�
: (32)

This expression holds provided b0=ðbeff1 Þ2 is small. We
shall see below that there are cases where this is not true.
Using (32), we can compute the three-loop corrections to
the variation of ~a,

�~aBZ ¼ ��gg

b20
beff1

�
1� ðAbeff1 � 2beff2 Þ b0

3ðbeff1 Þ2
�
: (33)

We now turn our attention to the second zero 	BZ
g . The first

observation is that for a generic value of beff1 this fixed
point occurs at a nonperturbative value of the coupling.
This is what happens in general for gauge theories with
fermionic matter in a given irreducible representation of
the gauge group [22]. However, for gauge theories with
Yukawa interactions and/or multiple matter representa-
tions, the possibility that both b0 and beff1 are small exists.
An explicit example is provided below. Furthermore, when
beff2 ¼ ðbeff1 Þ2=ð4b0Þ the two fixed points merge. This phe-
nomenon can happen within the range of perturbation
theory. At the merger, one has	merger ¼ �2b0=b

eff
1 , which,

when plugged into Eq. (27), gives

�~aBZjmerger ¼ ��gg

4

3

b20
beff1

: (34)

The virtues of this expression will be studied in more detail
elsewhere [23].
Having in our hands the explicit tools, we can explore

the a theorem for gauge theories with interesting fixed
point structures.
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III. A CONCRETE EXAMPLE

We consider a SUðNcÞ gauge theory with Nf fundamen-

tal Dirac fermionsQ ¼ ðq; ~q�Þ, ‘ adjoint Weyl fermions �,
and a gauge singlet complex scalarH that transforms in the
bifundamental representation of the SUðNfÞL 	 SUðNfÞR
global symmetry of the theory. For the benefit of the reader,
the field content and the quantum symmetries of the theory
with ‘ ¼ 1 are summarized in Table I. The Lagrangian of
the theory is

L ¼ Tr

�
� 1

2
F��F�� þ i �� 6D�þ �Qi 6DQþ @�H

y@�H

þ yH �QHQ

�
� u1ðTr½HyH�Þ2 � u2TrðHyHÞ2: (35)

Tr is the trace over both color and flavor indices. D� is the

usual covariant derivative. Throughout this section we will
work with the rescaled couplings which enable a finite

Veneziano limit of the theory with ‘ fixed. That is, we let
Nc, Nf ! 1 while keeping x � Nf=Nc fixed. The appro-

priately rescaled couplings are

ag ¼ g2Nc

ð4�Þ2 ; aH ¼ y2HNc

ð4�Þ2 ;

z1 ¼
u1N

2
f

ð4�Þ2 ; z2 ¼
u2Nf

ð4�Þ2 :
(36)

This model was introduced in [24] to investigate near-
conformal dynamics, at the one-loop level, and its impact
on the spectrum of the theory with special attention to the
dilaton properties. The model was further investigated at
the two-loop level in [25]. To compute ~a, following the
previous section, we need to determine the three-loop
contribution to the gauge � function.
Using [26–31] we find in the Veneziano limit

�ag ¼ � 2

3
a2g

�
11� 2‘� 2xþ ð34� 16‘� 13xÞag þ 3x2aH þ 81x2

4
agaH � 3x2ð7þ 6xÞ

4
a2H

þ 2857þ 112x2 � xð1709� 257‘Þ � 1976‘þ 145‘2

18
a2g

�
; (37)

�aH ¼ aH

�
2ðxþ 1ÞaH � 6ag þ ð8xþ 5ÞagaH þ 20ðxþ ‘Þ � 203

6
a2g � 8xz2aH � xðxþ 12Þ

2
a2H þ 4z22

�
; (38)

�z2 ¼ 2ð2z2aH þ 4z22 � xa2HÞ: (39)

Here one can see that the double trace coupling z1 does not
participate in the running of the remaining couplings. In
addition, using (14) and (15) the metric coefficients for this
theory can be found:

�gg ¼ N2
c

27�2
; �yy ¼

N2
f

3 � 27�2
;

��� ¼ N2
f

3 � 26�2
; A ¼ 17� 10

3
ðxþ ‘Þ:

(40)

One can check that the expressions above satisfy the con-
sistency relations given in the first line of (16), and there-
fore it constitutes an independent check of the correctness
of the � functions. We now turn to the FP analysis of the
model which will reveal an interesting perturbative
structure.

A. Leading order analysis: Banks-Zaks fixed point

In order to see a physical BZ fixed point, the one-loop
coefficient of the gauge � function has to be small and the
signs of b0 and b

eff
1 have to be opposite. Therefore, our first

task is to find a region in the parameter space of the model
where the physical BZ fixed point exists. We use Eq. (24)

b0 ¼ 1

3
ð11� 2ð‘þ xÞÞ;

beff1 ¼ 1

3

�
34� 16‘� 13xþ 9x2

ðxþ 1Þ
�
:

(41)

From the asymptotic freedom (AF) boundary condition
b0 ¼ 0 we obtain that x ¼ ð11� 2‘Þ=2. Substituting this
value of x into beff1 , we have

beff1AF ¼ � 25

2
� ‘� 3ð11� 2‘Þ2

4‘� 26
; (42)

TABLE I. Field content of the example. The first three fields
are Weyl spinors in the ð12 ; 0Þ representation of the Lorentz

group. H is a complex scalar and G� is the gauge field.

Uð1ÞAF is the extra anomaly free symmetry arising due to the
presence of �.

Fields ½SUðNcÞ� SUðNfÞL SUðNfÞR Uð1ÞV Uð1ÞAF
� Adj 1 1 0 1

q h �h 1 Nf�Nc

Nc
� Nc

Nf

~q �h 1 h � Nf�Nc

Nc
� Nc

Nf

H 1 h �h 0 2Nc

Nf

G� Adj 1 1 0 0
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where the last term comes from the Yukawa interactions.
We immediately notice that for ‘� 
 0:37 the beff1AF van-
ishes. Below, we will consider the cases ‘ ¼ 1 for which
this coefficient is negative and ‘ ¼ 0 for which it is posi-
tive. In the first case we have a standard IR BZ fixed point,
and in the second we obtain a new UV BZ fixed point. It is
worth noticing that, in the absence of Yukawa interactions,
beff1AF in (42) is always negative and therefore the physical
BZ FP can only be the standard IR fixed point.

1. ‘ ¼ 1 case

In this case there exists a perturbative IR fixed point
regardless of whether we consider the presence of Yukawa
interactions.We show in Fig. 1(a) the leading order result for
the change in ~a between the Gaussian (trivial) FP and the BZ
IR one at leading order, both in the presence (dashed blue
line) and absence (solid red line) of Yukawa interactions.
Both curves cross zero at x� ¼ 9=2, when asymptotic free-
dom is lost. For x > 9=2, where b0 < 0, there is an unphys-
ical BZ UV fixed point yielding a negative�~a. The Yukawa
interactions in (42) imply jbeff1 j< jb1j, which leads to a
larger �~a in the case of the gauge theory with scalars.

2. ‘ ¼ 0 case

We now turn to the ‘ ¼ 0 case where, rather than having
a BZ IR fixed point, the theory develops a UV fixed point
when asymptotic freedom is lost, i.e., for b0 < 0. Of
course, this is possible only because of the presence of
the Yukawa interactions. In Fig. 1(b), the leading order
result for the change in ~a between the Gaussian and BZ
fixed points without Yukawa interactions is shown in red
(solid line), and the one with Yukawa interactions in blue
(dashed line). Both curves cross zero for x� ¼ 11=2 when
asymptotic freedom is lost.

B. Next-to-leading order analysis: Fixed point merger

At the next perturbative order we deal with the full
system of Eqs. (37)–(39) and from now on, we concentrate
only on the physical fixed points.

1. ‘ ¼ 1 case

We start again with the ‘ ¼ 1 theory and in Fig. 2(a) we
display the FPs structure for the model with Yukawa and
quartic interactions. We notice that at x 
 3:25 the FP
value of the gauge coupling vanishes. However, this hap-
pens in the region beyond applicability of perturbation
theory since the two remaining coupling constants are
large. In Fig. 2(b) we plot the change in the ~a function
for the next-to-leading order BZ IR fixed point and com-
pare it with the corresponding leading order results from
Fig. 1(a). As a general feature, we notice that the next-to-
leading order corrections reduce the value of �~a in the
perturbative regime. It is clear from the plots that for the
theory with Yukawa interactions perturbation theory
breaks down, when moving away from the critical value
x� ¼ 4:5, earlier with respect to the theory without Yukawa
interactions.

2. ‘ ¼ 0 case

We now turn to the ‘ ¼ 0 theory where, as discussed
above, there is no BZ IR fixed point. However, in the
asymptotically free regime there is a new physical IR
fixed point emerging at the next-to-leading order. This
non-BZ IR fixed point is present also when asymptotic
freedom is lost, i.e., for x > 5:5. In this region there is
also a BZ UV fixed point that was discussed in
Sec. III A 2. The complete FP structure is shown in
Fig. 3(a). The UV and IR fixed points merge around
x 
 5:6. In Fig. 3(b) we plot the change in the ~a function
at next-to-leading order together with the corresponding
leading order results from Fig. 1(b). We notice that �~a
becomes negative just before the merger which is incom-
patible with the a theorem. We interpret this effect as the
breakdown of the perturbative expansion since the FP
values of the couplings at the merger are quite large, as
can be seen from Fig. 3(a).
So far, all our calculations of �~a were for the flow

connecting the trivial FP at the origin of the coupling
constant space with the BZ one. However, it is relevant
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FIG. 1 (color online). (a) �~a between the Gaussian and BZ fixed points normalized to �gg at leading order for the ‘ ¼ 1 case. The
solid red (dashed blue) line corresponds to the model without (with) Yukawa interactions. In both cases the physical BZ FP is an IR
one. (b) �~a between the Gaussian and BZ fixed points normalized to �gg at leading order for the ‘ ¼ 0 case. In the absence (presence)

of Yukawa interactions, the physical BZ fixed pont is an IR (UV) one. The color code is the same as on the left panel.
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also to determine �~a for the branch connecting the two

non-trivial FPs. In the theory with ‘ ¼ 0 and x > 5:5 this is
the RG flow between the BZ UV fixed point and the non-

BZ IR one. We display the change in the ~a function in

Fig. 4(a). Of course, at the merger �~a vanishes.

3. ‘ ¼ 0:35 case: The perturbative merger

Using both ‘ and x as continuous parameters it is formally
possible to study the merging phenomenon within the per-
turbative regime. This happens around ‘ 
 0:37. Therefore
we provide an example with ‘ ¼ 0:35. The change in the ~a

IR
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FIG. 3 (color online). (a) The next-to-leading order physical FP structure for the ‘ ¼ 0 case with Yukawa and quartic interactions.
The vertical dot-dashed green line represents the point where asymptotic freedom is lost. (b) �~a normalized to �gg for the ‘ ¼ 0 case.

The solid red and dashed blue lines are leading order results from Fig. 1(b) while the dotted black and dot-dashed green lines are next-
to-leading order corrections.
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FIG. 2 (color online). (a) The next-to-leading order physical FP structure for the ‘ ¼ 1 case with Yukawa and quartic interac-
tions. (b) �~a normalized to �gg for the ‘ ¼ 1 case. The solid red and dashed blue lines are leading order results from Fig. 1(a) while

the dotted black and dot-dashed green lines are the next-to-leading order corrections.
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function for the two RG flows are shown in Fig. 4(b). Since
for this value of ‘ perturbation theory holds, we observe a
positive and well behaved �~a all the way to the merger.

IV. CONCLUSIONS

We studied the a theorem to the maximum known order
in perturbation theory for nonsupersymmetric gauge

theories with fermionic matter as well as gauge singlet
scalar fields, where the latter two interact via Yukawa
interactions. The computation involves three loops in the
gauge � function, two loops in the Yukawa interactions
and one loop in the quartic interactions. To this order we
have first determined the general expression for the change
in the function ~a between two fixed points, and then
specialized it to the case of QCD with extra adjoint Weyl

TABLE II. One-, two- and three-loop vacuum polarization diagrams entering the computation of the metric (12) and the one-form (13).

Diagrams Contributions to � Contributions to W

�2
	g

	2
g

�	g

	g

�2
	g

	g
�	g

�2
	y

	y
�	y

�2
	g

	g�	g

�2
	y

	y�	y

�2
	g

	g
	y,

�2
	y

	y
	g, �	g

�	y
	y�	g

, 	g�	y

�2
	�

	��	�
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fermions and elementary mesons interacting via Yukawa
terms. We employed the Veneziano limit and determined
the three-loop � functions of the theory. This has allowed
us to test the a theorem beyond the lowest order in pertur-
bation theory. We discovered that the model posses an
interesting structure of the fixed points, depending on the
number of adjoint fermionic matter fields, among which
we highlight the presence of a Banks-Zaks UV fixed point
as well as the occurrence of a merging phenomenon for
which the a theorem had not been tested before.
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APPENDIX: DIAGRAMMATIC FORM OF THE
TRACE ANOMALY

The structure of the metric (12) and one-form (13)
entering the trace anomaly can be determined by looking
at vacuum polarization diagrams containing in addition to
the usual vertices of the quantum field theory the following
counterterms:

The terms entering the metric (12) are the ones proportional to two powers of the � functions while the ones with one
power of �i fix the one-form W (13). All the vacuum polarization diagrams up to three-loop order as well as the form of
their contribution are shown in Table II. Note that more diagrams would be present if the scalar field were charged under
the gauge group.
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