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We construct a molecule of fractional vortices with fractional topological lump charges as a baby Skyrmion

with the unit topological lump charge in the antiferromagnetic (or XY) baby Skyrme model, that is, anOð3Þ
sigma model with a four-derivative term and an antiferromagnetic or XY-type potential term quadratic in

fields.We further construct configurations with topological lump chargesQ � 7 and find that bound states of

vortex molecules constitute regular polygons with 2Q vertices as vortices, where the rotational symmetry

SOð2Þ in real space is spontaneously broken into a discrete subgroupZQ. We also findmetastable and arrayed

bound states of fractional vortices forQ ¼ 5, 6. On the other hand, we find forQ ¼ 7 that the regular polygon

is metastable and the arrayed bound state is stable. We calculate binding energies of all configurations.
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I. INTRODUCTION

Vortices are topological solitons present in various physi-
cal systems, from field theory [1] and cosmological models
[2] to condensed matter systems [3]. In particular, they play
essential roles in condensed matter systems such as super-
conductors, superfluids, magnetism, quantum Hall states,
nematic liquids, optics, and so on. One of the exotic aspects
common in condensed matter systems but not familiar in
high energy physics and cosmology are vortex molecules,
which have been studied in multicomponent Bose-Einstein
condensates (BECs) [4–10], multigap superconductors
[11–13], superfluid 3He (as a double core vortex) [3], and
nonlinear optics [14]. In the cases of BECs [4] and super-
conductors [15], fractional vortices in two different compo-
nents with fractional topological charges constitute a
meson-like bound state with the unit topological charge in
total. However, a crucial difference between these two
systems is that a repulsion between vortices is exponentially
suppressed in superconductors due to the Higgs mechanism
in the presence of a gauge field, while a repulsion between
vortices is polynomially reduced in BECs [16] in the
absence of a gauge field. Consequently, vortex molecules
are stable and visible in BECs because of a balance between
the vortex repulsion and the domain wall tension, while in
superconductors they can be seen, in principle, only at
temperatures above a certain critical temperature by a
mechanism similar to the Berezinskii-Kosterlitz-Thouless
transition [12,13]. However, stable vortex molecules in
BECs are global vortices winding around a global Uð1Þ
symmetry, and consequently their energies are logarithmi-
cally divergent with respect to the system size; they are
infinitely heavy in infinite space, and thereby they are not
very realistic in high energy physics or cosmology.

In this paper, we propose a field theoretical model admit-
ting a vortexmoleculewith finite energy,motivated by these
condensed matter systems. We consider an Oð3Þ nonlinear

sigma model on the target space S2 in d ¼ 2þ 1 dimen-
sions, described by a unit three-vector of scalar fields
nðxÞ ¼ ðn1ðxÞ; n2ðxÞ; n3ðxÞÞ with the constraint n2 ¼ 1,
which is equivalent to aCP1 model. TheOð3Þmodel admits
lumps or sigmamodel instantons characterized by�2ðS2Þ ’
Z [17] as a relative of vortices.We consider a potential term
motivated by condensed matter systems admitting vortex
molecules. The potential terms make lumps unstable
against shrinkage, in general, as can be inferred from the
scaling argument [18], sowe also consider a four-derivative
(Skyrme) term, bywhich the lumps are stabilized to become
baby Skyrmions [19]. In the context of baby Skyrmions, the
potential terms of the type V ¼ m2ð1� n3Þ [19] or of the
type V ¼ m2ð1� n23Þ [20–23] have already been studied.

The latter admits two discrete vacua n3 ¼ �1 and a domain
wall interpolating between them [21,22,24,25], and a baby
Skyrmion is in the shape of a twisted closed domain wall
[20,26]. In our previous papers [26–28], we considered both
types of potential terms V ¼ m2ð1� n23Þ þ �2n1 in the

regime �� m. In this case, a straight domain wall can
absorb lumps as sine-Gordon kinks [26–28], and a baby
Skyrmion is in the form of a domain wall ring with a sine-
Gordon kink [26]. In condensed matter physics, the qua-
dratic potential admitting two vacua is known as the Ising
type in ferromagnets, so we may refer to this model as the
Ising (or ferromagnetic) baby Skyrme model.
Here, we consider a potential of the XY type or of

antiferromagnets, V ¼ m2n23 [29]. The model can be re-

ferred to as the XY (or antiferromagnetic) baby Skyrme
model. The vacua characterized by n3 ¼ 0 are S1 at the
equator of the target space S2, as in Fig. 1(a). One lump
solution is schematically drawn in Fig. 1(b), wherewe chose
n ¼ ð1; 0; 0Þ as the vacuum at the boundary. One can find
two separated half-lumps (merons) whose centers are
mapped to the north and south poles n ¼ ð0; 0;�1Þ of the
target space S2. These half-lumps are separated because the
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vacua S1 appear between them, as indicated by an ellipse in
Fig. 1(b). Therefore, a lump is nonaxisymmetric, unlike
those for the massless case and the Ising-type case with
� ¼ 0 in which lumps are axisymmetric. There, the vacuum
Uð1Þ winds (counter)clockwise between the two half-lumps
so that these half-lumps are (anti)global vortices. While
isolated (anti)global vortices have logarithmically divergent
energy in the infinite system size, a pair of global and
antiglobal vortices have finite energy. They attract each
other and collapse in the absence of the Skyrme term, while
the Skyrme term forms a vortex molecule. We numerically
construct fractional vortex molecules with 1 � Q � 7 by a
relaxation method. The configuration of Q ¼ 1, in fact,
looks as we expected. For Q ¼ 2, we find that two mole-
cules face each other with opposite orientations to constitute
a regular square. Since two kinds of constituent vortices are
placed at the vertices, the configuration is Z2 symmetric.
For Q ¼ 3, we find a regular hexagonal structure of vortex
molecules, like a benzene. This structure is Z3 symmetric.
The configurations with Q ¼ 2, 3 resemble those recently
found in a two-component BEC under rotation [7].
Furthermore, for Q ¼ 4, 5, 6, we find regular octagonal,
decagonal, and dodecagonal structures of fractional vortices
with Z4, Z5, Z6 symmetries. Therefore, in general, we
expect, for the topological charge Q, a polygon with 2Q
fractional vortices at vertices with ZQ symmetry [29]. We

also find metastable and arrayed bound states of fractional
vortices for Q ¼ 5, 6. These configurations are obtained by
squeezing the corresponding stable polygons, and they have
slightly higher energies. We also find that the regular poly-
gon is metastable and the arrayed bound state is stable for
Q ¼ 7. Finally, we calculate the binding energies of all the
configurations.

Conventional lumps in the masslessOð3Þ sigmamodel are
invariant under a combination of the Uð1Þ rotation of the
target space and the space rotation. The lumps spontaneously

break the other linear combination of the two Uð1Þ symme-
tries. On the other hand, our solutions spontaneously break
the purely space rotation. Note that nonaxisymmetric
configurations were known before for higher topological
charges in the baby Skyrme model [30], while even one
baby Skyrmion is nonaxisymmetric in our model. In this
regard, our solutions are similar to those inRef. [31], inwhich
nonaxisymmetric molecular configurations were found in the
model with a more complicated potential. We would like to
emphasize that our potential is quite common in antiferro-
magnets and two-component BECs and that it is natural.
A closely related model is a Uð1Þ gauged supersymmet-

ricCP1 model where a rotation along the n3 axis is gauged
[32]. The gauge symmetry induces the potential V ¼ m2n23
known as the D-term potential, where supersymmetry
requires m to coincide with the gauge coupling e. In this
model, a lump is decomposed into two fractional gauged
Bogomol’nyi-Prasad-Sommerfield (BPS) vortices, and
these two vortices can be placed with arbitrary separation
because no force is present between BPS vortices [33,34].
Each constituent vortex carries half of the lump charge
characterized by �2ðS2Þ, as in our model. A set of frac-
tional vortices carrying the total unit charge was also found
in supersymmetric gauge theories and sigma models [35].
This paper is organized as follows. After our model is

explained in Sec. II, we give numerical solutions of vortex
molecules in Sec. III. Section IV is devoted to a summary
and discussion.

II. THE MODEL

We consider an Oð3Þ sigma model in d ¼ 2þ 1
dimensions described by a three-vector of scalar fields
nðxÞ ¼ ðn1ðxÞ; n2ðxÞ; n3ðxÞÞ with a constraint n � n ¼ 1.
The Lagrangian of our model is given by

L ¼ 1

2
@�n � @�n�L4ðnÞ � VðnÞ; (1)

with � ¼ 0, 1, 2. Here, the four-derivative (baby Skyrme)
term is expressed as

L4ðnÞ ¼ �F2
�� ¼ �½n � ð@�n� @�nÞ�2

¼ �ð@�n� @�nÞ2;
F�� � n � ð@�n� @�nÞ: (2)

In this paper, we take the potential term to be [29]

VðnÞ ¼ m2n23: (3)

This potential is known in antiferromagnets and the XY
model, while the potential in the form of ferromagnets
m2ð1� n23Þ was studied before in Refs. [20–23]. The en-

ergy density of static configurations is

E � 1

2
ð@an � @anÞ þL4ðnÞ þ VðnÞ ða ¼ 1; 2Þ: (4)

Introducing the projective coordinate uð2 CÞ of CP1 by

ni ¼ �y�i�; �T ¼ ð1; uÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ juj2

q
; (5)

0: 3
1 =nS

13 +=n

13 −=n
2

3
2nmV =

2S
N:

S:

(a)

(b)

FIG. 1 (color online). (a) The target space and the potential.
(b) A vortex molecule as one lump. Here,  , # , ! and "
represent n ¼ ð�1; 0; 0Þ, ð0;�1; 0Þ, (1,0,0) and (0,1,0), respec-
tively. The north and south poles n ¼ ð0; 0; 1Þ and ð0; 0;�1Þ are
denoted by 	 and 
, respectively.

MICHIKAZU KOBAYASHI AND MUNETO NITTA PHYSICAL REVIEW D 87, 125013 (2013)

125013-2



the Lagrangian (1) can be rewritten in the form of the CP1

model with potential terms given by

L¼2
@�u

�@�u
ð1þjuj2Þ2�8�

ð@�u�@�uÞ2�j@�u@�uj2
ð1þjuj2Þ4 �V; (6)

V ¼ m2D2
3; D3 � 1� juj2

1þ juj2 ¼ n3; (7)

Here, guu� ¼ 1=ð1þ juj2Þ2 is the Kähler (Fubini-Study)

metric of CP1, guu
� ¼ ð1þ juj2Þ2 is its inverse, and

Di ¼ ni are the moment maps (or the Killing potentials)
of the SUð2Þ isometry generated by �i. If we gauge the
isometry generated by the generator �3 with gauge
coupling e, the potential V ¼ e2D2

3 (with m ¼ e) is

known as the D-term potential in the supersymmetric
Uð1Þ gauged CP1 model [32].

FIG. 2 (color online). Bound states of fractional vortex molecules in the region �1:16< xa < 1:16. The topological charges are
Q ¼ 1, 2, 3 from top to bottom. The left and middle panels represent the total energy densities EðxÞ and the topological charge
densities cðxÞ � F12=4�, respectively. In the right panels, the arrows denote the scalar fields of the three-vector nðxÞ, where color
represents the value of n3 from which one can find whether the constituent fractional vortices are of N or S.

FRACTIONAL VORTEX MOLECULES AND VORTEX . . . PHYSICAL REVIEW D 87, 125013 (2013)

125013-3



III. VORTEX MOLECULES

The topological charge of the lump�2ðS2Þ ’ Z is given by

Q ¼ 1

4�

Z
d2xF12

¼ 1

4�

Z
d2xn � ð@1n� @2nÞ

¼ 1

4�

Z
d2x�ijkni@1nj@2nk

¼ 1

2�

Z
d2x

ið@1u�@2u� @2u
�@1uÞ

ð1þ juj2Þ2 : (8)

In the presence of the potential, a lump is unstable to shrink-

ing from the Derick’s scaling argument [18]. It can be

stabilized in the presence of the baby Skyrme term, resulting

in a baby Skyrmion.
We construct numerical solutions of fractional vortex

molecules with the topological lump charge 1 � Q � 7.

As the numerical parameters, we fix � ¼ 0:002 and

m2 ¼ 800. We obtain the stationary state using the relaxa-

tion method: introducing the parameter 	 and the 	 depen-

dence of nið	Þ, and finding the asymptotic solution

nið	! 1Þ of the equation

FIG. 3 (color online). Bound states of fractional vortex molecules in the region �1:16< xa < 1:16. The topological charges are
Q ¼ 4, 5, 6 from top to bottom. Details of the plots are the same as those shown in Fig. 2.
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@ni
@	
¼ � 
E


ni
; (9)

under the constraint n21 þ n22 þ n23 ¼ 1. The detailed nu-

merical procedure is shown in the Appendix. As the initial
state nið	 ¼ 0Þ, we give the ansatz for � ¼ m ¼ 0:

n1 ¼ cos fðrÞ; n2 ¼ � cos ðQ�Þ sin fðrÞ;
n3 ¼ sin ðQ�Þ sin fðrÞ; (10)

with the monotonically decreasing function satisfying

fðr! 1Þ ! 0; fðr! 0Þ ! �: (11)

The topological charge Q given by Eq. (8) is invariant for
arbitrary 	.

Our stable solutions are given in Fig. 2 for Q ¼ 1, 2, 3
and Fig. 3 for Q ¼ 4, 5, 6. For the unit topological charge,
Q ¼ 1, one can find a fractional vortex molecule, as we
expected; two fractional vortices oppositely wind around
the equator S1 of the target space S2, and their cores are
filled by the north n3 ¼ þ1 and south n3 ¼ �1 poles of
S2, as can be seen in the plot of n3 in Fig. 2. The vacua S1

appear between the two half-lumps separating them, as can
be seen from both the plots of the energy density and
topological charge density. Although all of them are

(anti)global vortices having logarithmically divergent en-
ergy, a pair of them has finite energy. They attract each
other, but the Skyrme term prevents the collapse.
For Q ¼ 2, two vortex molecules face each other with

opposite orientations. Since molecules attract each other

with these orientations, they make a bound state to con-
stitute a square. Since the same vortices N or S are placed

at each pair of diagonal corners, the configuration is Z2

axisymmetric.
For Q ¼ 3, three vortex molecules with six fractional

vortices constitute a hexagonwith aZ3 axisymmetry. These
structures of Q ¼ 2, 3 resemble those in a vortex lattice
recently found in a two-component BEC under rotation [7].
For Q ¼ 4, 5, 6, the situation is almost the same; i.e.,

one finds that four, five, and six vortex molecules with
eight, ten, and eleven fractional vortices constitute an

octagon, decagon, and dodecagon with Z4, Z5, Z6 axisym-
metries, respectively.
In general, for the topological charge Q, we expect 2Q

fractional vortices to be placed on a circle in a ZQ

axisymmetric way. In all the cases, one can see that
the topological lump charge density is distributed around

the fractional vortices, and each of them carries a half-
lump charge. The rotational symmetry SOð2Þ in the x1-x2

FIG. 4 (color online). Metastable and arrayed bound states of fractional vortex molecules in the region �1:16< xa < 1:16. The
topological charges are Q ¼ 5, 6 for the top and bottom. Details of the plots are the same as those shown in Fig. 2.
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FIG. 5 (color online). Stable (arrayed) and metastable (heptagon and the other 3 types of) bound states of fractional vortex molecules
for the topological chargeQ ¼ 7. The top and bottom panels for each configuration represent the three-vector nðxÞ and the total energy
density EðxÞ, respectively, in the region �1:16< xa < 1:16.
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plane is spontaneously broken in all cases to a discrete
subgroup ZQ.

To investigate the stability of vortex polygons, we also
choose a randomly placed lump solution

u ¼XQ
i¼1

ei’i

x1 � x0i þ ix2 � y0i
; (12)

as initial states nið	 ¼ 0Þ for the relaxation. Here, the
projective coordinate u is defined in Eq. (5), and x0i, y0i,
and ’i are the real random numbers. The initial state (12)
indicates that Q single vortex molecules are placed at
ðx1; x2Þ ¼ ðx0i; y0iÞ with the angle ’i, having the topologi-
cal charge Q.

For Q ¼ 1, 2, 3, 4, any initial state of Eq. (12) relaxes
to vortex polygons as shown in Figs. 2 and 3, while, for
Q ¼ 5, 6, several initial states relax to metastable states
that are different from the vortex decagon and dodecagon,
i.e., vortex array states as in Fig. 4, the energy of which is
larger than vortex polygon states.

We also find five (meta)stable bound states for Q ¼ 7 as
in Fig. 5. Unlike the cases with Q< 7, the arrayed bound
state is at the absolute minimum. The regular polygon and
the other three bound states are metastable at local minima.

Finally, we show in Table I the gradient energy Egrad, the

Skyrme energy Esk, the potential energy Epot, the total

energy E, and the binding energy Ebind between vortex
molecules, defined by

Egrad ¼ 1

2

Z
d2x@an � @an; Esk ¼

Z
d2xL4ðnÞ;

Epot ¼
Z

d2xVðnÞ; E ¼ Egrad þ Esk þ Epot;

Ebind ¼ QEðQ ¼ 1Þ � EðQÞ; (13)

respectively. In our choice of numerical parameters, the
gradient energy is dominant in the total energy. Total energy
deviates from the linear relation, i.e., EðQÞ<QEðQ ¼ 1Þ,
and the difference Ebind between EðQÞ and QEðQ ¼ 1Þ
corresponds to the binding energy between molecules,
which dominates in about 10% of the total energy.

IV. SUMMARYAND DISCUSSION

We have constructed stable and metastable configura-
tions of the fractional vortex molecules as lumps (baby
Skyrmions) in the XY (or antiferromagnetic) baby Skyrme
model, which has the antiferromagnetic (XY) potential
V ¼ m2n23. We have found that, for the unit charge

Q ¼ 1, two fractional vortices whose centers are filled by
the north and south poles of the target space are placed
within a certain distance. We have found that, forQ ¼ 2, 3,
4, 5 and 6, bound states of two, three, four, five, and six
vortex molecules constitute quadrangle, hexagonal, oc-
tagonal, decagonal, and dodecagonal vortex configura-
tions, respectively. At least up to this topological number,
ZQ symmetric vortex molecule configurations appear for

the topological charge Q. Our configurations are all non-
axisymmetric, and they spontaneously break the rotational
symmetry in the x-y plane. While all vortex polygons are
stable and at global minima, we have also found metastable
and arrayed bound states of fractional vortices for
Q ¼ 5, 6, which are obtained by squeezing the correspond-
ing stable polygons and have slightly higher energies. We
also find for Q ¼ 7 that the arrayed bound state is at the
absolute minimum and the regular polygon together with
the other three bound states is metastable at a local mini-
mum, unlike the cases with Q< 7. Finally, we have calcu-
lated the binding energies of all the configurations.
As denoted in the Introduction, similar configurations of

vortex molecules are present in condensed matter systems,
such as two-component BECs, described by two conden-
sations (scalar fields) �1ðxÞ and �2ðxÞ with the internal
coherent (Josephson) coupling �2��1�2 þ c:c: [4–7,9],
where a four-derivative term is not present. In these cases,
the vortex molecules are global vortices; that is, they wind
around a global Uð1Þ symmetry. If we gauge the common
phase of the two components, they become semilocal
vortices. If we send the scalar coupling and gauge coupling
to infinity, keeping the internal coherent coupling, we
obtain our model, except for the Skyrme term, where the
Josephson coupling �2��1�2 þ c:c reduces to �2n1, which
we did not consider in this paper. We expect that semilocal
vortices, keeping the couplings, can make a stable vortex
molecule if one properly adds a four-derivative term.
In the CP1 model with a ferromagnetic potential, a

Q-lump solution is known [36], in which a Uð1Þ Nambu-
Goldstone mode associated with the spontaneously
broken Uð1Þ internal symmetry of the rotation in the n1-n2
plane in the target space is rotating in time. In our case, there
is a Nambu-Goldstone mode associated with the

TABLE I. Gradient energy Egrad, Skyrme energy Esk, potential
energy Epot, total energy E, and binding energy Ebind for vortex

molecules.

Q Egrad Esk Epot E Ebind

1 29.04 8.840 8.829 46.71

2 53.35 16.96 16.96 87.26 6.153

3 78.45 25.17 25.17 128.8 11.33

4 103.8 33.44 33.44 170.7 16.14

5 (decagon) 129.3 41.73 41.73 212.7 20.79

5 (array) 129.8 41.68 41.68 213.1 20.42

6 (dodecagon) 154.8 50.03 50.03 254.9 25.35

6 (array) 155.2 49.90 49.90 255.0 25.22

7 (heptagon) 180.4 58.34 58.34 297.1 29.86

7 (array) 180.7 58.14 58.13 297.0 29.97

7 (type 1) 181.3 58.29 58.28 297.9 29.09

7 (type 2) 181.2 58.22 58.22 297.6 29.31

7 (type 3) 181.6 58.32 58.32 298.3 28.68
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spontaneously broken rotational symmetry in real space,
instead of an internal Uð1Þ Nambu-Goldstone mode.
Consequently, we may have a Q lump in our case as a
spinning molecule.

If we promote our configuration linearly in d ¼ 3þ 1
dimensions, it becomes a bound state of two cosmic
strings. As usual, the solution breaks translational symme-
tries in two transverse directions, resulting in two transla-
tional zero modes which propagate along the string. One
added feature of our solutions is the existence of a Nambu-
Goldstone mode associated with the spontaneously broken
rotational symmetry along the string, resulting in a twisting
wave propagating along the string. This is known as a
‘‘twiston’’ in two-gap superconductors [37]. In cosmology,
our solutions can be regarded as some exotic cosmic
strings with an internal structure. For instance, it is
an interesting question whether or not two such strings
reconnect to each other when they collide.

We have found that, for the topological charge Q, two
kinds of vortices are placed at 2Q vertices of a regular
polygon, on which a ZQ symmetry acts. In this regard, Zn

symmetric vortex configurations were studied in the
Abelian-Higgs model [38]. This is equivalent to the vorti-
ces on the orbifold C=Zn studied recently [39]. Vortex
polygons have also been studied in hydrodynamics for a
long time [40]. Vortex polygons with less than seven
vortices as vertices are shown to be stable, while those
with more than seven are unstable. One example realized in
nature is a vortex hexagon found by Cassini in the north
poles of Saturn [41]. In our case too, we have found vortex
polygons up to Q ¼ 6 to be stable, which may be interest-
ing compared with hydrodynamics.

In this paper, we have found a two vortexmolecule, that is,
a vortex dimerwith unit topological charge in theCP1 model
with the antiferromagnetic potential. Stable three orN vortex
molecules, that is, vortex trimers or N-omers, are present in
three or N component BECs [9,10]. Since two components
�1,�2 with a constraint j�1j2 þ j�2j2 ¼ 1 divided byUð1Þ
imply theCP1 model, the same procedure forN components
yields aCPN�1 model with a certain potential term. While a
CPN�1 generalization of the antiferromagnetic-type poten-
tial was considered before [42] and was found to admit
parallel multiple domain walls [43] or domainwall junctions
or networks [44,45], depending on parameters in the poten-
tial, aCPN�1 generalization of the ferromagnetic (XY-type)
potential has not been studied thus far in the CPN�1 model.
Skyrme-like terms in the CPN�1 model were studied before
without [46,47] and with [48–50] supersymmetry. ACP2 or
CPN�1 generalization of the baby Skyrme model with an
antiferromagnetic potential will admit vortex trimers or
N-omers, respectively.
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APPENDIX: DETAILED NUMERICAL
PROCEDURE

Equation (9) can be solved as the steepest descent
method:

nið	þ�	Þ ¼ nið	Þ � �	

E�ð	Þ

nið	Þ ; (A1)

where we omit the spatial dependence of ni. E�ð	Þ is
defined as

E�ð	Þ ¼ Eð	Þ � �ð	Þfn1ð	Þ2 þ n2ð	Þ2 þ n22ð	Þg: (A2)

Here, the Lagrange multiplier �ð	Þ is fixed to satisfy
n1ð	þ �	Þ2 þ n2ð	þ �	Þ2 þ n2ð	þ�	Þ2 ¼ 1.
For the space, to approximately consider the infinite

space, we use the following scaling transformation:

xa ¼ Ltanh�1Xa (A3)

for�1< Xa < 1, and consider the dependence of ni on Xa

instead of xa, where L is the scaling parameter. We use the
square with the ðN þ 1Þ2 grid points. On the lth grid point
in the xa direction, the value of niðfðlÞagÞ is defined as

niðfðlÞagÞ � niðfðcos ðl�=NÞÞagÞ; (A4)

where niðfXagÞ is the value of ni at fXag � ðX1; X2Þ. We
omit the 	 dependence on ni here. For l ¼ 0 or N, which
corresponds to infinity, the value of niðfðlÞagÞ is fixed to the
ground state:

n1ðfð0ÞagÞ ¼ n1ðfðNÞagÞ ¼ 1;

n2ðfð0ÞagÞ ¼ n2ðfðNÞagÞ ¼ 0;

n3ðfð0ÞagÞ ¼ n3ðfðNÞagÞ ¼ 0:

(A5)

To calculate the spatial derivative of ni, we use the spectral
collocation method. We expand ni in the Chebyshev
polynomials:

~niðfðjÞagÞ ¼ 1

N
niðfð0ÞagÞ þ 2

N

XN�1
l¼1

niðfðlÞagÞ cos
�
lj�

N

�

þ ð�1Þ
j

N
niðfðNÞagÞ; (A6)

where ~niðfðjÞagÞ (0 � j � N) is the jth coefficient of the
Chebyshev expansion in the xa direction. The first and
second spatial derivatives @ani and @

2
ani can be calculated as
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@ani ¼ 1� X2
a

L

@ni
@Xa

;

@2ani ¼ ð1� X2
aÞ2

L2

@2ni
@X2

a

� 2Xað1� X2
aÞ

L2

@ni
@Xa

;

@niðfðlÞagÞ
@Xa

¼ 1

N
~miðfð0ÞagÞ þ 2

N

XN�1
j¼1

~miðfðjÞagÞ cos
�
lj�

N

�
þ ð�1Þ

l

N
~miðfðNÞagÞ;

@2niðfðlÞagÞ
@X2

a

¼ 1

N
~siðfð0ÞagÞ þ 2

N

XN�1
j¼1

~siðfðjÞagÞ cos
�
lj�

N

�
þ ð�1Þ

l

N
~siðfðNÞagÞ:

(A7)

Coefficients ~miðfðjÞagÞ and ~siðfðjÞagÞ satisfy the following recurrence relations:

~miðfðjÞagÞ ¼ ~miðfðjþ 2ÞagÞ þ 2ðjþ 1Þ~niðfðjþ 1ÞagÞ;
~miðfðNÞagÞ ¼ 0;

~siðfðjÞagÞ ¼ ~siðfðjþ 2ÞagÞ þ 2ðjþ 1Þ ~miðfðjþ 1ÞagÞ;
~siðfðNÞagÞ ¼ 0:

(A8)

Equations (A6) and (A7) can be calculated by the fast Fourier transform algorithm.
In this paper, we fix L ¼ 0:5, N ¼ 256, �	 ¼ 10�6.
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