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We investigate the creation of massless quasiparticle pairs from the vacuum state in graphene by the

space homogeneous time-dependent electric field. For this purpose the formalism of (2þ 1)-dimensional

quantum electrodynamics is applied to the case of a nonstationary background with arbitrary time

dependence allowing the S-matrix formulation of the problem. The number of created pairs per unit of

graphene area is expressed via the asymptotic solution at t ! 1 of the second-order differential equation

of an oscillator-type with a complex frequency satisfying some initial conditions at t ! �1. The obtained

results are applied to the electric field with specific dependence on time admitting the exact solution of the

Dirac equation. The number of created pairs per unit area is calculated analytically in a wide variety of

different regimes depending on the parameters of the electric field. The investigated earlier case of the

static electric field is reproduced as a particular case of our formalism. It is shown that the creation rate in

a time-dependent field is often larger than in a static field.
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I. INTRODUCTION

The creation of pairs of particles and antiparticles from
the vacuum state of a quantized field by an external elec-
tromagnetic field is a familiar effect of quantum electro-
dynamics. It was first investigated by Schwinger [1] for the
case of electron-positron pair creation by the space homo-
geneous static electric field. These results were later gen-
eralized for particles of arbitrary spin [2,3]. Much attention
was also given to the investigation of pair creation by a
time-dependent space homogeneous electric field. Strictly
speaking, such a field can be realized in the space with
a homogeneous distribution of currents. However, the
approximation of a space homogeneous time-dependent
electric field is also applicable in free space when the
spatial size of field homogeneity is larger than the charac-
teristic length at which a pair is created. Actually this is
true in the vicinities of extremum points of the waves of
E-type in wave guides [3] or of the standing waves formed
by the interference of two colliding laser beams [4].
The general formalism describing the effect of pair crea-
tion by a time-dependent electric field was developed in
Refs. [5–8] and applied to fields periodic in time in
Refs. [9,10]. In parallel with the electric field, the same
effect in an external gravitational field was considered. A
set of results obtained can be found in the monograph [11]
for the case of the electromagnetic field, in [12] for the case
of gravitational field, and in [13] for both.

Only the charged particles can be created from vacuum
by the electromagnetic field. Unfortunately, even for the
lightest of them, electrons, the creation rate by a static
electric field E becomes exponentially small for field
strengths below the huge (so-called critical) value Ecr ¼
m2c3=ðjejℏÞ � 1016 V=cm, where m is the electron mass
and e is the electron charge defined with its own (negative)
sign. The same holds for a time-dependent electric field if

its frequency is less then � frequencies (recall that the
magnetic field does not create particles) [11,13]. This
rendered impossible the detection of particle creation by
the electric field in the past. Nevertheless, the effect of
particle creation was receiving widespread attention in
the literature. Specifically, the backreaction of created
pairs on an external electric field was studied [14–16].
The creation of pairs in a strong electric field confined
between two condenser plates was considered [17] (i.e., in
the configuration where the Casimir effect also arises
[18,19]). Recently, the concept of pair creation rate was
discussed [20] and the interpretation given in Ref. [21]
was confirmed.
According to the recent proposal [22], it is experimen-

tally feasible to observe the creation of quasiparticles in
graphene by the space homogeneous static electric field.
Graphene is a unique material which is a one-atom-thick
honeycomb lattice of carbon atoms. As a two-dimensional
crystal, it possesses an unusual mechanical and electrical
properties [23,24]. For our purposes it is most important
that there are the so-calledDirac points in the energy bands
of graphene. Close to Dirac points, charged quasiparticle
excitations in the potential of graphene lattice are massless
Dirac-like fermions characterized by a linear dispersion
relation, where the Fermi velocity vF � 10�2c stands in
place of c. This holds up to the energy of about 1 eV and
allows us to consider graphene as the condensed matter
analog for relativistic quantum field theory [22]. From this
point of view, the quantum ground state of a filled Fermi
sea in graphene can be considered as the precise analog
of a filled Dirac sea, i.e., the vacuum state for a (2þ 1)-
dimensional field theory of massless fermions [22]. The
existence of charged Fermi quasiparticles in graphene
opens up outstanding possibilities to observe the effect of
pair creation from vacuum in electric fields much weaker
than Ecr. The creation rate for quasiparticles in graphene
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by the space homogeneous static electric field was
found in Ref. [22] using the methods of planar quantum
electrodynamics in (2þ 1) dimensions developed in
Refs. [25–29] (note that in Ref. [29] the result of
Ref. [22] for the creation rate of graphene quasiparticles
was reobtained and confirmed). It should be emphasized
also that investigations of graphene interacting with strong
magnetic field [30] and with the field of an electrostatic
potential barrier [31] have already led to new important
physics. This makes prospective further investigation of
the interaction of graphene described by the Dirac model
with various electromagnetic fields.

In this paper, we investigate the creation of graphene
quasiparticles from vacuum by the space homogeneous
time-dependent electric field. For this purpose we general-
ize the formalism of (2þ 1)-dimensional electrodynamics
for the case when the electric field possesses an arbitrary
time dependence [this can be done in close analogy to the
(3þ 1)-dimensional case considered, e.g., in Refs. [7,13]].
We show that the density of created quasiparticles and
holes can be expressed via solutions of the second-order
differential equation of an oscillator-type with complex
frequency, satisfying some initial conditions, in the asymp-
totic region t ! 1. In doing so the dependence of the
electric field on time is not specified. It is only assumed
that the electric field is switched off at t ! �1, so that the
S-matrix formulation of the problem is possible. We fur-
ther apply the obtained results to the electric field with
some specific time dependence allowing an exact solution
of the Dirac equation. Then we calculate the spectral
density of created quasiparticles in the momentum space
and respective number of pairs per unit area of the gra-
phene sheet. The analytic results are compared with the
results of numerical computations for different field
strengths and lifetimes. In all cases only those values of
parameters are considered which fall inside the application
region of the Dirac model of graphene. In the case of static
electric field, the previously known results are reproduced
and compared with our results obtained for a time-
dependent field.

The paper is organized as follows. In Sec. II we briefly
present themasslessDirac-like equation for a two-component
wave function in (2þ 1)-dimensional space-time and con-
struct the complete orthornormal set of solutions in the
presence of a space homogeneous electric field with arbi-
trary time dependence. Section III contains the quantization
procedure, the derivation of the Hamiltonian, allowing for
interaction with a time-dependent electric field, and its
diagonalization. In this section we also derive general
expressions for the spectral density of created graphene
quasiparticles in the momentum space and for the number
of pairs created per unit area of the graphene sheet. In
Sec. IV we apply the obtained results to the electric field
with some specific time dependence permitting an exact
solution of the (2þ 1)-dimensional Dirac equation. Here,

we calculate the spectral density and the number of
graphene quasiparticles created throughout the whole life-
time of the field for different relationships among the
parameters. In Sec. V we rederive the respective results
for a static field in the framework of our formalism and
compare the cases of time-dependent and static fields. In
Sec. VI the reader will find our conclusions and discussion.
Taking into account that our problem contains two

fundamental velocities, the speed of light c and the
Fermi velocity in graphene vF, and to avoid confusion,
we preserve c, vF, and also the Planck constant ℏ in all
mathematical expressions.

II. GRAPHENE IN ATIME-DEPENDENT
ELECTRIC FIELD

As was mentioned in Sec. I, the low-energy excitations
in graphene are massless Dirac particles. In fact there are
N ¼ 4 species (or flavors) of quasiparticles in graphene
[22,29], which can be described in a similar way. Below we
consider one of them, keeping in mind that the obtained
number of created pairs should be multiplied by N. The
massless particles of spin 1=2 can be described by only one
two-component spinor � which is a column with the com-
ponents �1, �2 [32]. The respective Dirac equation for
graphene is obtained by considering (2þ 1)-dimensional
space-time and replacing c with vF [24],

@�

@t
þ vF�k

@�

@xk
¼ 0; (1)

where � ¼ �ðt; rÞ, r ¼ ðx1; x2Þ, k ¼ 1, 2, and �k are the
Pauli matrices,

�1 ¼
0 1

1 0

 !
; �1 ¼

0 �i

i 0

 !
; (2)

satisfying the standard anticommutation relations:

�i�k þ �k�i ¼ 2�ik: (3)

In Eq. (1) and below we mean that the unit matrix stands
where necessary.
We consider graphene in the space homogeneous time-

dependent electric field described by the vector potential

A� ¼ ð�;AðtÞÞ ¼ ð0; 0; A2ðtÞÞ; (4)

where� ¼ 0, 1, 2. This field is in the plane of the graphene
sheet and is directed along the x2 axis:

EðtÞ¼ ð0;0;E2ðtÞÞ; E2ðtÞ¼�1

c

@A2ðtÞ
@t

� 1

c
A0
2ðtÞ: (5)

The interaction with the electromagnetic field is included
in Eq. (1) in the regular way by the replacement

iℏ@� ! iℏ@� � e

c
A�; (6)
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where @� � @=@x�. This leads to the following equation:�
iℏ
vF

@

@t
þ iℏ�k

@

@xk
� e

c
�2A2ðtÞ

�
� ¼ 0: (7)

We seek a solution of Eq. (7) in the form

� ¼
�
iℏ
vF

@

@t
� iℏ�k

@

@xk
þ e

c
�2A2ðtÞ

�
�: (8)

Substituting Eq. (8) in Eq. (7), one obtains the differential
equation of the second order for the function �:�
ℏ2

v2
F

@2

@t2
� ℏ2 @2

@x21
� ℏ2 @2

@x22
� 2ieℏ

c
A2ðtÞ @

@x2
þ e2

c2
A2
2ðtÞ

� ieℏ
cvF

A0
2ðtÞ�2

�
� ¼ 0: (9)

Solutions of Eq. (9) can be found in the form

� ¼ �p;� ¼ e
i
ℏprf�ðp; tÞR�; (10)

where p ¼ ðp1; p2Þ is the momentum variable and R� are
the eigenspinors of the matrix �2 defined as

�2R� ¼ �R�: (11)

From Eqs. (2) and (11) one obtains

� ¼ �1; R1 ¼
1

i

 !
; R�1 ¼

1

�i

 !
: (12)

From this it follows that

Rþ
� R� ¼ 2; Rþ

1 R�1 ¼ Rþ�1R1 ¼ 0; (13)

where the cross indicates the Hermitian conjugate
spinor. Substituting Eq. (10) in Eq. (9), we arrive at the
following second-order ordinary differential equation
of an oscillator-type with a complex frequency for the
function f�:

f00�ðp; tÞþ
�
v2
F

ℏ2
�2ðp; tÞ� i�evF

ℏc
A0
2ðtÞ

�
f�ðp; tÞ¼ 0; (14)

where

�2ðp; tÞ ¼ p2
1 þ

�
p2 � e

c
A2ðtÞ

�
2
: (15)

Using Eqs. (8), (10), and (11) it is easily seen that the
solutions of Eq. (7) satisfy the equality

�þ
p;�0�p;�¼ℏ2

v2
F

�þ0
p;�0�0

p;�þ
�
p2
1þ��0

�
p2�e

c
A2

�
2
�
�þ
p;�0�p;�

þ iℏ
vF

�
p2�e

c
A2

�
ð��þ0

p;�0�p;���0�þ
p;�0�0

p;�Þ:
(16)

For �0 � � with the help of Eq. (13), this leads to

�þ
p;�0�p;� ¼ 0: (17)

For �0 ¼ �, Eqs. (13) and (16) result in

�þ
p;��p;� ¼ 2

�
ℏ2

v2
F

jf0�j2 þ �2ðp; tÞjf�j2

� 2ℏ�
vF

�
p2 � e

c
A2

�
Imðf�f�0� Þ

�
: (18)

By the differentiation of both sides of Eq. (18), using
Eq. (14), one obtains

d

dt
ð�þ

p;��p;�Þ ¼ 0: (19)

This means that the quantity (18) does not depend on time
and can be made equal to any number depending on
the initial conditions imposed on functions f�ðp; tÞ satisfy-
ing Eq. (14).
We assume that the external field (5) is switched off

at t ! �1, so that the vector potential (2) has finite
limiting values

A2;� ¼ lim
t!�1A2ðtÞ: (20)

Then we impose the following initial conditions on the
solutions of Eq. (14):

f�ðp; tÞjt!�1 ¼ Cp;

f0�ðp; tÞjt!�1 ¼ � i�vF

ℏ
��ðpÞCp;

(21)

where

��ðpÞ � lim
t!�1�ðp; tÞ;

Cp ¼ 1

2�1=2� ½�� � ðp2 � e
c A2;�Þ�1=2

:

(22)

According to Eq. (21), the solutions f1ðp; tÞ and f�1ðp; tÞ
can be called the positive- and negative-frequency solutions
of Eq. (14), respectively. In a similar way, the solutions�p;1,

�p;�1 from Eq. (10) and also �p;1, �p;�1, obtained from

them by using Eq. (8), are also called the positive- and
negative-frequency solutions, respectively. From Eqs. (14)
and (15) it follows that f�1ðp; tÞ ¼ f�1ðp; tÞ.
With the chosen initial conditions (21) and (22), it is

easily seen that at t ! �1 (and, thus, at any t) the quantity
(18) is equal to unity. Thus, from Eqs. (17) and (18) one
obtains at any �0 and �:

�þ
p;�0 ðt; rÞ�p;�ðt; rÞ ¼ ���0 : (23)

Specifically for �0 ¼ � from Eq. (18) we arrive at an
important identity

ℏ2

v2
F

jf0�j2 þ�2ðp; tÞjf�j2 � 2ℏ�
vF

�
p2 � e

c
A2

�
Imðf�f�0� Þ ¼

1

2
;

(24)

which will be used in Sec. III.
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Now, using Eqs. (8), (10), and (11), we obtainZ
�þ
p0;�0 ðt; rÞ�p;�ðt; rÞd2r ¼ ð2	Þ2�2

�
p� p0

ℏ

�
���0 : (25)

As a result, the function �p;� defined above form the

complete orthornormal set of solutions of the massless
(2þ 1)-dimensional Dirac equation (7).

III. HAMILTONIAN, ITS DIAGONALIZATION
AND THE DENSITY OF CREATED

QUASIPARTICLES

With the help of a complete orthornormal set of solu-
tions of Eq. (7) found in Sec. II the operator of a quantized
field of low-energy quasiparticles in graphene can be
written in the form

�ðt; rÞ ¼ 1

2	ℏ

Z
d2p½�p;1ðt; rÞap þ ��p;�1ðt; rÞbþp �;

�þðt; rÞ ¼ 1

2	ℏ

Z
d2p0½�þ

p0;1ðt; rÞaþp0 þ �þ
�p0;�1ðt; rÞbp0 �:

(26)

Here, ap, aþp and bp, bþp are the annihilation and

creation operators of quasiparticles and antiquasiparticles
(holes), respectively, satisfying the standard anticommuta-
tion relations

½ap; aþp0 � ¼ ½bp; bþp0 � ¼ �2ðp� p0Þ: (27)

Unlike the case of a massive spinor field, the field operators
(26) do not contain summations in the double-valued spin
indices. There is also no dependence on spin indices in the
creation and annihilation operators which depend only on
the momentum quantum numbers. The reason is that in a
massless case, the fermion states with definite momentum
are characterized by the fixed helicity (or chirality), i.e.,
the projection of a spin (pseudospin) on the direction
of momentum is fixed [32]. Thus, for quasiparticles in
Eq. (26) this projection is positive (� ¼ 1) and for anti-
particles (holes)—negative (� ¼ �1).

The Hamiltonian of the quantized field (26) is expressed
via the 00 component of the stress-energy tensor

HðtÞ¼
Z
d2rT00ðt;rÞ

¼ iℏ
2

Z
d2r

�
�þðt;rÞ@�ðt;rÞ

@t
�@�þðt;rÞ

@t
�ðt;rÞ

�
: (28)

Now we substitute Eq. (26) in Eq. (28) and perform the
following identical transformations. First, we integrate
with respect to r by using Eqs. (8), (10), and (13). Then
the delta functions of the form �2½ðp� p0Þ=ℏ� and
�2½ðpþ p0Þ=ℏ� produced from this integration are used
to integrate with respect to p0. As a result, by changing
the integration variable p for �p where appropriate, we
bring the Hamiltonian to the form

HðtÞ¼ℏ
Z
d2p½B1;1ðp; tÞaþp apþB1;�1ðp; tÞaþp bþ�p

þB�1;1ðp; tÞb�papþB�1;�1ðp; tÞb�pb
þ�p�; (29)

where the coefficients B�;�0 ðp; tÞ are defined as

B�;�0 ðp; tÞ ¼ i

2
ð�þ

p;��
0
p;�0 � �þ0

p;��p;�0 Þ: (30)

Using Eq. (23), one can rearrange Eq. (30) to

B�;�0 ðp; tÞ ¼ i�þ
p;��

0
p;�0 : (31)

With the help of Eqs. (8) and (12)–(14) the coeffi-
cients (31) can be expressed in terms of the function
f�1 � f�1ðp; tÞ satisfying Eq. (14) with the initial condi-
tions (21):

B1;1ðp; tÞ ¼ �B�1;�1ðp; tÞ
¼ 4�2ðp; tÞ Imðf��1f

0
�1Þ � 2

�
p2 � e

c
A2ðtÞ

�

�
�
ℏ
vF

jf0�1j2 þ
vF

ℏ
�2ðp; tÞjf�1j2

�
;

B1;�1ðp; tÞ ¼ B��1;1ðp; tÞ
¼ 2ip1

�
ℏ
vF

f02�1 þ
vF

ℏ
�2ðp; tÞf2�1

�
: (32)

The use of the identity (24) allows us to rearrange the
coefficient B1;1ðp; tÞ in Eq. (32) to a more simple form

B1;1ðp; tÞ ¼ 4p2
1 Imðf��1f

0
�1Þ �

vF

ℏ

�
p2 � e

c
A2ðtÞ

�
: (33)

As can be seen from Eq. (29), at any t >�1, i.e., in the
presence of the external electric field (5), the Hamiltonian
is a nondiagonal quadratic form in terms of the creation-
annihilation operators of quasiparticles. However, at
t ! �1, when the electric field (5) is switched off, the
initial conditions (21) lead to

B1;1ðp; tÞ ! 0; B1;�1ðp; tÞ ! vF

ℏ
��ðpÞ: (34)

As a result, the Hamiltonian (29) takes the diagonal form

Hð�1Þ ¼ vF

Z
d2pðaþp ap � b�pb

þ�pÞ; (35)

as it should be for a Hamiltonian of free noninteracting
particles.
The nondiagonality of the Hamiltonian at t >�1

points to the fact that the time-dependent electric field
creates pairs of particles and antiparticles from the initial
vacuum state j0ini defined at t ! �1 by the equations

apj0ini ¼ bpj0ini ¼ 0: (36)

To investigate the effect of particle creation, it is conve-
nient to introduce the notations
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Eðp; tÞ ¼ B1;1ðp; tÞ
�ðp; tÞ ; Fðp; tÞ ¼ B1;�1ðp; tÞ

�ðp; tÞ ; (37)

where B1;1ðp; tÞ is defined in Eq. (33) and B1;�1ðp; tÞ in
Eq. (32). Then, with the account of Eq. (32), the
Hamiltonian (29) takes the form

HðtÞ ¼ ℏ
Z

d2p�ðp; tÞ½Eðp; tÞðaþp ap � b�pb
þ�pÞ

þ Fðp; tÞaþp bþ�p þ F�ðp; tÞb�pap�: (38)

The coefficients (37) satisfy the condition

E2ðp; tÞ þ jFðp; tÞj2 ¼ v2
F

ℏ2
: (39)

To see this, we substitute Eqs. (32), (33), and (37) to the
left-hand side of Eq. (39) and express the quantity
Imðf��1f

0�1Þ from the identity (24). After transformations,
using an evident identity

Rez2 ¼ jzj2 � 2 Im2z (40)

with z ¼ f�0�1f�1, one arrives at Eq. (39).
Now we take into account that at t ! 1, when the time-

dependent electric field is switched off, the Hamiltonian
(38) should describe free particles and, thus, should be the
diagonal quadratic form (here we neglect by the interaction
between particles through the exchange of virtual photons).
In fact it is even possible to diagonalize the Hamiltonian at
any t, although in the presence of an external field the
concept of ‘‘free’’ particle can be considered as somewhat

formal. To diagonalize the Hamiltonian (38) at any t, we
introduce the time-dependent creation and annihilation
operators for particles, cþp ðtÞ, cpðtÞ, and the respective

operators for antiparticles, dþp ðtÞ, dpðtÞ, connected with

the in operators, aþp , ap and bþp , bp, by means of the

Bogoliubov transformations

ap ¼ 
�
pðtÞcpðtÞ � �pðtÞdþ�pðtÞ;

bp ¼ 
��pðtÞdpðtÞ þ ��pðtÞcþ�pðtÞ:
(41)

The two equations Hermitian conjugate to Eq. (41) are also
needed. The c-number coefficients of the Bogoliubov
transformations, 
pðtÞ and �pðtÞ, satisfy the condition

j
pðtÞj2 þ j�pðtÞj2 ¼ 1; (42)

which assures the reversibility of these transformations.
Using Eq. (42), it can be easily seen also that the time-
dependent operators, cþp ðtÞ, cpðtÞ and dþp ðtÞ, dpðtÞ, at any
t satisfy the same anticommutation relations (27), as
the in operators. The time-dependent vacuum state can
be defined as

cpðtÞj0ti ¼ dpðtÞj0ti ¼ 0: (43)

If, as in our case, there is an external field at finite t which
creates pairs, j0ti � j0ini, i.e., the vacuum state is unstable.
Now we are in a position to diagonalize the Hamiltonian

(38). Substituting Eq. (41) and Hermitian conjugate to it in
Eq. (38), one obtains

HðtÞ ¼ ℏ
Z

d2p�ðp; tÞf½Eðp; tÞðj
pðtÞj2 � j�pðtÞj2Þ þ Fðp; tÞ
pðtÞ��
pðtÞ þ F�ðp; tÞ
�

pðtÞ�pðtÞ�½cþp ðtÞcpðtÞ
� d�pðtÞdþ�pðtÞ� þ ½Fðp; tÞ
2

pðtÞ � F�ðp; tÞ�2
pðtÞ � 2Eðp; tÞ
pðtÞ�pðtÞ�cþp ðtÞdþ�pðtÞ

þ ½F�ðp; tÞ
�2
p ðtÞ � Fðp; tÞ��2

p ðtÞ � 2Eðp; tÞ
�
pðtÞ��

pðtÞ�d�pðtÞcpðtÞg: (44)

To bring the quadratic in creation-annihilation operators
expression in Eq. (44) to a diagonal form, we demand that

Fðp; tÞ
2
pðtÞ � F�ðp; tÞ�2

pðtÞ � 2Eðp; tÞ
pðtÞ�pðtÞ ¼ 0;

(45)

which leads to the quadratic equation

F�ðp; tÞ
�
�pðtÞ

pðtÞ

�
2 þ 2Eðp; tÞ�pðtÞ


pðtÞ � Fðp; tÞ ¼ 0: (46)

By solving this equation with account of the identity (39),
one arrives at

�pðtÞ

pðtÞ ¼

�Eðp; tÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðp; tÞ þ jFðp; tÞj2p
F�ðp; tÞ

¼ �Eðp; tÞ � ðvF=ℏÞ
F�ðp; tÞ : (47)

Then, using Eq. (42), one finds from Eq. (47)

j�pðtÞj2 ¼ 1

2

�
1	 ℏ

vF

Eðp; tÞ
�
: (48)

To satisfy the condition �pðtÞ ¼ 0 at t ! �1 when there
is no pair creation, the upper sign on the right-hand side
of Eqs. (47) and (48) should be chosen because, in accor-
dance with the initial conditions (21) and (22), Eðp; tÞ !
vF=ℏ when t ! �1 [see Eqs. (34) and (37)]. As a result,
we have

j�pðtÞj2 ¼ 1

2

�
1� ℏ

vF

Eðp; tÞ
�
: (49)

Using Eq. (47) with the upper sign and (49), the coefficient
near the diagonal terms in the Hamiltonian (44) can be
easily calculated
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Eðp; tÞðj
pðtÞj2 � j�pðtÞj2Þ þ Fðp; tÞ
pðtÞ��
pðtÞ

þ F�ðp; tÞ
�
pðtÞ�pðtÞ ¼ vF

ℏ
: (50)

Finally, the Hamiltonian (44) takes the form

HðtÞ¼vF

Z
d2p�ðp; tÞ½cþp ðtÞcpðtÞ�d�pðtÞdþ�pðtÞ�; (51)

i.e., it is diagonal at any t in terms of time-dependent
creation-annihilation operators.

In order to describe the creation of real particles
(quasiparticles), we consider the asymptotic limit t ! 1
when the external field is switched off. In this limiting case,
the operators cp, c

þ
p and dp, d

þ
p are the operators of real

particles and the vacuum state j01i ¼ j0outi. Using the
Bogoliubov transformations inverse to Eq. (41), we find
the spectral density of quasiparticles and antiquasiparticles
(holes) created in graphene during all time when the elec-
tric field was switched on:

Np ¼ h0injcþp ð1Þcpð1Þj0ini ¼ h0injdþ�pð1Þd�pð1Þj0ini
¼ j�pð1Þj2�2ðp ¼ 0Þ ¼ j�pð1Þj2 S

ð2	ℏÞ2 ; (52)

where S is the graphene area which is supposed to be
sufficiently large. Then the spectral density of the created
pairs per unit area of graphene is given by

np ¼ Np

S
¼ 1

ð2	ℏÞ2 j�pj2; (53)

where, in accordance with Eqs. (32), (37), and (49), j�pj2
is defined as

j�pj2 � j�pð1Þj2 ¼ 1

2

�
1� ℏ

vF

EðpÞ
�
;

EðpÞ ¼ lim
t!1Eðp; tÞ

¼ 4p2
1

�þ
Imðf��1;þf

0
�1;þÞ �

vF

ℏ�þ

�
p2 � e

c
A2;þ

�
;

f�1;þ � f�1;þðpÞ ¼ lim
t!1f�1ðp; tÞ: (54)

The net number of pairs created with all momenta (note
that the momenta of created quasiparticle and hole take the
opposite values because in the space homogeneous field
the momentum is conserved) is obtained by the integration
of Eq. (53)

n ¼
Z

d2pnp ¼ 1

ð2	ℏÞ2
Z

d2pj�pj2: (55)

Keeping in mind that there are N ¼ 4 species of quasi-
particles in graphene, for the total number of created pairs
per unit area one finally obtains

ntot ¼ 4n ¼ 1

	2ℏ2

Z
d2pj�pj2: (56)

Equations (54), (49), and (56) express ntot via the asymp-
totic solution of Eq. (14) with the initial conditions (21).
This solution can be found, either analytically or numeri-
cally, when the time-dependent electric field (4) and (5) is
specified.

IV. CREATION OF GRAPHENE QUASIPARTICLES
BYA SINGLE PULSE OF THE ELECTRIC FIELD

As an exactly solvable example we consider the electric
field of the form

A2ðtÞ ¼ �E0c

�
tanh ð�tÞ; E2ðtÞ ¼ E0

cosh 2ð�tÞ ; (57)

which goes to zero at t ! �1. Here E0 ¼ const is the
maximum strength of the field achieved at t ¼ 0. The
effect of the creation of massive spinor particles by this
field was considered in Ref. [33] in (3þ 1)-dimensional
space-time. Substituting Eq. (57) in Eq. (14) one obtains
the following exact solution satisfying the initial condi-
tions (21) (compare with Ref. [33]):

f�1ðp; tÞ ¼ Cpe
ivF��ðpÞt=ℏ

� ð1þ e2�tÞ�i�=	
2F1ð�; ;�;�e2�tÞ; (58)

where Cp is defined in Eq. (21), 2F1ð�;;�; zÞ is the

hypergeometric function, and all the other notations are

�2� ¼p2
1þ

�
p2	eE0

�

�
2
; �¼	vFeE0

ℏ�2
;

�¼ i

�
vFð�þþ��Þ

2ℏ�
� �

	

�
;

¼ i

�
vFð����þÞ

2ℏ�
þ �

	

�
; �¼ 1þ i

vF��
ℏ�

: (59)

Substituting Eq. (58) in Eqs. (54) and (49), one obtains [33]

j�pj2 ¼
sinh f 1

2ℏ� ½2�ℏ�� 	vFð�þ � ��Þ�g sinh f 1
2ℏ� ½2�ℏ�þ 	vFð�þ � ��Þ�g

sinh ð	vF�þ=ℏ�Þ sinh ð	vF��=ℏ�Þ : (60)

Using the definitions of� and�� in Eq. (59), one can see that
j�pj2 does not depend on the sign of the quantity eE0.
Because of this, in all calculations below we assume that
eE0 > 0. Furthermore, the function j�pj2 is an even function

with respect to both p1 andp2. As top1, this is evident from
the definition of �� in Eq. (59). When we replace p2 with
�p2, it holds�þð�p2Þ ¼ ��ðp2Þ and��ð�p2Þ ¼ �þðp2Þ.
This again leaves unchanged the function j�pj2 in Eq. (60).
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It is convenient to calculate the total number of pairs
(56) created per unit area of the graphene sheet using the
dimensionless momentum variables defined as

�1;2 ¼ �

eE0

p1;2 (61)

and the dimensionless quantities

~�2�ð�Þ ¼ �2
1 þ ð�2 	 1Þ2 ¼

�
�

eE0

�
2
�2�ðpÞ: (62)

In terms of the new variables, Eq. (56) takes the form

ntot ¼ 4

	2

�
eE0

ℏ�

�
2 Z 1

0
d�1

Z 1

0
d�2j��j2; (63)

where in accordance with Eq. (60)

j��j2¼
sinhf12�½2�ð~�þ� ~��Þ�gsinhf12�½2þð~�þ� ~��Þ�g

sinhð�~�þÞsinhð�~��Þ :

(64)

In Eq. (63) we have taken into account that j�j2 is an even
function of both �1 and �2.

We now turn to the integration in Eq. (63). This should
be done taking into account that the Dirac model of gra-
phene is applicable only up to some maximum momentum
pm � 1 eV=vF � 1:6� 10�20 g cm=s. Thus, the integra-
tions up to infinity in Eq. (63) can be performed only in the
cases when in the region of ð�1;�2Þ plane, giving the
major contribution to the integrals (56) and (63), it holds

p1;2 <pmax ; �1;2 <�max ¼ pmax

�

eE0

: (65)

If this is not the case, the integrations in Eqs. (56) and (63)
should be performed until pmax and �max , respectively.
Then the obtained result has a meaning of the lower limit
for the number of quasiparticles created in graphene by a
time-dependent electric field during its lifetime.

The characteristic behavior of the quantity j��j2 as a
function of �1 and �2 is different for different values of
field parameters E0 and �. We start from the region of
parameters satisfying the condition � < 1, where � is de-
fined in Eq. (59). The typical image of the function j��j2 in
this case is shown in Fig. 1 for � ¼ 0:48. This corresponds,

e.g., to � ¼ 1012 s�1 and E0 ¼ 1 V=cm or � ¼ 1013 s�1

andE0 ¼ 100 V=cm. Under the condition � < 1 Eq. (65) is
satisfied with sufficient accuracy, so that integrations in
Eq. (63) can be performed up to1. To gain a better under-
standing of different parameter regions, in Table I we list the
typical values of E0 and � and respective values of our
parameters � and�max (the latter is presented only for the
case � > 1, see below).
The characteristic feature seen in Fig. 1 is the break of

continuity of the function j��j2 at �1 ¼ 0, �2 ¼ 1. This
is the general property which holds at any � and can be
easily understood analytically. From Eq. (62) it follows
that at �1 ¼ 0,

~�þ ¼
(
1��2; �2 
 1;

�2 � 1; �2 > 1;
~�� ¼ �2 þ 1: (66)

Then the combinations entering Eq. (64) are given by

1� ~�þ � ~��
2

¼
(
1þ�2 ¼ ~��; �2 
 1;

2; �2 > 1;

1þ ~�þ � ~��
2

¼
(
1��2 ¼ ~�þ; �2 
 1;

0; �2 > 1:

(67)

FIG. 1 (color online). The quantity j��j2 as a function of �1

and �2 is plotted for the single pulse of an electric field (57)
satisfying the condition 	vFeE0=ðℏ�2Þ< 1.

TABLE I. The values of parameters � and�max determining the applicability of Eqs. (74) and (78), or (81) for the number of created
pairs per unit area of graphene for different field strengths E0 and different �.

�ðs�1Þ
E0 (V/cm) 108 1011 1012 1013 1014

0.1 � ¼ 4:8� 106 � ¼ 4:8 � ¼ 4:8� 10�2 � ¼ 4:8� 10�4 � ¼ 4:8� 10�6

�max ¼ 10 �max ¼ 104

1 � ¼ 4:8� 107 � ¼ 48 � ¼ 0:48 � ¼ 4:8� 10�3 � ¼ 4:8� 10�5

�max ¼ 1 �max ¼ 103

103 � ¼ 4:8� 1010 � ¼ 4:8� 104 � ¼ 4:8� 102 � ¼ 4:8 � ¼ 4:8� 10�2

�max ¼ 10�3 �max ¼ 1 �max ¼ 10 �max ¼ 100
104 � ¼ 4:8� 1011 � ¼ 4:8� 105 � ¼ 4:8� 103 � ¼ 48 � ¼ 0:48

�max ¼ 10�4 �max ¼ 0:1 �max ¼ 1 �max ¼ 10
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Substituting Eq. (67) in Eq. (64), one obtains

j��j2 ¼
(
1; �2 
 1;

0; �2 > 1;
(68)

i.e., there is a break of continuity at �2 ¼ 1.
It is convenient to perform integration in Eq. (63) in the

polar coordinates �1 ¼ �cos’, �2 ¼ �sin’ and
consider separately the regions of integration � 
 1 and
� � 1. Then Eq. (63) can be rearranged to the form

ntot ¼ 4

	2

�
eE0

ℏ�

�
2
Y;

Y ¼
Z 	=2

0
d’

�Z 1

0
�d�j��j2 þ

Z 1

1
�d�j��j2

�
� Y1 þ Y2; (69)

where j��j2 is given in Eq. (64). Numerical evaluation of
the integral Y1 shows that it depends only weakly on the
parameter �. Thus, for � � 0:99 it holds Y1 ¼ 0:56, for
� ¼ 0:48 and � 
 0:048we find Y1 ¼ 0:59 and Y1 ¼ 0:60,
respectively. This integral can be also estimated analyti-
cally, taking into account that for � � 1 and � � 1 the
hyperbolic functions in Eq. (64) can be replaced with their
arguments

Y1 �
Z 	=2

0
d’

Z 1

0
�d�

4� ð~�þ � ~��Þ2
4~�þ~��

¼ 1

2

Z 	=2

0
d’

Z 1

0
�d�

�
1þ 1��2

~�þ~��

�
: (70)

Expanding the last expression in powers of �, we find

Y1 �
Z 	=2

0
d’

Z 1

0
�d�

�
1� 1

2
�2

�
¼ 3	

16
¼ 0:589 (71)

in a very good agreement with the results of numerical
computations. Thus, in fact our analytic result is applicable
in a wider region of parameters � < 1.

In the region �> 1, the numerical evaluation of the
integral Y2 for � ¼ 0:48, 0.048, 4:8� 10�3, and 4:8�
10�4 leads to Y2 ¼ 0:831, 2.57, 4.38, and 6.19, respec-
tively. On the other hand, for � � 1 and �  1 one can
replace the hyperbolic sines with their arguments in the
numerator of Eq. (64) (using the fact that the large quantity
� is canceled) and put ~�þ � ~�� � � in the denominator.
Then we arrive at

Y2 �
Z 	=2

0
d’

Z 1

1
�d�

�2ð1� sin 2’Þ
sinh2ð��Þ

¼	

4

Z 1

�
d�

�

sinh2�
¼	

4
ð� ln2þ�coth�� ln sinh�Þ

�	

4
½1� ln ð2�Þ�: (72)

For the same values of �, as indicated above, the analytic
expression (72) results in the following respective
values: Y2 ¼ 0:817, 2.62, 4.43, and 6.24. Thus, in fact,

our asymptotic expression (72) works good in a much
wider region � < 1.
By adding Eqs. (71) and (72) in accordance with

Eq. (69), we obtain

Y ¼ 	

4

�
7

4
� ln ð2�Þ

�
: (73)

In Fig. 2 the values of Y are shown by the solid line as a
function of log 10�. In the same figure the results of
numerical computations are indicated by dots. It is seen
that a simple analytic expression (73) is in a very good
agreement with our computational results over a wide
region of parameters. Substituting Eq. (73) in Eq. (69),
for the total number of graphene quasiparticles per unit
area created by the electric field (57) under the condition
� < 1, we arrive at the following result:

ntot ¼ 1

	

�
eE0

ℏ�

�
2
�
7

4
� ln

�
2	vFeE0

ℏ�2

��
: (74)

We now turn our attention to the case � > 1. In this case
the characteristic behavior of j��j2 as a function of �1

and�2 is shown in Fig. 3 plotted for � ¼ 4:8. As is seen in
Fig. 3, for � > 1 the surface representing j��j2 is more
concentrated around the coordinate origin than in the case
� < 1. With further increase of � the region in a
ð�1;�2Þ-plane, giving major contribution to the integral
(63), quickly decreases. The integration in Eq. (63) can be
performed analytically under the condition �  1. In this
case the hyperbolic functions in Eq. (64) can be replaced
with the exponents and we arrive at

j��j2 � e�ð2�~�þ�~��Þ: (75)

Unlike the case � < 1, considered above, in the case
� > 1 the region of integration in Eq. (63) requires more
caution. Thus, if �max 
 1 (i.e., eE0=� � pmax ), where
�max from Eq. (65) is the maximum dimensionless
momentum allowed by the Dirac model, the contributing

FIG. 2 (color online). The computational results for the quan-
tity Y defined in Eq. (69) as a function of � ¼ 	vFeE0=ðℏ�2Þ
are shown as bold dots. The analytical dependence of Y on �
from Eq. (73) is plotted by the solid line.
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momentum � might be larger than �max . Then the inte-
gration in Eq. (63) must be performed up to�max in order
to not go beyond the scope of the Dirac model. In this case
we can put

2� ~�þ � ~�� � �cos 2’�2 (76)

and Eq. (63) leads to

ntot � 4

	2

�
eE0

ℏ�

�
2Z 	=2

0
d’

Z �max

0
�d�e��cos2’�2

¼�2
max

	

�
eE0

ℏ�

�
2
e���2

max =2

�
I0

�
��2

max

2

�
þ I1

�
��2

max

2

��
;

(77)

where InðzÞ are the Bessel functions of the imaginary
argument. Keeping in mind the condition ��2

max  1,
which is satisfied in our case, and using the asymptotic
expressions for the Bessel functions at large arguments, we
obtain a more simple expression:

ntot � 2

	2

pm

ℏ

ffiffiffiffiffiffiffiffiffi
eE0

ℏvF

s
: (78)

This gives the lower limit for the number of created pairs
per unit area of graphene under the condition �max 
 1,
i.e., eE0=� � pmax . It is interesting to note that the result
in this case does not depend on �, i.e., on the lifetime of
the field [see Table I for the region of E0 and � where
Eq. (78) is applicable].

Another option which can be realized in the case � > 1
is �max > 1, i.e., eE0=�< pmax . Under these conditions
Eq. (65) is satisfied for all contributing momenta, so that
the integration in Eq. (63) can be performed up to infinity.
To calculate the integral we again represent the quantity
(63) in the form (69). Then the contribution Y1 can be
calculated according to Eq. (77) with the upper integration
limit �max replaced with unity. This leads to

Y1 �
ffiffiffiffi
	

p
2
ffiffiffi
�

p ¼
ffiffiffi
ℏ

p
�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vFeE0

p : (79)

In the region �> 1 it holds ~�þ þ ~�� � 2� and with an
account of Eq. (75) the contribution Y2 is the following:

Y2 �
Z 	=2

0
d’

Z 1

1
�d�e2�ð1��Þ ¼ 	

4�

�
1þ 1

2�

�

� 	

4�
¼ ℏ�2

4vFeE0

: (80)

Substituting Eqs. (79) and (80) in Eq. (69), for the total
number of pairs per unit area, created in the case �  1
and eE0=�< pmax , we obtain

ntot � 2

	2

ðeE0Þ3=2
ℏ3=2v1=2

F �

�
1þ ℏ1=2�

2ðvFeE0Þ1=2
�
: (81)

By contrast with Eq. (78), here the number of created pairs
depends on a lifetime of the electric field [the region of E0

and� where Eq. (81) is applicable can be seen in Table I].
We note also that although Eq. (81) was derived under the
condition �  1, it is in fact applicable starting from
� � 2 due to the specific functional form of j��j2.

V. COMPARISON WITH THE CASE
OF STATIC ELECTRIC FIELD

As discussed in Sec. I, the creation of quasiparticles in
graphene by the space homogeneous static electric field
was investigated in Refs. [22,29]. Here we reproduce
the results of these references as a limiting case of the
time-dependent field considered in Sec. IV and compare
the numbers of pairs created by the static and time-
dependent fields.
The static space homogeneous electric field directed

along the axis x2 can be obtained as a particular case of
the time-dependent field (57) when � ! 0,

A2 ¼ �E0ct; E2 ¼ E0: (82)

The spectral density of pairs created by the constant field
can be found by the limiting transition � ! 0 in the
spectral density (60). For this purpose, using the expres-
sions for �� in Eq. (59), we find that at small �,

�� � eE0

�
	 p2 þ p2

1

2

�

eE0

: (83)

From Eq. (83) one obtains

�þ � �� � �2p2: (84)

With the help of Eq. (84), for the arguments of both hyper-
bolic sines in the numerator of Eq. (60) we arrive at

�	 	vFð�þ � ��Þ
2ℏ�

� 	vFeE0

ℏ�2
� p2

	vF

ℏ�
: (85)

FIG. 3 (color online). The quantity j��j2 as a function of �1

and �2 is plotted for the single pulse of an electric field (57)
satisfying the condition 	vFeE0=ðℏ�2Þ> 1.
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Now we multiply both sides of Eq. (83) by 	vF=ðℏ�Þ and
obtain

	vF��
ℏ�

� 	vFeE0

ℏ�2
	 p2

	vF

ℏ�
þ p2

1

2

	vF

ℏeE0

: (86)

Then, by comparing the right-hand sides of Eqs. (85) and
(86), we find

�	 	vFð�þ � ��Þ
2ℏ�

� 	vF�	
ℏ�

� p2
1

2

	vF

ℏeE0

: (87)

Taking into account that in the limiting case � ! 0 all
hyperbolic sines in Eq. (60) can be replaced with the
exponents, the final result for a static electric field is

j��j2 ¼ e�	vFp
2
1
=ðℏeE0Þ (88)

in agreement with Refs. [22,29]. We note that the right-
hand side of Eq. (88) does not depend on p2. In this case, as
was shown in Ref. [5] for the massive particles in ð3þ 1Þ
dimensions, the integration with respect to p2 in Eq. (56)
should be performed according to

Z 1

�1
dp2 ¼ eE0T; (89)

where T is the total (infinitely large) lifetime of the static
electric field. Substituting Eqs. (88) and (89) in Eq. (56),
we obtain

ntot ¼ ðeE0Þ3=2
	2ℏ3=2v1=2

F

T: (90)

In the case of a static field, the physically meaningful
quantity is not ntot, but the number of pairs created per
unit area of graphene per unit time

Itot ¼ ntot
T

¼ ðeE0Þ3=2
	2ℏ3=2v1=2

F

; (91)

which is also called the local rate of pair creation [22].
The results (90) and (91) were derived without regard for

the application range of the Dirac model in Eq. (65). In fact
the integration with respect to p1 satisfies the condition
(65) with large safety margin, whereas the integration with
respect to p2 does not. If we wish to stay within the
application region of the Dirac model, Eq. (89) should be
replaced with Z pmax

�pmax

dp2 ¼ 2pmax : (92)

As a result, the lower limit for the number of pairs created by
the static field during its infinitely long lifetime is given by

ntot ¼ 2

	

pm

ℏ

ffiffiffiffiffiffiffiffiffi
eE0

ℏvF

s
: (93)

This coincides with Eq. (78) obtained for the time-
dependent field (82) satisfying the conditions � > 1 and
�max < 1, as it should be.
It is interesting to formally compare the creation rate by

the static field (91) with respective results for the time-
dependent field (57). First, we consider the case � > 1 and
�max > 1 when the total number of created pairs per unit
area of graphene is given by Eq. (81). For a lifetime of the
field (57) one can take the time interval T ¼ 4=� during
which this field increases from 0:07E0 to E0 and then
decreases back to 0:07E0. The mean value of the field
(57) during this lifetime is given by

�E ¼ 1

T

Z T=2

�T=2

E0dt

cosh 2ð�tÞ ¼
E0

2

e4 � 1

e4 þ 1
� E0

2
; (94)

and the mean creation rate is obtained from Eq. (81) with
� ¼ 4=T,

�Itot ¼ ntot
T

¼ 1

2	2

ðeE0Þ3=2
ℏ3=2v1=2

F

(95)

[we consider the values of parameters where it is possible
to omit the second term on the right-hand side of Eq. (81);
see below for full computational results]. This should be
compared with the creation rate (91) for a static field
having the same strength as the mean strength of a time-
dependent field, i.e., with E0 replaced for E0=2:

Itot ¼ ntot
T

¼ 1

2
ffiffiffi
2

p
	2

ðeE0Þ3=2
ℏ3=2v1=2

F

: (96)

A comparison between the right-hand sides of Eqs. (95)
and (96) shows that the creation rate for a time-dependent
field is by a factor of 1.41 larger than for a static field.
Using this method of comparison, we now compare the

creation rates of graphene quasiparticles, created by the
time-dependent and static electric fields, for different val-
ues of field parameters. We begin with the case � < 1when
ntot is given by Eq. (74). The creation rates �Itot calculated
for a lifetime T ¼ 4=� for E0 ¼ 0:1 V=cm,� ¼ 1012 s�1

(� ¼ 4:8� 10�2) and E0 ¼ 104 V=cm, � ¼ 1014s�1

(�¼0:48) are 7:5�1015 cm�2s�1 and 3:2�1023 cm�2s�1,
respectively (see Table I). These should be compared with
respective creation rates Itot in the static electric field equal
to E0=2: 6:7� 1015 cm�2 s�1 and 2:1� 1023 cm�2 s�1.
As can be seen from the comparison, the creation rates
by time-dependent fields are larger by the factors 1.12 and
1.52, respectively.
Next, we consider the case � > 1 and eE0=�< pmax

where Eq. (81) for ntot is applicable. Here, the creation
rates �Itot calculated for the parameters E0 ¼ 0:1 V=cm,
� ¼ 1011 s�1 (� ¼ 4:8, eE0=� ¼ 10�4pmax ) and E0 ¼
103 V=cm, � ¼ 1013 s�1 (� ¼ 4:8, eE0=� ¼ 10�2pmax )
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are 1:32� 1016 cm�2 s�1 and 1:32� 1022 cm�2 s�1,
respectively (see Table I). These should be compared
with respective creation rates Itot in the static electric fields
6:7� 1015 cm�2 s�1 and 6:7� 1021 cm�2 s�1 leading to
an excess by the factor of 1.97 in the case of time-dependent
fields. Note that the factor 1.97 obtained now exceeds the
factor 1.41 obtained above from the comparison of Eq. (95),
which is valid in the region � < 1 and eE0=�< pmax , and
Eq. (96). This is because for the field parameters chosen
now, the second term on the right-hand side of Eq. (81)
contributes significantly. The values of the field parameters
leading to the factor 1.41 are illustrated below.

As the last example, we consider the field parameters
satisfying the conditions � > 1 and eE0=� � pmax , i.e.,
the application region of Eq. (78). In this region, in
accordance to Table I, we take the following values of
parameters: E0 ¼ 1 V=cm, � ¼ 108 s�1 (� ¼ 4:8� 107,
eE0=� ¼ pmax ) and E0 ¼ 104 V=cm, � ¼ 1011s�1

(� ¼ 4:8� 105, eE0=� ¼ 10pmax ). Then we get �Itot ¼
3� 1017 cm�2 s�1 and �Itot ¼ 3� 1022 cm�2 s�1, respec-
tively. Comparing with respective values in the case
of a static field (Itot ¼ 2:1� 1017 cm�2 s�1 and Itot ¼
2:1� 1023 cm�2 s�1), we find that for the first set of field
parameters there is an excess by the factor 1.42 in the case
of a time-dependent field. This is because these field
parameters satisfy a condition eE0=� ¼ pmax on the bor-
derline to eE0=�< pmax where Eq. (81) with neglected
second term on the right-hand side is applicable (in so
doing the value of � has a little effect; it is only required
that �  1). As to the second set of field parameters, the
number of pairs created by a static field is 7 times larger
than by a time-dependent field.

In the above computations, we did not take into account
the backreaction of created pairs on an external field. For a
static field, an estimation of the time interval after which
the effect of backreaction should be taken into account is
provided in Ref. [22]. Keeping in mind that according to
our computations the creation rates in static and time-
dependent fields are qualitatively the same, this estimation
is applicable in our case as well.

VI. CONCLUSIONS AND DISCUSSION

In the foregoing we have investigated the creation of
quasiparticle pairs in graphene by the space homogeneous
time-dependent electric field. For this purpose the

previously developed formalism describing the creation
of electron-positron pairs by a nonstationary field in the
ð3þ 1Þ-dimensional casewas adapted for massless particles
in ð2þ 1Þ-dimensional space-time. This allowed us to ex-
press the characteristics of created pairs via the asymptotic
solutions at t ! 1 of the second-order ordinary differential
equation of an oscillator-type with complex frequency.
The fundamental difference with the case of massive

particles, whose creation is exponentially suppressed for
fields below 1016 V=cm, is that the creation of massless
quasiparticles in graphene occurs in easily accessible weak
fields [22,29]. This presents a unique opportunity to test the
nonlinear effects of quantum electrodynamics, such as par-
ticle creation from vacuum by an external field, on a labo-
ratory table with no use of huge concentrations of energy
and related expensive setups. In this regard it should be
noted that another prediction of quantum electrodynamics,
the Casimir effect, is already widely discussed in the appli-
cation to graphene (see, e.g., Refs. [34–39]), and the mea-
surement of the Casimir force from the graphene sheet has
been performed very recently [40]. At the moment, gra-
phene single crystals with dimensions of up to 500 �m on a
side and electron mobility higher than 4000 cm2 V�1 s�1

(i.e.,�1010 cm�2 concentration of impurities) are obtained
[41]. This is more favorable for observation of the effect of
pair creation than the parameters used in Ref. [22] (100 �m
and 2� 1011 cm�2, respectively).
The creation of graphene quasiparticles by a time-

dependent electric field, considered in this paper, may
present some advantages with respect to the experimental
observation, as compared to the case of static field. It
presents a wide variety of different creation regimes
depending on the field parameters. All these regimes are
considered in our paper in detail, and simple analytic
expressions for the number of created pairs per unit area
of graphene convenient for applications are obtained in
each case. For this purpose the exact solution of a Dirac
equation describing the interaction of quasiparticles with a
single pulse of the electric field has been used. Special
attention was paid to the cases when the creation rate in a
time-dependent field is larger than in a static field.
In the future, it would be interesting to investigate the

creation of quasiparticle pairs in graphene by electro-
magnetic fields of more complicated configurations, spe-
cifically, by the electric field with a periodic dependence
on time.
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