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In this paper we determine the exact fermionic spectral function of the Bloch-Nordsieck model at finite

temperature. Analytic results are presented for some special parameters; for other values we have

numerical results. The spectral function is finite and normalizable for any nonzero temperature value.

The real time dependence of the retarded Green’s function is powerlike for small times and exhibits

exponential damping for large times. Treating the temperature as an infrared regulator, we can also give a

safe interpretation of the zero temperature result.

DOI: 10.1103/PhysRevD.87.125007 PACS numbers: 11.15.�q, 11.10.Gh, 11.10.Wx, 12.20.�m

I. INTRODUCTION

The behavior of the ultrasoft regime of massless field
theories presents a serious challenge which, on the other
hand, is crucial for understanding of the most physically
relevant theories. The soft nature of the excitations pertur-
batively leads to infrared (IR) divergences in various physi-
cal quantities such as the self-energy near the mass shell.
To have reliable results, one has to resum the most sensitive
part of the IR physics. The identification of the sources of
these divergences, the elaboration of the appropriate
mathematical tools, and finally the realization of the
resummation itself are formidable tasks. Moreover, the
details can depend on the environment; that is, the resum-
mation in deep inelastic scattering and at finite temperature
equilibrium may require different approaches. It is not a
surprise, therefore, that so many resummation methods
exist, working at different circumstances.

In this sensitive field, where the physical reliability of a
resummation may crucially depend on the correct identi-
fication of the relevant sources of the IR divergences, it is
quite valuable to find a model which is physically moti-
vated and exactly solvable. This is the reason why so many
two-dimensional conformal and integrable theories have
relevance. In four dimensions, however, exactly solvable
models are much rarer.

A physically well-motivated model is the Bloch-
Nordsieck (BN) model [1]. In its long history it became a
textbook material [2,3]. Physically it corresponds to the
deep IR limit of QED, where the photons have no energy
even for a fermion spin-flip. In particular it can be used to
prove QED theorems in this energy regime [4]. The BN
model can be solved exactly; the photon contributions can
be fully summed up. The fermion propagator has been
calculated at zero temperature based on both functional

methods [2,3] and with the help of Dyson-Schwinger
equations [5,6], where also a detailed renormalization
analysis is possible. The spectral function of the model at
zero temperature reads in Feynman gauge as

%ðw;T¼ 0Þ�w�1��
�; where w¼ u�p

��m; �¼ e2

4�
:

(1)

Here u is a four-vector parameter of the model, loosely
identifiable with the four-velocity of the fermion. This
function, however, has a singular behavior: it is not normal-
izable; therefore, the sum rule

R
� ¼ 2� can be satisfied

only with zero wave function renormalization factor.
Moreover, the naive inverse Fourier transform of this func-

tion is�t�=�, describing growth of correlation in time. The
correct physical interpretation of these results requires
some IR regulator, which can be, for example, the
temperature.
At finite temperature the model is studied less often. In

the seminal papers of Blaizot and Iancu [7,8], the authors
studied the large time behavior of the fermion propagator
with the hard thermal loop (HTL) improved photon propa-
gator. Using this result, Weldon worked out a spectral
function which is valid in the vicinity of the mass shell
[9]. With a different approach, Fried et al. studied the time
dependence of the momentum loss of a hard incoming
fermionic particle [10].
We have several goals in this paper. The main goal is to

work out the complete spectral function of the BN model
for all momenta, and see how the short time dynamics,
resembling the T ! 0 limit, goes over to the long time
damping. Because of the relative simplicity of the
model, we can even give analytic solutions for certain
parameters, while for other, analytically not reachable
parameter values, we used a well-controlled numerical
procedure. Another goal is to extend our Dyson-
Schwinger formalism combined with Ward identities [6],
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which works excellently at zero temperature, to finite
temperatures. With the help of it, the complete renormal-
ization process remains fully controlled.

Our paper will be organized as follows. First, we define
the Bloch-Nordsieck model in Sec. II. We review the
Dyson-Schwinger equations and Ward identities in finite
temperature real time formalism, and apply them to the
Bloch-Nordsieck model. In Sec. III we solve these equa-
tions. At zero velocity (Sec. III C) we provide an analytic
formula for the fermion propagator, supported by a
numerical verification. At nonzero velocity (Sec. III D)
we solve them numerically. In Sec. III E we compare our
results with previous works in the literature. In Sec. IV we
give the conclusions of the paper.

II. THE BLOCH NORDSIECK MODEL AT
FINITE TEMPERATURE

The Bloch-Nordsieck model is the low energy limit of
QED, where we take into account only a single spin
orientation. Its Lagrangian is related to the QED
Lagrangian by changing the Dirac matrices �� for a
four-vector u�:

L ¼ � 1

4
F��F

�� þ�yðiu�D� �mÞ�;

iD� ¼ i@� � eA�; F�� ¼ @�A� � @�A�:
(2)

We can choose u to be a four-velocity, or it can be u ¼
ð1; vÞ: the two are related by a simple field and mass
rescaling, since by replacing � ! �=

ffiffiffiffiffi
u0

p
and m !

mu0, we can reach the u0 ¼ 1 scenario. The quantity
v ¼ u=u0 can be interpreted as the velocity of the fermion.

We are interested in the finite temperature fermion
propagator. To determine it, we use the real time formalism
(for details, see [11]). Here the time variable runs over a
contour containing forward and backward running sections
(C1 and C2). The propagators are subject to boundary
conditions which can be expressed as the Kubo-Martin-
Schwinger relations. The physical time can be expressed
through the contour time t ¼ T ð�Þ. This makes it possible
to work with fields living on a definite branch of the
contour, �aðt;xÞ ¼ �ð�a;xÞ, where T ð�aÞ ¼ t, and
�a 2 Ca for a ¼ 1, 2, and similarly for the gauge fields.
The propagators are matrices in this notation:

iGabðxÞ ¼ hTC�aðxÞ�y
b ð0Þi and

iG��;abðxÞ ¼ hTCA�aðxÞA�bð0Þi;
(3)

where TC denotes ordering with respect to the contour
variable (contour time ordering). G11 corresponds to the
Feynman propagator, and, since the C2 contour times are
always larger than the C1 contour times, G21 ¼ G> and
G12 ¼ G< are the Wightman functions. The Kubo-Martin-
Schwinger relation for a bosonic/fermionic propagator
reads G12ðt;xÞ ¼ �G21ðt� i�;xÞ, which has the follow-
ing solution in Fourier space:

iG12ðkÞ ¼ �n�ðk0Þ%ðkÞ;
iG21ðkÞ ¼ ð1� n�Þðk0Þ%ðkÞ;

(4)

where

n�ðk0Þ ¼ 1

e�k0 � 1
and %ðkÞ ¼ iG21ðkÞ � iG12ðkÞ

(5)

are the distribution functions [Bose-Einstein (þ) and
Fermi-Dirac (�) statistics] and the spectral function,
respectively. It is sometimes advantageous to change to
the retarded/advanced (R/A) formalism with field assign-
ment �1;2 ¼ �r ��a=2. Then one has Gaa ¼ 0 for both

the fermion and the photon propagators. The relation
between the Keldysh and the R/A propagators reads

Grr¼G21þG12

2
; G11 ¼GraþG12; %¼ iGra� iGar:

(6)

Gra is the retarded propagator, Gar is the advanced propa-
gator, and Grr is usually called the Keldysh propagator.
At zero temperature, the fermionic Feynman propagator

reads

G0ðpÞ ¼ 1

u�p
� �mþ i"

: (7)

It has a single pole which means that there are no antipar-
ticles in the model. Consequently, all closed fermion loops
are zero; thus, there is no self-energy correction to the
photon propagator at zero temperature. Physically this
means that the energy is not enough to excite the antipar-
ticles. In fact, if we interpret the u parameter as the four-
velocity of the fermion, the Bloch-Nordsieck model
describes that regime where the soft photon fields do not
have energy even for changing the velocity of the fermion
(no fermion recoil). This leads to the interpretation that the
fermion is a hard probe of the soft photon fields, and as
such it is not part of the thermal medium [8]. So we will set
G12 ¼ 0; therefore, the closed fermion loops and the pho-
ton self-energy remain zero even at finite temperature.
Another, mathematical reason why we must not consider
dynamical fermions—which could show up in fermion
loops—is that the spin-statistics theorem [12] forbids a
one-component dynamical fermion field.
This means that now the exact photon propagator reads

in Feynman gauge

Gab;��ðkÞ¼�g��GabðkÞ; Gra¼ 1

k2

��������k0!k0þi"
;

%ðkÞ¼2�sgnðk0Þ	ðk2Þ;
(8)

all other propagators can be expressed using identities (4)
and (6).
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A. Dyson-Schwinger equations

The operator equations of motion give relations of the
different Green’s functions, formulated as the Dyson-
Schwinger equations. These equations are local, and so
they are valid in generic nonequilibrium situations, and, of
course, in a thermal medium, too.

The generating form of the Dyson-Schwinger equations
for generic fields �i reads [13]�

	S

	�iðyÞ�a1ðx1Þ . . . �anðxnÞ
�

¼ i
Xn
k¼1

	iak	ðy� xkÞh�a1ðx1Þ . . . �ak�1
ðxk�1Þ

��akþ1
ðxkþ1Þ . . . �anðxnÞi: (9)

In real time formalism the time variable is the contour time
(usually it is the variable of the path integral). We define
the fermionic self-energy in the usual way:

Gðx;yÞ¼Gð0Þðx;yÞþ
Z
C
d4x0d4y0Gð0Þðx;x0Þ�ðx0;y0ÞGðy0;yÞ;

(10)

where the symbol
R
C means time integration over the

contour. Then we find in the Bloch-Nordsieck model

�ðx;yÞ¼ i�ðx0Þe2u�
Z
C
d4wd4zGðx;wÞG��ðx;zÞ��ðz;w;yÞ;

(11)

where the tree level vertex is eu�, the proper vertex is

denoted by e��, and �ðx0Þ is 1 if x0 2 C1 and �1 if

x0 2 C2. This factor appears because we expressed the
functional derivative 	S

	�iðyÞ through the derivatives of the

Lagrangian, which, however, changes sign on C2.
We can also express this equation with the two-

component notation as shown in Fig. 1. In terms of analytic
formulas, it reads

�abðx; yÞ ¼ i�ae
2u�

X2
c;d¼1

Z
d4wd4zGacðx; wÞ

�G
��
ad ðx; zÞ��;dcbðz;w; yÞ; (12)

where �a ¼ ð�1Þaþ1. In Fourier space it reads

�abðpÞ ¼ i�ae
2u�

X2
c;d¼1

Z d4k

ð2�Þ4 Gacðp� kÞG��
ad ðkÞ

� ��;dcbðk;p� k; pÞ: (13)

B. The vertex function in the Bloch-Nordsieck model

The second use of the Dyson-Schwinger equation is to
have a form for the vertex function. From (9) we find for
any gauge theories�

	S

	A�ðxÞOð ��;�Þ
�
¼ 0; (14)

where O is any local operator containing �� and �. This
implies, in particular,

hA�ðxÞ�ðyÞ ��ðzÞi ¼
Z
C
d4x0G��ðx; x0Þhj�ðx0Þ�ðyÞ ��ðzÞi;

(15)

where j� is the conserved current. The vertex function

shows up in the A��y correlator as

hA�ðxÞ�ðyÞ ��ðzÞi ¼
Z
C
d4x0d4y0d4z0iG��ðx; x0Þi

�Gðy; y0Þð�ieÞ��ðx0; y0; z0ÞiGðz0; zÞ:
(16)

From here we findZ
C
d4y0d4z0iGðy;uÞe��ðx;u;vÞiGðv;zÞ¼hj�ðxÞ�ðyÞ ��ðzÞi:

(17)

In the BN model the fermion propagator is a scalar; more-
over, j� ¼ eu��

y� is proportional to u�. Therefore the

vertex function is proportional to u�, too. This is written in
the Fourier space as

��ðk;p; qÞ ¼ u��ðk;p; qÞð2�Þ4	ðkþ p� qÞ; (18)

where we also used the energy-momentum conservation.

C. Ward identities

The local equations expressing current conservation can
be used in a similar manner. The generating form reads

@

@x�
hj�ðxÞ�a1ðx1Þ . . . �anðxnÞi

¼ �i
Xn
k¼1

	iak	ðx� xkÞh�a1ðx1Þ . . . �ak�1
ðxk�1Þ��iðyÞ

��akþ1
ðxkþ1Þ . . . �anðxnÞi; (19)

where ��i is the transformation of the ith field generated
by the conserved chargeQ ¼ R

d3xj0ðt;xÞ. This means, in
particular,

@

@x�
hj�ðxÞ�ðyÞ ��ðzÞi ¼ e	ðx� zÞGðy; zÞ

� e	ðx� yÞGðy; zÞ: (20)

We can write the corresponding equation for the vertex
function using (17):FIG. 1. The Dyson-Schwinger equations in real time formalism.
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@

@x�

Z
C
d4ud4viGðy; uÞ��ðx; u; vÞiGðv; zÞ

¼ 	ðx� zÞGðy� zÞ � 	ðx� yÞGðy� zÞ: (21)

This form is easy to rewrite in the two-component formal-
ism, taking into account that to satisfy the delta function
the time arguments must be on the same contour. One finds
in Fourier space

k��
�
abcðk;p; qÞ ¼ ½	abG�1

bc ðqÞ � 	acG�1
bc ðpÞ�ð2�Þ4

� 	ðkþ p� qÞ: (22)

In the Bloch-Nordsieck model, because of the special
property of the vertex function expressed in (18), the
vertex function is completely determined by the fermion
propagator:

�abcðk;p;qÞ¼ 1

uk
½	abG�1

bc ðqÞ�	acG�1
bc ðpÞ�jp¼q�k: (23)

III. SOLUTION OF THE DYSON-SCHWINGER
EQUATIONS

Since the vertex function in the Bloch-Nordsieck model
can be expressed with the fermion propagator, the Dyson-
Schwinger equations for the fermion propagator become
closed. At zero temperature it can be shown [5,6] that
the solution of this equation yields the same result as the
functional techniques; moreover, renormalization can be
fully controlled here. In this section we discuss the solution
at finite temperature.

We will use Feynman gauge and denote the photon
propagator as G�� ¼ �g��G. Then this closed equation

can be written as

�acðpÞ¼�ie2U2�a

X2
a0;b0¼1

Z d4k

ð2�Þ4
1

uk
Gaa0 ðkÞGab0 ðp�kÞ

�½	a0b0 ðG�1Þb0cðpÞ�	a0cðG�1Þb0cðp�kÞ�

¼�ie2U2�a

"X2
a0¼1

ðG�1Þa0cðpÞ
Z d4k

ð2�Þ4
1

uk
Gaa0 ðkÞ

�Gaa0 ðp�kÞ�	ac

Z d4k

ð2�Þ4
1

uk
GaaðkÞ

#
; (24)

where U2 ¼ u20 � u2. In particular,

�11ðpÞ ¼ �ie2U2

"X2
a0¼1

ðG�1Þa01ðpÞ
Z d4k

ð2�Þ4
1

uk
G1a0 ðkÞ

�G1a0 ðp� kÞ �
Z d4k

ð2�Þ4
G11ðkÞ
uk

#

�12ðpÞ ¼ �ie2U2
X2
a0¼1

ðG�1Þa02ðpÞ
Z d4k

ð2�Þ4
1

uk
G1a0 ðkÞ

�G1a0 ðp� kÞ: (25)

Instead of G11 and G22 it is more aesthetic to work with
the retarded and advanced propagators [the relations are
given in (6)]. Since in the R/A formalism Gaa ¼ 0, the
retarded propagator satisfies a homogeneous self-energy
relation

GraðpÞ ¼ Gð0Þ
ra ðpÞ þGð0Þ

ra ðpÞ�arðpÞGraðpÞ; (26)

while the propagators in the 1, 2 components mix. From
the definitions we easily find

�ar ¼ �11 þ�12; G11 � G12 ¼ Gar: (27)

Therefore we have, using (25) and (6),

�arðpÞ ¼ J ðpÞG�1
ra ðpÞ � �M; (28)

where

J ðpÞ ¼ �ie2U2
Z d4k

ð2�Þ4
1

uk
ðG21ðkÞGraðp� kÞ

�GraðkÞG12ðp� kÞÞ;

�M ¼ �ie2U2
Z d4k

ð2�Þ4
G11ðkÞ
uk

: (29)

It is easy to see that �M ¼ 0. The G11 photon propa-
gator is even for k ! �k, which is true in general, but now
we can prove by inspecting the free propagator which is
exact in our case

iG11ðkÞ ¼ i

k2 þ i"
þ ðnðk0Þ þ�ð�k0ÞÞ2�sgnðk0Þ	ðk2Þ:

(30)

For the first term the k ! �k symmetry is evident; in the
second we should use the identity nðk0Þþnð�k0Þþ1¼0.
Therefore with the change k ! �k of the integration vari-
able, the G11 propagator remains the same while uk
changes sign, so �M changes sign, too. As a consequence
�M ¼ 0.
The Bloch-Nordsieck model, like all four-dimensional

interacting quantum field theories, contains divergences.
To obtain a finite result, we need wave function, mass,
and coupling constant renormalization. Since the above
expressions have contained the original parameters of the
Lagrangian, we should rewrite them in terms of the renor-
malized quantities. From now on the parameters m and e
will denote the renormalized ones, while m0 and e0 are the
bare quantities. Renormalization goes like in the zero
temperature case [6]: assuming that the renormalized
mass m ¼ Zm0 where Z is the fermion wave function
renormalization constant (this is ensured by the Ward
identities), we can write G�1

ra ¼ Zðup�mÞ ��ar, and
from (28) we find

GraðpÞ¼ 
ðpÞ
up�m

; where 
ðpÞ¼1þJ ðpÞ
Z

: (31)
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A. Calculation of J

In the expression of J in Eq. (29) there appears
G12ðkÞ. As we discussed earlier, for the sake of physical
and mathematical consistency of the model, we must as-
sume that the fermion describes a hard probe and is not a
dynamical field, which means that we must setG12ðkÞ ¼ 0.
Then from (29) we can easily recover the zero temperature
result [6]. At finite temperature we have

J ðpÞ ¼ �ie2U2
Z d4k

ð2�Þ4
1

uk
G21ðkÞGraðp� kÞ: (32)

Next we prove by recursion that the solution for Gra

depends solely on w ¼ up�m. It is true at tree level

where G�1
ra ¼ up�m. So let us assume that GraðpÞ ¼

�Graðup�mÞ. Then

J ðpÞ ¼ �ie2U2
Z d4k

ð2�Þ4
1

uk
G21ðkÞ �Graðup�m� ukÞ;

(33)

implying J ðpÞ ¼ �J ðup�mÞ. Equation (31) tells us that
if J depends only on up�m, then Gra also depends only
on up�m. With this statement the recursion is closed.

Since in the BN model the free photon propagator
is exact, we shall write it into Eq. (32). Using (4) for the
G21 propagator, and applying the Landau prescription
(w ! wþ i"), we find

�J ðwÞ ¼ e2U2
Z d4k

ð2�Þ4
1

uk
ð1þ nðk0ÞÞ 2�2k ð	ðk0 � kÞ

� 	ðk0 þ kÞÞ �Graðw� ukÞ: (34)

This result, as we shall show in Sec. III E, is consistent with
the results of [7,8].

The k integration can be performed, apart from the
single component q ¼ ku. We find after a straightforward
calculation

�J ðwÞ ¼ ��

�

Z 1

�1
dqfðq; uÞ �Graðw� qÞ; (35)

where � ¼ e2=ð4�Þ and

fðq; uÞ ¼ u0ð1� v2Þ
2v

Z u0ð1þvÞ

u0ð1�vÞ
ds

us2

�
1þ n

�
q

s

��

¼ u0ð1� v2Þ
2vq�

ln
e�q=ðu0ð1�vÞÞ � 1

e�q=ðu0ð1þvÞÞ � 1
; (36)

where u ¼ u0ð1; vÞ and v ¼ jvj (i.e., v is the velocity
v ¼ u=u0).

At zero temperature fðqÞ ¼ �ðqÞ. At v ¼ 0 we find

fðq;u ¼ 0Þ ¼ 1þ nðqÞ: (37)

B. Renormalization

In (35) we find ultraviolet (UV) divergences. From the
expression of fðq; uÞ [Eq. (36)] we see that for large
momenta the thermal distribution functions always
decrease exponentially, thus yielding an UV finite result.
So all of the UV singularities is in the T ¼ 0 part, dis-
cussed already in [6].
To apply the renormalized treatment at finite tempera-

ture, we recall some results from [6]. At T ¼ 0, (35) can be
written in spectral representation and with dimensional
regularization as

�J 0ðwÞ¼��

�

Z 1

0
dq �Graðw�qÞ

¼�

�

Z 1

�1
dw0

2�
�%ðw0Þ

Z 1

0
dq

1

qþw0 �w� i"

¼�

�

Z 1

�1
dw0

2�
�%ðw0Þ

�
D"� ln

w0 �w� i"

�

�
; (38)

where

D" ¼ 1

2"
þ 1

2
ln ð4�Þ þ 1

2
P1=2 (39)

(P1=2 ¼ �1:96351 is the value of the polygamma function

with 0, 1=2 arguments).
As we discussed in [6], the divergent term is necessary

for the coupling constant and wave function renormaliza-
tion. We can write, assuming normalizability of �%,

�
ðwÞ ¼ 1þ �J ðwÞ
Z

¼
4�2

e20
þD" þ �J finðwÞ

4�2Z
e2
0

; (40)

where �J finðwÞ is finite. We introduce

4�2

e20
þD" ¼ 4�2

e2
;

4�2Z

e20
¼ 4�2zr

e2
; (41)

where zr and e now are finite (renormalized) values. Using
renormalization group invariance we can write for the
complete finite temperature contribution

�
ðwÞ ¼ �e2

4�2

�Z 1

�1
dw0

2�
�%ðw0Þ ln �

w0 � w� i"

�
Z 1

�1
dqðfðq; uÞ ��ðqÞÞ �Graðw� qÞ

�
; (42)

where �e is a renormalization group (RG) invariant coupling

and � ¼ � exp ð4�2

e2
Þ is the momentum scale of the Landau

pole. The derivative of the first term reads

IðwÞ ¼
Z 1

�1
dw0

2�
�%ðw0Þ ln �

w0 � w� i"
;

I0ðwÞ ¼ �
Z 1

�1
dw0

2�

�%ðw0Þ
w� w0 þ i"

¼ � �GraðwÞ:
(43)

The imaginary part of the IðwÞ term is zero for w< 0;
moreover, for w ¼ 0 it is negative (at least for large �),
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while for w ! �1 it is positive. So there exists a value
w ¼ �M for which it is zero. Then we can write

IðwÞ ¼ �
Z w

�M
dq �GraðqÞ: (44)

The scale M replaces the scale �. Assuming that M � T,
we can change the integration limits to �M ! M in the
second part, too. Then we find

�
ðwÞ ¼ � �e2

4�2

Z
dqfðq; uÞ �Gðw� qÞ; (45)

where the integral symbol means
R ¼ R

M
�M . If it does not

cause a problem, we will send M ! 1. The zero tempera-
ture part is the same as in our earlier publication [6].

Summarizing, the renormalized equation reads now

w �GðwÞ ¼ ��

�

Z
dqfðq; uÞ �Gðw� qÞ; (46)

where fðq; uÞ is given by (36). Since this equation is linear,
the same will be true for the spectral function (with differ-
ent normalization conditions)

w �%ðwÞ ¼ ��

�

Z
dqfðq; uÞ �%ðw� qÞ: (47)

C. Zero velocity case

For v ¼ 0, u0 ¼ 1 we find for (47)

w �%ðwÞ ¼ ��

�

Z
dqð1þ nðqÞÞ �%ðw� qÞ: (48)

By sending the limits of the integration to infinity, we
realize that the right-hand side is a convolution.
Therefore we change to Fourier space where it becomes
a product, and the left-hand side will be i@t �%ðtÞ. Using the
Fourier transform of 1þ nðqÞZ dw

2�
e�iwt e�w

e�w � 1
¼ �iT

2 tanh ð�tTÞ ; (49)

we obtain the differential equation

i@t �%ðtÞ ¼ iT�

tanh ð�tTÞ �%ðtÞ: (50)

This has the following solution:

�%ðtÞ ¼ �%0ðsinh�tTÞ�=�: (51)

Before we proceed, we shall discuss this result. First we
can easily recover the T ¼ 0 result, since for t � 1

T the

sinh function can be approximated linearly, and we get
�%ðtÞ � t�=�. On the other hand this result is rather weird; it
describes forever increasing correlation instead of the
physically sensible loss of correlation. Since this happens
also at zero temperature, this is not an artifact of the finite
temperature calculation. In accordance with Blaizot and
Iancu [7,8], we should not consider this expression as the
physical response function. Mathematically we can argue

that we are not in the physically sensible analytic domain,
the time dependent spectral function is not square-
integrable for a real � value, as it should be. We must
therefore go over to the physical analytic domain, where
the Fourier transformation is well defined.
For the analytic continuation we think Eq. (51) valid as

long as it yields sensible formulas, which is the case for
imaginary � values. With this assumption the spectral
function in the Fourier space will be an analytic function
in �. For real � values the spectral function will be
interpreted as an analytic continuation. We will see that it
indeed provides sensible results.
To perform the inverse Fourier transformation we apply

Laplace transformation. With s� ¼ �iw we findZ 1

�1
dteiwt �%ðtÞ ¼

Z 1

0
dte�s�t �%ðtÞ þ

Z 1

0
dte�sþt �%ð�tÞ

¼ �%þðs�Þ þ ð�1Þ�=� �%þðsþÞ; (52)

where

�%þðsÞ ¼
Z 1

0
dte�stðsinh�tTÞ�=�

¼ �ð1þ �
�Þ

21þ�=��T

�ð�s2� � �
2�Þ

�ð1þ �s
2� þ �

2�Þ
: (53)

Since the � function satisfies �ð1� zÞ�ðzÞ ¼ �= sin�z,
we can write with s ¼ �iw

�ð�s2�� �
2�Þ

�ð1þ�s
2�þ �

2�Þ
��������s¼�iw

¼ ��

j�ð1þ �
2�þ i�w2�Þj2 sinð�2� i�w2 Þ

:

(54)

Then we get for the spectral function

�%ðwÞ ¼ N�� sin�e�w=2

cosh ð�wÞ � cos�

1

j�ð1þ �
2� þ i �w2�Þj2

; (55)

where N� is a numerically determined normalization con-
stant required by the sum ruleZ dw

2�
�%ðwÞ ¼ 1 (56)

to be satisfied. On Fig. 2 we can see the shape of the
spectral function for different � values and for different
temperatures.
To discuss this result we make the following observa-

tions:
(i) �%ðwÞ is a function of �w only, which is understand-

able, since there is no other scale in the system which
could form a dimensionless combination.

(ii) For � ! 0, we find

e�w=2 sin�

cosh ð�wÞ � cos�
! 2�	ðwÞ; (57)

so we recover the free case. It is interesting that this
behavior periodically returns for � ¼ 2�n.
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(iii) For the case of large values of w, which is equiva-
lent to the small temperature case, we can use the
asymptotic form of the � function for complex
arguments with large absolute value:

�ðxÞ ¼ e�xxxðx�1=2 þOðx�3=2ÞÞ: (58)

Then we find, up to normalization factors,

�%ð�w � 1Þ � e�w

cosh ð�wÞ
1

w1þ�
�

			!T!0
�ðwÞw�1��

�:

(59)

This is the well-known exact solution by Bloch and
Nordsieck at zero temperature. Note that the �
function came out correctly from the formula. At
finite but small temperatures, for negative argu-
ments we observe exponential decrease.
This form also shows how at zero temperature we
obtain zero wave function renormalization factor.
The normalization factor [cf. (55)] is proportional
to �, while the asymptotic form is ð�wÞ�1��

�. Then
approaching zero temperature we obtain T

�
�w�1��

�,
which means a renormalization factor vanishing
as �T

�
� for T ! 0.

(iv) Now let us consider the w ! 0 limit, i.e., the
vicinity of the mass shell. We can expand �% into
power series

�%ðwÞ ¼ 4 �%ð0ÞCT2

ðw� CTÞ2 þ ð4C � 1ÞC2T2 þOðw3Þ ;

(60)

where

1

C
¼ 1

2
þ 2

1� cos�
þ 1

�2
�2

�
1þ �

2�

�
; (61)

and �ðaÞ is the digamma function. The maximum
of this function is at CT; the width is

CT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C�1 � 1

p
. Since, however, the function is

not symmetric, these parameters cannot be inter-
preted as a thermal mass and thermal width. For
that we need to examine the real time dependence.

(v) For the real time dependence we use the fact that,
according to (55), %ðpÞ ¼ �f0ð�ðp0 �mÞÞ, which
means that %ðtÞ ¼ e�imt ~f0ðTtÞ. Omitting the oscil-
lating phase [i.e., if we consider the envelope of
%ðtÞ], we recover the Fourier transform of f0.
The real time dependence obtained from the inverse
Fourier transformation of (55) differs from (51).
This is because we performed an analytic continu-
ation to the physically sensible analytic domain. The
numerical inverse Fourier transform of the normal-
ized spectral function [and, because iGraðtÞ ¼
�ðtÞ%ðtÞ, for t > 0 this is also the real time depen-
dence of the retarded Green’s function] can be seen
in Fig. 3.
At small times we expect to recover the zero
temperature result. Indeed, we observe �%ðtÞ¼
ð1�AðTtÞ�=�Þe�imt asymptotic form (for � ¼ 0:5,
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of the spectral function at v ¼ 0. In the limit T ! 0 it is singular at the w ¼ 0 point.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7
 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

ρ (
t)

Tt

data
1-A(Tt)α/π

Be-αTt
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this is valid up to Tt < 0:4), the power-law time
dependence is characteristic of the zero temperature
result. At t ¼ 0 the value of the spectral function is
1; this is because of normalization. Note, however,
that naively at zero temperature we would obtain

�t�=�e�imt time dependence, describing growth of
correlation and violating the normalization condi-
tion. Interpreting the zero temperature result as the
T ! 0 limit, we could cure this apparent inconsis-
tency of the model. At strictly T ¼ 0 we get back
the physically sensible oscillating solution
%ðtÞ ¼ e�imt.
For large times (for tT > 1) the time dependence is
�e��Tt, which agrees with [7,8]. Comparing it to
(51) we see that instead of an exponential rise
we found an exponential decay, but with the same
coefficient. This can be understood by noting that if
we have a pole at w ¼ w0 in the momentum space,
meaning e�iw0t exponential time dependence, this
pole is present in the spectral function in position
w	

0, too. The physical retarded Green’s function can

have poles in the lower half plane; therefore, we
find in our case only the w0 ¼ �i�T pole, giving
exponential damping.

For the justification of the analytic continuation we also
used a different method. We expanded the t dependent
result (51) into power series using

ðsinh xÞ�=� ¼
�
1

2

��
�
X1
k¼0

�
�ðxÞð�1Þk

�
�

k

� �
exð���kÞe�xk

þ�ð�xÞð�1Þ���k
�
�

k

� �
e�xð���kÞexk

�
: (62)

Now the inverse Fourier transformation acts on a pure
exponential function. We use the formulaZ 1

0
dte�iwt�st ¼ 1

s� iw
(63)

which is true, of course, if s > 0, but this is the formula for
the analytic continuation, too. Then the result of the
Fourier transformation is, with appropriate normalization
to ensure reality of %,

%ðwÞ � X1
k¼0

ð�1Þk
�
�

k

� ��ð�1Þ��=2�

sk þ iw
þ ð�1Þ�=2�

sk � iw

�
; (64)

where sk ¼ �Tð2k� �=�Þ. Using the ð�1Þ�=2� ¼
cos �2 þ i sin �

2 definition, we find after a simple calculation

%ðwÞ � X1
k¼0

ð�1Þk
�
�

k

 !
skð1þ cos�Þ � w sin�

s2k þ w2
;

sk ¼ �T

�
2k� �

�

�
:

(65)

The sum converges fast, and we can compare the result of
the two calculations on Fig. 4. We can see that the two

methods of analytic continuation yield consistent results in
the central peak regime. To understand the small deviations
at the edges, we remark that if � is real then �%ðt ¼ 0Þ ¼ 0
[cf. (51)]. In Fourier space this means

R
dw �%ðwÞ ¼ 0;

therefore it cannot be positive for all momenta. Using the
second method, the position where the spectral function
turns into negative values is, fortunately, at large jw=Tj
values; therefore the peak is unaffected. The only precursor
of the sign changing is the slight decrease at the edges of
the plot. In our first method we started from imaginary �
values, where lim t!0 �%ðtÞ ¼ �%0 � 0; then the normaliza-
tion does not require negative values for �%ðwÞ.

D. Finite velocity case

If v � 0 we find for Eq. (47) using (36) the following
formula:

w �%ðwÞ ¼ ��

�

u0ð1� v2Þ
2v

Z u0ð1þvÞ

u0ð1�vÞ
ds

s2

�
Z

dq

�
1þ n

�
q

s

��
�%ðw� qÞ: (66)

The right-hand side is again a convolution, and formally
we can use the same method as in the v ¼ 0 case. We find

@t �%ðtÞ ¼ �

�

u0ð1� v2Þ
2v

Z u0ð1þvÞ

u0ð1�vÞ
ds

s2
Ts

tanh ð�tTsÞ �%ðtÞ (67)

which has the solution

�%ðtÞ ¼ �%ð0Þexp
�
�

�

u0ð1�v2Þ
2v

Z u0ð1þvÞ

u0ð1�vÞ
ds

s2
ln ðsinh�tTsÞ

�
:

(68)

We cannot perform analytically either the integral or its
Fourier transform. But we can determine many features by
investigating the t ! 0 and t ! 1 limits.
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FIG. 4 (color online). Comparison of the logarithm spectral
function at � ¼ 0:5 calculated from Eqs. (55) and (65). The two
results agree well.
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1. The limit t ! 0

Since lim t!0 sinh�tTs ¼ �tTs:

lim
t!0

u0ð1� v2Þ
2v

Z u0ð1þvÞ

u0ð1�vÞ
ds

s2
ln ðsinh�tTsÞ

¼ u0ð1� v2Þ
2v

Z u0ð1þvÞ

u0ð1�vÞ
ds

s
ln�tTs ¼ ln�Ttþ const;

(69)

where the constant comes from the integral of s�2 ln s.
Being a finite quantity, it goes into the normalization.
After exponentiation we find

�%ðtÞ � ðTtÞ�=�; (70)

which is the zero temperature result. So, as we expected the
short time or large frequency regime reproduces the zero
temperature case, and thus it is velocity independent.

2. The limit t ! 1
Here the sinh can be approximated by the exponential,

and so

lim
t!1 ln sinh�Tts ¼ �Tts� ln 2: (71)

The ln 2 yields a constant factor which goes into the
normalization. The rest gives, including the prefactors,

�Tt
u0ð1� v2Þ

2v

Z u0ð1þvÞ

u0ð1�vÞ
ds

s
¼ �effðuÞTt; (72)

where

�effðuÞ ¼ �
u0ð1� v2Þ

2v
ln

�
1þ v

1� v

�
: (73)

From this form we obtain for the spectral function in the
asymptotic limit

�%ðtÞ ¼ Ce�eff ðuÞTt: (74)

We can easily check that lim v!0�effðuÞ ¼ �. Therefore,
the v ! 0 limit is analytic.

Since in the asymptotic time regime we simply get the
substitution rule � ! �effðuÞ as compared to the v ¼ 0
case, the analysis of the vicinity of the peak of the spectral
function and the large time dependence will remain valid in
the finite velocity case, too, with a modified value of the
coupling. In particular, since �effðuÞ<�, we obtain a
smaller damping, larger lifetime for v > 0 cases.
Physically this property is the consequence of the decreas-
ing cross section at larger energies. In the ultrarelativistic
limit v ! 1, the damping disappears.

3. Solution for t 2 ð0;1Þ
For intermediate times we could not work out analyti-

cally the integral. Nevertheless, we have a well-controlled
numerical method to find the spectral function, once the

analytic behavior for large t is identified. We express the
wanted �%uðtÞ as a product of the known �%u¼0ðt;�effÞ and a
correction factor

�%ðtÞ � ZðtÞ �%u¼0ðt;�effÞ; (75)

where

ZðtÞ 
 exp ½�u0ð1�v2Þ
2�v

Ru0ð1þvÞ
u0ð1�vÞ

ds
s2
ln ðsinh�tTsÞ�

ðsinh�TtÞ�eff ðuÞ�

: (76)

After a short algebra we find

ZðtÞ ¼ exp



�u0ð1� v2Þ

2�v

Z u0ð1þvÞ

u0ð1�vÞ
ds

s2
ln

sinh�Tts

ðsinh�TtÞs
�
:

(77)

The so-defined ratio is symmetric ZðtÞ ¼ Zð�tÞ. For small

t arguments it behaves as ZðtÞ � ðTtÞ���eff ðuÞ
� and, since

� ^ �effðuÞ, we also know Zðt ¼ 0Þ ¼ 0. At large t we
find lim t!1ZðtÞ ¼ 1. We can determine it numerically, for
a specific v it can be seen on Fig. 5.
We can numerically Fourier transform ZðtÞ, and perform

a convolution in the Fourier space with the �%v¼0ðwÞ func-
tion (51). This ensures that we use the same analytic
continuation for the different velocity cases. As a result
we obtain Fig. 6. We can observe that the peak becomes
narrower for larger velocities, corresponding to the de-
creasing �eff value. At large momentum the asymptotics
is the same for all velocities (for a given �), because the
zero temperature result is insensitive to the value of v.
Here again we can work out the real time dependence.

We now write %uðpÞ ¼ u0�fuð�ðp0u0 � pu�mÞÞ and
find

%uðtÞ ¼ e�ivpt�imt=u0 ~fu

�
tT

u0

�
: (78)

The result of the numerical inverse Fourier transform can
be seen on Fig. 7. At small times the spectral function
(retarded Green’s function) is velocity independent; this
is the zero temperature asymptotics. For large times (for

Tt>1) the time dependence turns into �e��eff ðuÞTt.
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FIG. 5 (color online). The ZðtÞ function on a logarithmic plot.
For small times it is a power; for larger times it flattens out.
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E. Discussion of earlier results

We can compare our results to the earlier results in the
literature. The long time asymptotics of the finite tempera-
ture solution of the Bloch-Nordsieck model was already
discussed in [7,8]. They followed a different, functional
approach. Still, the two methods lead to the same inter-
mediate result. Neglecting renormalization effects (which
is treated later in Refs. [7,8]), our Eq. (31) together with
(34) yields, using the notation w ¼ up�m,

wGraðwÞ ¼ e2U2
Z d4k

ð2�Þ4
1

uk
ð1þ nðk0ÞÞ �%ðkÞ �Graðw� ukÞ;

(79)

where �%ðkÞ ¼ 2�
2k ð	ðk0 � kÞ � 	ðk0 þ kÞÞ is the photon

spectral function. After Fourier transformation we find
exponentiation of the real time contributions

GraðtÞ ¼ Graðt ¼ 0ÞeFðtÞ; (80)

where

FðtÞ ¼ �e2U2
Z d4k

ð2�Þ4 ð1þ nðk0ÞÞ �%ðkÞ 1� e�iukt

ðukÞ2
¼ �it�0 þ it�ðtÞ þ ln�ðtÞ; (81)

where�0,�ðtÞ, and ln�ðtÞ are real quantities, correspond-
ing to the notation of [8]. Using U2 ¼ 1 this means

�ðtÞ ¼ �e2
Z d4k

ð2�Þ4
�%ðkÞ
uk

�
1� sin ukt

ukt

�

�0 ¼ �e2
Z d4k

ð2�Þ4
�%ðkÞ
uk

� ¼ exp



�e2

Z d4k

ð2�Þ4 nðk0Þ �%ðkÞ
1� cosukt

ðukÞ2
�
:

(82)

These expressions agree with Eqs. (2.24) and (2.25) of [8]
(the constant phase �0 has no physical meaning).
The analysis of this formula, however, differs in our case

and in [7,8]. We strictly restrict ourselves to the original
Bloch-Nordsieck model and use the free photon spectral
function. In Refs. [7,8], the authors used the HTL-
improved photon spectral function [cf. their Eqs. (3.1)
and (3.2)]. As it turns out, the most important contribution
comes from the small frequency limit of the continuum
(Landau damping) part. This explains why the asymptotic
time behavior differs in our case and in the case of
Refs. [7,8] [ exp ð��effðvÞTtÞ vs exp ð�Ct ln tÞ].
In Ref. [10], Fried et al. used again a different formal-

ism. Since they examine a different physical situation, the
comparison is much more difficult. What is clear, however,
is that they also use the original version of the model, and
also find an exponentially damping solution.
It is very interesting that in [14] the authors found the

same exp ð��Tt ln tÞ-like solution as was the case in
Refs. [7,8], although with a different line of thought.
They use the dynamical renormalization group idea [15],
where the secular terms are melted into finite time depen-
dence of the renormalized parameters. Clearly they cannot
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FIG. 7 (color online). Comparison of the real time dependence
of the retarded Green’s function (or, equivalently, the spectral
function) for zero and finite velocity at � ¼ 0:5 on the logarith-
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consider all photonic diagrams, just those which contribute
to the RG equations. The logarithmic enhancement of
the damping there can be interpreted physically as an
eternally growing cross section of the incoming hard par-
ticle which collects more and more soft photons around
itself. The analysis of the pure Bloch-Nordsieck model
results in a finite damping, which means that in this model
the initial growth of the cross section eventually stops; the
soft photon cloud saturates. The physical interpretation of
the saturation is probably that the multiphoton contribu-
tions arriving from different spacetime points become
incoherent.

The two scenarios, one with an ever-growing photon
cloud, the other with saturation, are both approximations
of the real QED (RG, HTL, and free photon approxima-
tions, respectively). The question of which one is finally
manifested in QED, in particular in the ultrarelativistic
limit, can be answered only after a full analysis of the
complete QED where all these effects are present.

IV. CONCLUSIONS

In this paper we studied the Bloch-Nordsieck model at
finite temperature; in particular we studied the fermionic
spectral function. We used the strategy introduced in [6]
which is based on the Dyson-Schwinger equations, where
the infinite hierarchy is closed by using the Ward identities
for the vertex function. We worked out the corresponding
equations at finite temperature in the real time formalism
and solved them. This procedure is exact in the Bloch-
Nordsieck model.

At zero velocity we were able to obtain fully analytic
results for the spectral function. For large momenta and/or
zero temperature this formula agrees with the zero tem-
perature result. At finite temperature there appears an
asymmetric peak which decreases exponentially below

the mass shell (u�p� <m) and as a power law above the

mass shell (u�p� >m).

We also worked out the real time dependence which
has two characteristic regimes. For small times, starting

from its initial value, it behaves as a power law �%ðtÞ ¼
ð1� AðTtÞ�=�Þe�imt, where A depends on �. The naive

zero temperature calculation yields �t�=�e�imt time de-
pendence which is not normalizable and corresponds to a
physically hardly interpretable forever-growing retarded
response function. With the finite temperature as a regula-
tor, we could interpret the zero temperature result, and we
got a physically sensible purely oscillating response
function.
For large times we find exponential damping. The damp-

ing rate is �effðuÞT, where the effective coupling �effðuÞ is
given in (73). The damping is smaller and the lifetime is
longer for larger velocities, which physically can be inter-
preted as the consequence of decreasing cross sections. We
remark that the damping in the pure Bloch-Nordsieck
model differs from the one with HTL-improved photon
propagator; in this latter case one finds a faster-than-
exponential damping with an exponent �� t ln t.
We expect that the method we worked out for the Bloch-

Nordsieck model can be applied, as an approximation
scheme, also for the full QED. Hopefully the renormaliz-
ability of the resummation will remain true, too.
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Homma, M. Horváth, G. Markó, A. Patkós, U. Reinosa,
and Zs. Szép. The project was supported by the Hungarian
National Fund OTKA Grants No. K68108 and
No. K104292 and the New Széchenyi Plan (Project
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