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In this work we study the contribution to leptogenesis from �L ¼ 1 decay and scattering processes

mediated by the Higgs with quarks in the initial and final states using the formalism of nonequilibrium

quantum field theory. Starting from fundamental equations for correlators of the quantum fields we derive

quantum-corrected Boltzmann and rate equations for the total lepton asymmetry improved in that they

include quantum-statistical effects and medium corrections to the quasiparticle properties. To compute the

collision term we take into account one- and two-loop contributions to the lepton self-energy and use the

extended quasiparticle approximation for the Higgs two-point function. The resulting CP-violating and

washout reaction densities are numerically compared to the conventional ones.
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I. INTRODUCTION

The standard model (SM) of particle physics [1–3] has
successfully passed the numerous experimental tests per-
formed so far. The recent observation of the Higgs particle
[4] at the LHC [5,6] also seems to confirm the mechanism
of spontaneous symmetry breaking, which is responsible
for masses of the known gauge bosons and fermions. On
the other hand, we know that the SM is not complete. First,
it does not provide a viable dark matter candidate. Second,
it predicts that the active neutrinos are strictly massless,
which contradicts the results of neutrino oscillation experi-
ments. A simple yet elegant way to generate small but
nonzero neutrino masses is to add three right-handed
Majorana neutrinos to the model:

L ¼ LSM þ 1

2
�Niði6@�MiÞNi � h�i �‘� ~�PRNi

� hyi� �Ni
~�yPL‘�; (1)

where Ni ¼ Nc
i are the heavy Majorana fields, ‘� are the

lepton doublets, and ~� � i�2�
� is the conjugate of the

Higgs doublet. After the electroweak symmetry breaking

the active neutrinos receive naturally small masses through

the type-I seesaw mechanism. This scenario has even more

far-reaching consequences as it can explain another

beyond-the-SM observation, the baryon asymmetry of the

Universe. The Majorana mass term in (1) violates lepton

number. In the early Universe a decay of the Majorana

neutrino into a lepton-Higgs pair increases the total lepton

number of the Universe by one unit, and a decay into the

corresponding antiparticles decreases the total lepton num-

ber by one unit. If there is CP violation then, on average,

the number of leptons produced in those decays is not

equal to the number of antileptons and a net lepton asym-

metry is produced. It is also known that whereas the

difference of the lepton and baryon numbers is conserved

in the SM, any other linear combination is not [7]. This

implies that the lepton asymmetry produced by the

Majorana neutrinos is partially converted to the baryon

asymmetry [8]. This mechanism, which is referred to as

baryogenesis via leptogenesis, naturally explains the ob-

served baryon asymmetry of the Universe. For a more

detailed review of leptogenesis see e.g., [9–11].
The state-of-the-art analysis of the asymmetry genera-

tion uses Boltzmann equations with the decay and scatter-

ing amplitudes calculated in vacuum. Their applicability in

the hot and expanding early universe is questionable and

can be cross-checked using a first-principle approach based

on the use of nonequilibrium quantum field theory (QFT).

One of the most important processes for the generation of

the asymmetry is the decay of the Majorana neutrino.

Thermal effects enhancing CP violation in the decay

have been studied in [12–16]. The role of the flavor effects

has been addressed in [17]. A first-principle analysis of

the asymmetry generation in the very interesting regime of

resonant leptogenesis has been presented in [18,19]. The

effect of next-to-leading order corrections from the gauge

interactions of lepton and Higgs doublets on the production

and decay rate of right-handed neutrinos at finite tempera-

ture has been recently studied in [20,21].
The asymmetry generated in the Majorana decay is

partially washed out by the inverse decay and scattering

processes. The latter can be classified into two categories.

The first category includes �L ¼ 2 scattering processes

mediated by the Majorana neutrinos. A first-principle

analysis of such processes free of the notorious double-

counting problem has been presented in [22]. The second

category includes �L ¼ 1 decay and scattering processes
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mediated by the Higgs. The latter processes are also known
to play an important role in the asymmetry generation and
are addressed in the present paper.

The outline of the paper is as follows. In Sec. II we
briefly review the canonical approach to the analysis of
the �L ¼ 1 processes and derive the corresponding
amplitudes and reduced cross sections. In Sec. III we
derive quantum-generalized Boltzmann equations for the
lepton asymmetry, calculate the effective amplitudes of the
Higgs-mediated scattering processes, and compare them
with the canonical ones. The obtained Boltzmann equa-
tions are used in Sec. V to derive a simple system of rate
equations for the total lepton asymmetry. In Sec. VI we
present a numerical comparison of the corresponding
reaction densities with the ones obtained using the canoni-
cal approach. A summary of the results is presented in
Sec. VII.

II. CONVENTIONAL APPROACH

In the scenario of thermal leptogenesis lepton asym-
metry is generated in the lepton number and CP-violating
decay of the heavy Majorana neutrinos. The correspond-
ing CP-violating parameters receive contributions
from the interference of the tree-level amplitude with
the vertex [8,12] and self-energy [13,23–26] amplitudes,
see Fig. 1. The contribution of the loop diagrams can be
accounted for by effective Yukawa couplings [26]. If
thermal masses of the SM particles are negligible, they
are given by

hþ;�i � h�i � ih�jðhyhÞ�jigij; (2a)

h�;�i � h��i � ih��jðhyhÞjigij; (2b)

where the loop-function gij is defined as

gij� 1

16�

MiMj

M2
i �M2

j

þ 1

16�

Mj

Mi

�
1�

�
1þM2

j

M2
i

�
ln

�
1þM2

i

M2
j

��
:

(3)

Note that this expression is valid only for on-shell final
states. The first term in (3) is related to the self-energy and
the second term to the vertex contribution. This expres-
sion is applicable for a mildly or strongly hierarchical

mass spectrum of the Majorana neutrinos. In both cases
most of the asymmetry is typically generated by the
lightest Majorana neutrino, whereas the asymmetry gen-
erated by the heavier ones is almost completely washed
out. For a strongly hierarchical mass spectrum,Mi � Mj,

the intermediate Majorana line in Figs. 1(b) and 1(c)
contracts to a point, see Fig. 2, and the structure of the
self-energy and vertex contributions is the same. In this
limit,

gij � � 3

32�

Mi

Mj

: (4)

Note that in this approximation the loop integral leading
to (4) depends only on the momentum of the initial state
and is independent of the momenta of the final states. This
implies in particular that this expression can also be used
for off-shell final states.
Using the effective couplings (2) we find for the decay

amplitudes (squared) [22,26]:

�Ni!‘� ¼ gNgwðhyþhþÞiiðqpÞ; (5a)

�Ni! �‘ �� ¼ gNgwðhy�h�ÞiiðqpÞ; (5b)

where we have summed over flavors of the leptons in the
final state as well as over the Majorana spin (gN ¼ 2) and
the SUð2ÞL group (gw ¼ 2) degrees of freedom. Here q and
p are momenta of the heavy neutrino and lepton, respec-
tively. The decay amplitudes (5) can be traded for the total
decay amplitude and CP-violating parameter:

�Ni
� �Ni!‘� þ�Ni! �‘ ��; (6a)

�i �
�Ni!‘� ��Ni! �‘ ��

�Ni!‘� þ�Ni! �‘ ��

: (6b)

Combining (5) and (6) we then find for the (unflavored)
CP-violating parameter:

�vaci � ImðhyhÞ2ij
ðhyhÞii

� 2gij; j � i: (7)

The asymmetry generated by the Majorana decay is
partially washed out by the inverse decay and scattering
processes violating lepton number. An important role is
played by the �L ¼ 2 scattering processes mediated by

FIG. 1. Tree-level (a), one-loop self-energy (b), and one-loop
vertex (c) contributions to the decay of the heavy Majorana
neutrino.

FIG. 2. Effective one-loop diagram for the self-energy and
vertex contributions to the decay of the lightest Majorana neu-
trino for a strongly hierarchical mass spectrum.
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the heavy Majorana neutrinos [22,26,27]. In addition,
there are �L ¼ 1 scattering process mediated by the
Higgs doublet with quarks (or the gauge bosons) in
the initial and final states [26,27], see Figs. 3 and 4. The
Higgs coupling to the top is considerably larger than to
the other quarks of the three generations. For this reason
we do not consider the latter here. The corresponding
Lagrangian reads

LSM � �� �Q ~�PRt� �� �tPL
~�yQ; (8)

where Q and t are the SUð2ÞL doublet and singlet of the
third quark generation. The �L ¼ 1 processes are also
CP violating. The CP violation is generated by the same
self-energy and vertex diagrams. Strictly speaking, since
the Higgs is no longer on shell the effective couplings
(2) are not applicable in this case. On the other hand, for a
strongly hierarchical mass spectrum the intermediate
Majorana lines in Figs. 3 and 4 again contract to a point
and the momenta of the Higgs and lepton play no role.
In other words, for a strongly hierarchical mass spectrum
we still can use the effective couplings (2) supplemented
with (4) to calculate the CP-violating scattering
amplitudes.

Summing over flavors and colors of the quarks and
leptons in the initial and final states as well as over the
corresponding SUð2ÞL and spin degrees of freedom we find
for the amplitude of NiQ ! ‘t scattering:

�NiQ!‘t ¼ �Ni!‘� ��2
Tðp� qÞ ���Q!t; (9)

where �TðkÞ � 1=ðk2 �m2
�Þ is the Feynman (or time-

ordered) propagator1 of the intermediate Higgs and we
have defined

��Q!t ¼ 2gsj�j2ðpQptÞ: (10)

Here gs ¼ 3 is the SUð3ÞC factor, and pt and pQ are

the momenta of the singlet and the doublet respectively.
For the charge-conjugate process we find an expression
similar to (9). As can be inferred from (10) in this work
we neglect CP-violation in the quark sector, which is
known to be small. Defining CP-violating parameter in
scattering as

�X!Y � �X!Y �� �X! �Y

�X!Y þ� �X! �Y

; (11)

we then obtain for �NiQ!‘t the same expression as for

the Majorana decay, see (7). In the same approximation
amplitude and CP-violating parameter for Ni �t ! ‘ �Q scat-
tering coincide with those for the NiQ ! ‘t process.
Proceeding in a similar way we find for the scattering

amplitude of the Ni
�‘ ! �Qt process:

�Ni
�‘! �Qt ¼ �Ni

�‘!� ��2
Tðpþ qÞ ���! �Qt; (12)

where ��! �Qt ¼ ��Q!t because we neglect CP violation

in the quark sector. Furthermore, for a strongly hierarchical
mass spectrum �Ni

�‘!� ¼ �Ni!‘�. The resulting expres-

sion for the CP-violating parameter then coincides
with (7).
If the lepton and both quarks are in the final state then

instead of a scattering process we deal with a three-body
Majorana decay, see Fig. 5. In complete analogy with
the scattering processes we can write its amplitude in the
form

FIG. 3. Tree-level (a), self-energy (b), and vertex (c) contribu-
tions to the scattering processes NiQ ! ‘t. Similar diagrams for
the scattering process Ni �t ! ‘ �Q are obtained by replacing Q
with �t and t with �Q as well as inverting the direction of the
arrows.

FIG. 5. Tree-level (a), self-energy (b), and vertex (c) contribu-
tions to the amplitude of the three-body decay processes
Ni ! ‘ �Qt.

FIG. 4. Tree-level (a), self-energy (b), and vertex (c) contribu-
tions to the scattering processes Ni

�‘ ! �Qt.

1In the kinematic region of interest the decay width term in the
Feynman propagator of the Higgs plays no role and can be
neglected.
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�Ni!‘ �Qt ¼ �Ni!‘� ��2
TðpQ þ ptÞ ���! �Qt: (13)

Evidently, the CP-violating parameter for this process
coincides with that for the two-body Majorana decay.

To compute the generated lepton asymmetry, the
conventional approach uses the generalized Boltzmann

equation for the total lepton abundance, YL � nL=s, with
s being the comoving entropy density [28]. In the
Friedmann-Robertson-Walker universe the contribution
of the Higgs-mediated processes to the right-hand side
of the Boltzmann equation simplifies to

sH
z

dYL

dz
¼ � � � �X

i

Z
d�

qppQpt

Ni‘Qt ð2�Þ4�ðqþ p� pQ � ptÞ½�Ni‘!Q�tfNi
f‘ð1� fQÞð1� f�tÞ � inverse	

þX
i

Z
d�

qpQppt

NiQ‘t ð2�Þ4�ðqþ pQ � p� ptÞ½�NiQ!‘tfNi
fQð1� f‘Þð1� ftÞ � inverse	

þX
i

Z
d�

qptppQ

Ni �t‘ �Q
ð2�Þ4�ðqþ pt � p� pQÞ½�Ni �t!‘ �QfNi

f�tð1� f‘Þð1� f �QÞ � inverse	

þX
i

Z
d�

qppQpt

Ni‘ �Qt
ð2�Þ4�ðq� p� pQ � ptÞ½�Ni!‘ �QtfNi

ð1� f‘Þð1� f �QÞð1� ftÞ � inverse	

� CP conjugate processes; (14)

where we have introduced the dimensionless inverse tem-
perature z ¼ M1=T, the Hubble rate H ¼ HjT¼M1

, and
d�

papb...pipj...

ab...ij... stands for the product of the invariant phase
space elements, d�p

a � d3p=½ð2�Þ32Ep	. Note that to en-
sure vanishing of the asymmetry in thermal equilibrium
one should also include CP-violating 2 $ 3 processes
[10]. Since there is no need for that in the nonequilibrium
quantum field theory approach we will not consider these
processes here.

III. NONEQUILIBRIUM QFTAPPROACH

The formalism of nonequilibrium quantum field theory
provides a powerful tool for the description of out-of-
equilibrium quantum fields and is therefore well suited
for the analysis of leptogenesis. In this section we briefly
review results obtained in [22] and introduce notation that
will be used in the rest of the paper. As has been argued in
[22], the equation of motion for the lepton asymmetry can
be derived by considering the divergence of the lepton
current. In the Friedmann-Robertson-Walker universe
j
�
L ¼ ðnL; 0Þ and therefore it is related to the total lepton
abundance by

D�j
�
L ¼ sH

z

dYL

dz
: (15)

Using the formalism of nonequilibrium quantum field
theory, one can express it through propagators and self-
energies of leptons. After a transformation to the Wigner
space we obtain [22]

D�j
�
L ðt; pÞ ¼ gw

Z
d�4

p tr½�̂<ðt; pÞŜ>ðt; pÞ

� �̂>ðt; pÞŜ<ðt; pÞ	; (16)

where d�4
p � d4p=ð2�Þ4 and the hats denote matrices in

flavor space. In (16) we have taken into account that the

SUð2ÞL symmetry is unbroken at the epoch of leptogenesis.
As a consequence, the SUð2ÞL structure of the propagator

is trivial, S�	ab ¼ �abS
�	, and summation over the SUð2ÞL

components simply results in the overall factor gw ¼ 2.
Furthermore, in this work we restrict ourselves to the
analysis of unflavored leptogenesis. Therefore, the lepton
propagator can be approximated by S�	 ¼ ��	S. A simi-
lar relation also holds for the lepton self-energy. Then the
equation for the divergence of the lepton current takes
the form

D�j
�
L ¼ gw

Z 1

0

dp0

2�

Z d3p

ð2�Þ3 tr½ð�<S> � �>S<Þ

� ð ��<
�S> � ��>

�S<Þ	; (17)

where � � ��� and we have suppressed the argument
ðt; pÞ of the two-point functions. Note that the trace in
(17) acts now in spinor space only. To convert the integra-
tion over positive and negative frequencies into the integra-
tion over positive frequencies only, we have introduced in
(17) CP-conjugate two-point functions and self-energies
which are denoted by the bar. According to the extended
quasiparticle approximation (eQP) [29–31] theWigthmann
propagators can be split into on- and off-shell parts:

S_ ¼ ~S_ � 1

2
ðSR�_SR þ SA�_SAÞ: (18)

The off-shell parts of the lepton propagators exactly cancel
out in the lepton current as they are lepton number
conserving. On the other hand, as we will see later, the
off-shell part of the Higgs two-point functions is crucial
for a correct description of the scattering processes. The
on-shell part of the Wightman propagators is related to the
eQP spectral function and one-particle distribution
function f‘ by the Kadanoff-Baym (KB) ansatz:
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~S> ¼ ð1� f‘Þ~S
; ~S< ¼ �f‘ ~S
; (19)

where

~S
 ¼ � 1

2
SR�
SR�
SA�
SA: (20)

In the limit of vanishing width the eQP spectral function ~S

approaches the Dirac delta function [22],

~S
 � ð2�Þsignðp0Þ�ðp2 �m2
‘ÞPL 6pPR

� S
ðpÞPL 6pPR; (21)

where we have extracted the ‘‘scalar’’ part S
 for notational

convenience. In (21) we have approximately taken the
gauge interactions into account in the form of effective
masses of the leptons. Note that we will not attempt a fully
consistent inclusion of the gauge interactions here. In the
used approximation the spectral function is CP symmetric.
This implies that the spectral properties, in particular the
masses, of the particles and antiparticles are the same.

To evaluate the right-hand side of (17) we need to
specify the form of the lepton self-energy. It can be ob-
tained by functional differentiation of the 2PI effective
action with respect to the lepton propagator. Loosely
speaking, this means that the self-energies are obtained
by cutting one line of the 2PI contributions to the effective
action. The two- and three-loop contributions are presented
in Figs. 6(a) and 6(c). The one-loop contribution to the
lepton self-energy, see Fig. 6(b), is given by [22]

�ð1Þ
_ ðt; pÞ ¼ �

Z
d�4

qkð2�Þ4�ðpþ k� qÞ
� ðhyhÞjiPRS

ij
_ðt; qÞPL�+ðt; kÞ; (22)

whereS and� denote theMajorana and Higgs propagators
respectively, and d�4

qk � d�4
qd�

4
k. The expression for

the two-loop contribution, see Fig. 6(d), is rather lengthy.
Here we will only need a part of it:

�ð2Þ
_ ðt; pÞ ¼

Z
d�4

qkð2�Þ4�ðpþ k� qÞ½ðhyhÞin
� ðhyhÞjm�mnðt; q; kÞPLCS

ij
_ðt; qÞPL�+ðt; kÞ

þ ðhyhÞniðhyhÞmjPRS
ji
_ðt; qÞCPRVnm

� ðt; q; kÞ�+ðt; kÞ	; (23)

where we have introduced two functions containing loop
corrections:

�mnðt; q; kÞ �
Z

d�4
k1k2k3

ð2�Þ4�ðqþ k1 þ k2Þð2�Þ4�ðkþ k2 � k3Þ½PRS
mn
R ðt;�k3Þ

� CPRS
T
Fðt; k2Þ�Aðt; k1Þ þ PRS

mn
F ðt;�k3ÞCPRS

T
Rðt; k2Þ

� �Aðt; k1Þ þ PRS
mn
R ðt;�k3ÞCPRS

T
Aðt; k2Þ�Fðt; k1Þ	; (24)

and Vnmðt; q; kÞ � P�y
nmðt; q; kÞP to shorten the notation.

Here P ¼ �0 is the parity conjugation operator. The re-
maining terms of the two-loop self-energy can be found
in [22]. As has been demonstrated in the same reference,
CP conjugates of the above self-energies can be obtained
by replacing the Yukawa couplings by the complex con-
jugated ones and the propagators by the CP-conjugated
ones.

Comparing (22) and (23) we see that the two self-
energies have a very similar structure. First, the integration
is over momenta of the Higgs and Majorana neutrino and
the delta function contains the same combination of the
momenta. Second, they both include one Wightman propa-
gator of the Higgs field and one Wightman propagator
of the Majorana field. These can be interpreted as cut

propagators which describe on-shell particles created
from or absorbed by the plasma [32]. The retarded and
advanced propagators can be associated with the off-shell
intermediate states. We therefore conclude that the two
self-energies describe CP-violating decay of the heavy
neutrino into a lepton-Higgs pair. Note that this interpre-
tation only holds for the ‘‘particle’’ part of the eQP ansatz.
The inclusion of the off-shell part of the Higgs Wightman
propagator gives rise to the Higgs mediated scattering
processes and three-body decay, see Sec. IV.
To evaluate (22) and (23) we need to know the form

of the Higgs and Majorana propagators. For the Higgs field
we will adopt in this section a leading-order approximation:

�> ¼ ð1þ f�Þ�
; �< ¼ f��
; (25)

FIG. 6. Two- and three-loop contributions to the 2PI effective
action [(a) and (c)] and the corresponding contributions to the
lepton self-energy [(b) and (d)].
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and a simple quasiparticle approximation for the spectral
function,

�
ðt; kÞ ¼ ð2�Þsignðk0Þ�ðk2 �m2
�Þ; (26)

where m� is the effective thermal Higgs mass. Close to

thermal equilibrium the full resummed Majorana propaga-
tor is given by [22]

Ŝ_ ¼ �̂R½ ~̂S_ � ŜR�̂
0
_ŜA

� 1

2
ðŜR�̂

d
_ŜR þ ŜA�̂

d
_ŜAÞ	�̂A; (27)

where �̂d and �̂0 denote the diagonal and off-diagonal

components of the Majorana self-energy respectively, ŜR

and ŜA are given by

ŜRðAÞ ¼ �ð6q� M̂� �̂d
RðAÞÞ�1; (28)

and we have introduced

�̂R � ð1þ ŜR�̂
0
RÞ�1; �̂A � ð1þ �̂0

AŜAÞ�1; (29)

to shorten the notation. Thefirst term in the squarebrackets of
(27) describes (inverse) decay of the Majorana neutrino,
whereas the remaining three terms describe two-body scat-
tering processes mediated by the Majorana neutrino. For the
‘‘particle’’ part of the eQP diagonal Wightman propagators
of theMajorana neutrino, one can use theKBapproximation:

~Snn
> ¼ ð1� fNn

Þ~Snn

 ; ~Snn

< ¼ �fNn
~Snn

 ; (30)

with the spectral function given by an expression identical
to (20). Substituting (28) we find in the limit of small decay
width:

~Snn

 ¼ ð2�Þsignðq0Þ�ðq2 �M2

nÞð6qþMnÞ
� ~Snn


 ð6qþMnÞ: (31)

Inserting (22) and (23) into the divergence of the lepton
current (17) and integrating over the frequencies, we
then obtain an expression that strongly resembles the
Boltzmann equation:

sH
z

dYL

dz
¼ X

i

Z
d�qpk

Ni‘�
½�Ni$‘�F

q;pk
Ni$‘�

��Ni$ �‘ ��F
q;pk

Ni$ �‘ ��
	; (32)

where we have introduced

F
papb...;pipj...

ab...$ij... � ð2�Þ4�ðpa þ pb þ � � � � pi � pj � � � �Þ
� ½fpa

a fpb

b . . . ð1
 fpi

i Þð1
 f
pj

j Þ . . .
� fpi

i f
pj

j . . . ð1
 fpa
a Þð1
 fpb

b Þ . . .	; (33)

with the plus (minus) sign corresponding to bosons

(fermions). Note that F
papb...;pipj...

ab...$ij... vanishes in equilibrium

due to detailed balance. This implies that in accordancewith
the third Sakharov condition [33] no asymmetry is gener-
ated in equilibrium. In the Kadanoff-Baym formalism this
result is obtained automatically and no need for
the real intermediate state subtraction arises.
The effective decay amplitudes � are given by a sum of

the tree-level, one-loop self-energy, and one-loop vertex
contributions. The first two,

�T
Ni$‘� þ�S

Ni$‘� � gw
X
mn

ðhyhÞmntr½�ni
R ðqÞð6qþMiÞ�im

A ðqÞPL 6pPR	; (34a)

�T
Ni$ �‘ ��

þ�S
Ni$ �‘ ��

� gw
X
mn

ðhyhÞ�mntr½ ��ni
R ðqÞð6qþMiÞ ��im

A ðqÞPL 6pPR	; (34b)

emerge from the one-loop lepton self-energy (22). The third one,

�V
Ni$‘� � �gwðhyhÞ2ijMi tr½�jjðq; kÞCPL 6pPR	 � gwðhyhÞ2jiMi tr½CVjjðq; kÞPL 6pPR	; (35a)

�V
Ni$ �‘ ��

� �gwðhyhÞ2ijMi tr½CVjjðq; kÞPL 6pPR	 � gwðhyhÞ2jiMi tr½�jjðq; kÞCPL 6pPR	; (35b)

is generated by the two-loop lepton self-energy (23).
Substituting (34) and (35) into (6) we find to leading order
in the couplings that the total decay amplitude summed
over the Majorana spin degrees of freedom is given by
�Ni

¼ 2gNgwðhyhÞiiðpqÞ. The self-energy CP-violating
parameter reads [22]

�Si � �X ImðhyhÞ2ij
ðhyhÞiiðhyhÞjj

Mi�j

M2
j

pLS

qp
�M2

jS
jj
h ðqÞ; (36)

where the ‘‘scalar’’ part of the diagonal Hermitian
Majorana propagator is given by [22]

Sjj
h ðqÞ �

1

2
½Sjj

R ðqÞ þ Sjj
A ðqÞ	

� � q2 �M2
j

ðq2 �M2
j Þ2 þ ð�j=Mj � qLSÞ2

: (37)

It describes the intermediate Majorana neutrino line in
Fig. 1(b). Note that (36) has been obtained assuming a
hierarchical mass spectrum of the heavy neutrinos and is
not applicable for a quasidegenerate spectrum. For positive
q0 and q2 the self-energy loop function LS is given by [22]
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L
�
S ¼16�

Z
d��‘

k1p1
ð2�Þ4�ðq�k1�p1Þp�

1 ½1þfk1� �fp1

‘ 	:
(38)

Simplifying (35) we find for the vertex CP-violating
parameter [22]:

�Vi ¼ � 1

2

X ImðhyhÞ2ij
ðhyhÞiiðhyhÞjj

Mi�j

M2
j

pLV

qp
: (39)

The vertex loop function is given by

L
�
V ðq; pÞ ¼ 16�M2

j

Z
d�4

q1p1k1
ð2�Þ4�ðqþ k1 þ p1Þð2�Þ4�ðq� pþ p1 � q1Þp�

1 ½�
ðk1ÞSFðp1ÞSjj
h ðq1Þ

þ �Fðk1ÞS
ðp1ÞSjj
h ðq1Þ ��hðk1ÞS
ðp1ÞSjj

h ðq1Þ þ �hðk1ÞSFðp1ÞSjj

 ðq1Þ þ �
ðk1ÞShðp1ÞSjj

F ðq1Þ
þ �Fðk1ÞShðp1ÞSjj


 ðq1Þ	; (40)

where SF ¼ ðS> þ S<Þ=2 is the ‘‘scalar’’ part of the
corresponding statistical propagator of the heavy neutrino.
For the lepton and Higgs fields the definitions are similar.
The three lines in the square brackets in (39) correspond to
different cuts through two of the three internal lines of the
vertex loop. The first line corresponds to cutting the propa-
gators of the Higgs and lepton and can be simplified to [16]

pL‘�
V ðq; pÞ ¼ 16�

Z
d��‘

k1p1
ð2�Þ4�ðq� p1 � k1Þðpp1Þ

� ½1þ fk1� � fp1

‘ 	 M2
j

M2
j � ðq� p1 � pÞ2 :

(41)

The other two are cuts through the Majorana and lepton
and the Majorana and Higgs lines, respectively [15]. For
the second cut we obtain

pL
Nj‘
V ðq;pÞ¼16�

Z
d�

Nj‘
q1p1

ð2�Þ4�ðq�pþp1�q1Þ

�ðpp1Þ½fq1Nj
�fp1

‘ 	 M2
j

m2
��ðqþp1Þ2

þ16�
Z
d�

Nj
q1 d�

‘
p1
ð2�Þ4�ðq�p�p1þq1Þ

�ðpp1Þ½fq1Nj
�fp1

‘ 	 M2
j

m2
��ðq�p1Þ2

; (42)

whereas contribution of the third cut is given by

pL
Nj�
V ðq; pÞ ¼ 16�

Z
d�

Nj�

q1k1
ð2�Þ4�ðq1 � p� k1Þ

� ðpqþ pk1Þ½fk1� þ fq1Nj
	 M2

j

m2
‘ � ðqþ k1Þ2

;

(43)

where we have assumed Mi <Mj so that the (inverse)
decay Ni $ Nj‘‘ is kinematically forbidden. In (42) the
second term vanishes for the decay process Ni $ ‘� but
gives a nonzero contribution for the scattering processes,
see Sec. IV. If the intermediate Majorana neutrino is much

heavier than the decaying one, the last two cuts are strongly
Boltzmann suppressed. Furthermore, comparing (38) and
(41) we observe that in this case pLV � pLS. In the same
approximation we can also neglect the ‘‘regulator’’ term in
the denominator of (37). The two contributions to the
CP-violating parameter then have the same structure and
their sum can be written in the form

�i ¼ �vaci

pLS

qp
: (44)

In the vacuum limit L
�
S ¼ q� and we recover (7). At finite

temperatures the CP-violating parameter is moderately
enhanced by the medium effects [22].

IV. HIGGS MEDIATED SCATTERING

In the previous section we have approximated the full
resummed Higgs propagator by leading-order expressions
(25) and (26). In this section we will use a more accurate
eQP approximation. As we will see, it allows one to
describe Higgs-mediated �L ¼ 1 two-body scattering
and three-body decay processes.
Similarly to (18), the extended quasiparticle approxima-

tion for the Higgs propagator reads

�_ ¼ ~�_ � 1

2
ð�2

R þ�2
AÞ�_: (45)

Its graphic interpretation is presented in Fig. 7. For the first
term on the right-hand side of (45) we can again use
approximations (25) and (26). To analyze the second
term we have to specify the Higgs self-energy. At the
one-loop level it reads

FIG. 7. Schematic representation of the eQP approximation for
the Higgs field. (a) Corresponds to the full propagator, (b) to the
free propagator, and (c),(d) to the one-loop corrections.
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�_ðt; kÞ ¼ gsj�j2
Z

d�4
pQpt

ð2�Þ4�ðk� pt þ pQÞ
� tr½SQ+ðt; pQÞPRSt_ðt; ptÞPL	; (46)

see Appendix A for more details. As is evident from (46),
here we limit our analysis to contributions generated by
the quarks of the third generations. Let us note that in the
SM the gauge contribution to the Higgs self-energy is of
the same order of magnitude and should not be dismissed

in a fully consistent approximation. Using the KB ansatz
for the eQP propagators of the quarks with effective ther-
mal mass,

~St> ¼ ð1� ftÞ~St
; ~St< ¼ �ft ~St
; (47a)

~SQ> ¼ ð1� fQÞ~SQ
; ~SQ< ¼ �fQ ~SQ
; (47b)

with

~SQ
¼ð2�ÞsignðpQ
0Þ�ðpQ

2�m2
QÞPL 6pQPR�SQ
PL 6pQPR; (48a)

~St
¼ð2�Þsignðpt
0Þ�ðpt

2�m2
t ÞPR 6ptPL�St
PR 6ptPL; (48b)

and neglecting their off-shell parts, which are lepton number conserving, we can write the Higgs self-energy in the
form

�>ðt; kÞ ¼ �2gsj�j2
Z

d�4
pQpt

ð2�Þ4�ðkþ pQ � ptÞfQð1� ftÞðpQptÞSQ
ðpQÞSt
ðptÞ; (49a)

�<ðt; kÞ ¼ �2gsj�j2
Z

d�4
pQpt

ð2�Þ4�ðkþ pQ � ptÞð1� fQÞftðpQptÞSQ
ðpQÞSt
ðptÞ: (49b)

Substituting the one-loop lepton self-energy (22) with the Higgs propagator given by (45) into the divergence of the lepton
current (17), we obtain

sH
z

dYL

dz
¼ XZ

d�4
qpQppt

ð2�Þ4�ðqþ pQ � p� ptÞ~Sii

ðqÞS
ðpÞSQ
ðpQÞSt
ðptÞ�Ni!‘�ðq; pÞ�2

RþAðpt � pQÞ

���Q!tðpt; pQÞ½fqNi
f
pQ

Q ð1� fp‘ Þð1� fpt
t Þ � fp‘ f

pt
t ð1� fqNi

Þð1� f
pQ

Q Þ	; (50)

where we have introduced a combination of the retarded and advanced propagators,

�2
RþAðkÞ �

1

2
½�2

RðkÞ þ�2
AðkÞ	; (51)

which describes the intermediate Higgs line in Figs. 3 and 4. Note that in (50) the momenta are not restricted to the mass
shell. In particular, the zeroth components of the momenta can have either sign. Because of the Dirac deltas in the spectral
functions the frequency integration is trivial. Each of the spectral functions can be decomposed into a sum of two delta
functions, one with positive and one with negative frequency, leading to 24 terms. These different terms correspond to
1 $ 3 (inverse) decay, 2 $ 2 scattering, and to the (unphysical) 0 $ 4 process. An additional constraint comes from the
delta function ensuring energy conservation. In the regime Mi > m‘ þmQ þmt only eight terms satisfy the energy
conservation. Using the relation

1
 faðt;�pÞ ¼ �f �aðt; pÞ; (52)

where f �a denotes the distribution function of the antiparticles, we can then recast (50) in the form

sH
z

dYL

dz
¼ X

i

Z
d�

qppQpt

Ni‘Qt ð½F qpQ;ppt

NiQ$‘t�NiQ$‘t �F
qpQ;ppt

Ni
�Q$ �‘ �t

�Ni
�Q$‘�t	 þ ½F qpt;ppQ

Ni �t$‘ �Q
�Ni �t$‘ �Q �F

qpt;ppQ

Nit$ �‘Q
�Nit$ �‘Q	

þ ½F qp;pQpt

Ni
�‘$ �Qt

�Ni
�‘$ �Qt �F

qp;pQpt

Ni‘$Q�t�Ni‘$Q�t	 þ ½F q;ppQpt

Ni$‘ �Qt
�Ni$‘ �Qt �F

q;ppQpt

Ni$ �‘Q�t
�Ni$ �‘Q�t	Þ: (53)

The effective scattering amplitudes in (53) correspond to different assignments for the sign of the four-momenta in (50),
reflecting the usual crossing symmetry. For the tree-level and self-energy contributions to the effective scattering and decay
amplitudes we obtain
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�TþS
NiQ$‘t ¼ �TþS

Ni �t$‘ �Q
¼ �TþS

Ni$‘��
2
RþAðpt � pQÞ��Q$t; (54a)

�TþS
Ni

�‘$ �Qt
¼ �TþS

Ni
�‘$�

�2
RþAðpt þ pQÞ��$ �Qt; (54b)

�TþS
Ni$‘ �Qt

¼ �TþS
Ni$‘��

2
RþAðpt þ pQÞ��$ �Qt; (54c)

and similar expressions for the CP-conjugate ones. Note
that �TþS

Ni$‘� and �TþS
Ni

�‘$�
are given by the same expression

since theCP-violating loop term in (34) depends only on the
momentum of the Majorana neutrino. In vacuum these
scattering amplitudes reduce to (9) and (12) respectively
but with the Feynman propagator �2

T replaced by �2
RþA. In

the latter the contribution of the real intermediate state is
subtracted by construction [22]. However, in the regime
m� <mQ þmt the intermediate Higgs cannot be on shell
such that the vacuum and in-medium amplitudes become
numerically equal. Since the amplitudes ��$ �Qt and
��Q$t factorize in (54) and are CP conserving, the self-
energy CP-violating parameter in these processes is the
same as in the Majorana decay, see (36). However, since
the decay and scattering processes have different kinemat-
ics the averaged decay and scattering CP-violating
parameters are not identical.

Next we consider the two-loop lepton self-energy (23).
Proceeding as above we find for the divergence of the
lepton current an expression of the form (53) with the
amplitudes given by

�V
NiQ$‘t ¼ �V

Ni �t$‘ �Q
¼ �V

Ni$‘��
2
RþAðpt � pQÞ��Q$t;

(55a)

�V
Ni

�‘$ �Qt
¼ �V

Ni
�‘$�

�2
RþAðpt þ pQÞ��$ �Qt; (55b)

�V
Ni$‘ �Qt

¼ �V
Ni$‘��

2
RþAðpt þ pQÞ��$ �Qt: (55c)

Since the vertex contribution to the Majorana decay
amplitude depends on the momentum of the Higgs, the
amplitude �V

Ni$‘� does not coincide with �V
Ni

�‘$�
and we

can define two inequivalent vertex CP-violating parame-
ters [34]. For the scattering processes NiQ $ ‘t and
Ni �t $ ‘ �Q as well as for the three-body decay Ni $ ‘ �Qt,
the CP-violating parameter coincides with (39) with the
contributions of the three possible cuts given by (41)–(43),

respectively. For the Ni
�‘ $ �Qt process, the CP-violating

parameter still has the form (39), but since the lepton is in
the initial state the loop integral must be evaluated at
ðq;�pÞ instead of ðq; pÞ. For the first cut we obtain

pL‘�
V ðq; pÞ ¼ 16�

Z
d��‘

k1p1
ð2�Þ4�ðq� p1 � k1Þðpp1Þ

� ½1þ fk1� � fp1

‘ 	 M2
j

M2
j � ðq� p1 þ pÞ2 :

(56)

Contributions of the second and third cuts are given by

pL
Nj‘
V ðq;pÞ¼ 16�

Z
d�

Nj‘
q1p1

ð2�Þ4�ðqþp�p1�q1Þ

�ðpp1Þ½1�fq1Nj
�fp1

‘ 	 M2
j

ðq�p1Þ2�m2
�

�16�
Z
d�

Nj‘
q1p1

ð2�Þ4�ðqþpþp1�q1Þ

�ðpp1Þ½fq1Nj
�fp1

‘ 	 M2
j

ðqþp1Þ2�m2
�

; (57)

and by

pL
Nj�
V ðq; pÞ ¼ 16�

Z
d�

Nj�

q1k1
ð2�Þ4�ðq1 � p� k1Þ

� ðpq� pk1Þ½fk1� þ fq1Nj
	 M2

j

ðq� k1Þ2 �m2
‘

;

(58)

respectively. As follows from (56) and (57), the

CP-violating parameter in the Ni
�‘ $ �Qt scattering re-

ceives two vacuum contributions [34]. One is the usual
cut through ‘�, and the second one is given by the first
term in the cut through Nj‘. The kinematics of the second

contribution corresponds to Ni‘ $ Nj‘ t-channel scatter-

ing and therefore requires the initial center-of-mass energy
s ¼ qþ p to be greater than the final masses Mj þm‘,

meaning that contribution of this term to the reaction
density is suppressed for a hierarchical mass spectrum.

V. RATE EQUATIONS

Solving a system of Boltzmann equations in general
requires the use of numerical codes capable of treating
large systems of stiff differential equations for the different
momentum modes. This is a difficult task if one wants to
study a wide range of model parameters. A commonly
employed simplification is to approximate the Boltzmann
equations by the corresponding system of ‘‘rate equations’’
for the abundances Ya. In [35] it was shown that the two
approaches, Boltzmann or the rate equations, give approxi-
mately equal results for the final asymmetry, up to �10%
correction.
Starting from a quantum Boltzmann equation of the type

(53) we derive here the rate equation for the lepton asym-
metry which includes the (usually neglected) quantum
statistical factors. In our analysis we are closely following
[22]. The contribution of various processes to the genera-
tion of the lepton asymmetry can be represented in the
form
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D�j
� ¼ X

i;fag;fjg

Z
d�

qpapb...pjpk...

Niab...jk
½F qpapb...;pjpk...

Niab...$jk... �Niab...$ij...

�F
qpapb...;pjpk...

Ni �a �b...$ �j �k...
�Ni �a �b...$�i �j...	; (59)

compare with (53), where the sum runs over each possible

particle state with ‘ 2 fjg or �‘ 2 fag. We assume that the
SM particles are maintained in kinetic equilibrium by the
fast gauge interactions. This means that their distribution
function takes the form

faðt; EaÞ ¼ ðeEa��a
T � 1Þ�1; (60)

with a time-(or temperature-)dependent chemical potential
�a ¼ �aðtÞ. Here the upper (lower) sign corresponds to
bosons (fermions). It is also useful to define the equilib-
rium distribution function,

feqa ¼ ðeEa=T � 1Þ�1: (61)

The fast SM interactions relate chemical potentials of the
leptons, quarks, and the Higgs, such that only one of them
is independent. We can therefore express the chemical
potential of the quarks as a function of the lepton chemical
potential [36–38],

�t ¼ 5

21
�‘ � ct‘�‘; �Q ¼ � 1

3
�‘ � cQ‘�‘: (62)

Chemical potentials of the antiparticles: � �a ¼ ��a. The
lepton chemical potential is related to the abundance by

�‘

T
� c‘

YL

2Y
eq
‘

; (63)

where c‘ depends on the thermal mass of the lepton. For
m‘=T � 0:2 it can be very well approximated by the zero
mass limit, c‘ � 9
ð3Þ=�2 � 1:1.

Using the identity 1
 fa ¼ eðEa��aÞ=Tfa and energy
conservation we can rewrite the combinations of distribu-
tion functions appearing in (59) as

F
qpapb...;pjpk...

Niab...$jk... ¼ð2�Þ4�
�
qþX

a

pa�
X
j

pj

�

�
Q

afa
Q

jð1
fjÞ
1�feqNi

h
fNi

�f
eq
Ni
�f

eq
Ni
ð1�fNi

Þ

�
n
e
P

j
�j=T�

P
a
�a=T�1

oi
; (64)

where we have suppressed the momentum argument in the
distribution functions for notational convenience. We can
then expand (64) in the small chemical potential �a.
Assuming the Majorana neutrino to be close to equilib-
rium, fNi

� feqNi
�Oð�aÞ, we see that the term in the

square bracket in (64) is already of the first order in the
chemical potential. We can therefore replace the distribu-
tion functions in the second line of (64) by the equilibrium
ones,

Q
af

eq
a
Q

jð1
feqj Þ
1�feqNi

¼Y
a

f
eq
a

Y
j

ð1
f
eq
j ÞþY

j

f
eq
j

Y
a

ð1
f
eq
a Þ;

(65)

and expand the exponential to first order in the chemical
potential. Since we assume small departure from equilib-
rium the Majorana distribution function that multiplies
the chemical potential should also be replaced by the
equilibrium one. The corresponding equation for the anti-
particles is obtained from the above equation by replacing
�a ! ��a. The last step is to assume that the Majorana
distribution function is proportional to its equilibrium
value,

fNi
� YNi

ðtÞ
Y
eq
Ni
ðtÞ f

eq
Ni
: (66)

Putting everything together we get the conventional form
of the rate equation,

sH
z

dYL

dz
¼ X

i;fag;fjg

�
h�Niab...

jk... �Niab...
jk... i

�
YNi

Y
eq
Ni

� 1

�

� h�Niab...
jk... ic‘cab...$jk...

YL

2Y
eq
L

�
; (67)

where we have defined the production and washout
reaction densities:

D
�Niab...
jk... �Niab...

jk...

E
�

Z
d�

qpapb...pjpk...

Niab...jk...
ð2�Þ4�

�
qþX

a

pa �
X
j

pj

�
�Niab...!jk...ð�Niab...$jk... þ�Ni �a �b...$ �j �k...ÞfeqNi

�
�Y

a

feqa
Y
j

ð1
 feqj Þ þY
j

feqj
Y
a

ð1
 feqa Þ
�
; (68a)

D
�Niab...
jk...

E������W
�

Z
d�

qpapb...pjpk...

Niab...jk...
ð2�Þ4�

�
qþX

a

pa �
X
j

pj

�
ð�Niab...$jk... þ�Ni �a �b...$ �j �k...ÞfeqNi

ð1� feqNi
Þ

�
�Y

a

f
eq
a

Y
j

ð1
 f
eq
j Þ þY

j

f
eq
j

Y
a

ð1
 f
eq
a Þ

�
; (68b)
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and the numerical factor,

cab...$jk... �
P

j �j �
P

a �a

�‘

: (69)

Equation (67) must be supplemented by an equation for the
heavy neutrino abundance,

sH
z

dYNi

dz
¼ � X

fag;fjg
h�Niab...

jk... ijP
�
YNi

Yeq
Ni

� 1

�
; (70)

with the reaction density given by an expression similar
to (68b):

h�Niab...
jk... ijP �

Z
d�

qpapb...pjpk...

Niab...jk...
ð2�Þ4�

�
qþX

a

pa �
X
j

pj

�
ð�Niab...$jk... þ�Ni �a �b...$ �j �k...ÞfeqNi

�
�Y

a

feqa
Y
j

ð1
 feqj Þ þY
j

feqj
Y
a

ð1
 feqa Þ
�
: (71)

Note that these expressions are valid for two-body scatter-
ing processes with Majorana neutrino in the initial or final
state as well as for Majorana (inverse) decay processes.
The definitions (68) and (71) are somewhat different from
the ones obtained in the framework of thermal field theory;
see [39] for the definitions and explicit expressions for the
averaged decay and scattering reaction densities.

If the quantum-statistical corrections are neglected, i.e.,
if the 1
 f terms are replaced by unity and the equilibrium
fermionic and bosonic distributions are approximated by
the Maxwell-Boltzmann one, then (68b) and (71) are
equal. For the case of a 2 $ 2 scattering process they read

h�Nia
jk i �

Z
d�

qpapjpk

Niajk
ð2�Þ4�ðqþ pa � pj � pkÞ

� ð�Nia$jk þ�Ni �a$ �j �kÞfeqNi
f
eq
a : (72)

Part of the integrations in (72) can be performed analyti-
cally and we obtain

h�Nia
jk i � T

64�4

Z 1

smin

ds
ffiffiffi
s

p
K1

� ffiffiffi
s

p
T

�
�̂Nia

jk ðsÞ: (73)

Here smin ¼ ðMi þmaÞ2 (assuming Mi þma > mj þmk)

and �̂ðsÞ is the so-called reduced cross section:

�̂Nia
jk � 1

8�

Z 2�

0

d’ai

2�

Z tþ

t�

dt

s
ð�Nia$jk þ�Ni �a$ �j �kÞ; (74)

where s and t are the usual Mandelstam variables. The
integration limits are given by [22]

t
 ¼M2
i þm2

j �
s

2
½ð1þM2

i =s�m2
a=sÞð1þm2

j=s�m2
k=sÞ

��
1
2ð1;M2

i =s;m
2
a=sÞ�1

2ð1;m2
j=s;m

2
k=sÞ	; (75)

where �ðx; y; zÞ � x2 þ y2 þ z2 � 2xy� 2xz� 2yz is the
usual kinematical function. If effective thermal masses of
the SM particles are neglected then the integration limits
simplify to tþ ¼ 0 and t� ¼ �ðs�M2

i Þ. Integrating (9)
and (12) over t and neglecting the effective masses of the
initial and final lepton and quarks, we obtain the standard

expressions (see, e.g., [40,41]) for the reduced cross sec-
tions of the Higgs-mediated scattering processes:

�̂NiQ
‘t ¼ �Ni �t

‘ �Q

¼ gwgs
4�

ðhyhÞiij�j2 x� ai
x

�
x� 2ai þ 2a�
x� ai þ a�

þ ai � 2a�
x� ai

ln

�
x� ai þ a�

a�

��
; (76a)

�̂Ni
�‘

�Qt
¼ gwgs

4�
ðhyhÞiij�j2 ðx� aiÞ2

ðx� a�Þ2
; (76b)

where we have replaced s by x � s=M2
1 and introduced

dimensionless quantities ai � M2
i =M

2
1 and a� � m2

�=M
2
1.

Combined with (73), expressions (76) give the conven-
tional reaction densities of the Higgs-mediated scattering
processes.
Since in the conventional approach the CP-violating

parameter is calculated in vacuum it is momentum inde-
pendent and therefore can be taken out of the integral. The
CP-violating reaction densities are thus proportional to
the washout ones:

h�Nia
jk �Nia

jk i ¼ �vaci h�Nia
jk i; (77)

where we have again assumed a strongly hierarchical mass
spectrum of the heavy neutrinos. When the medium cor-
rections are taken into account, theCP-violating parameter
depends on the momenta of the initial and final states and
this simple relation is violated.

VI. NUMERICAL RESULTS

To illustrate the effect of the quantum-statistical correc-
tions and effective thermal masses, we present in this
section ratios of the reaction densities to the conventional
ones assuming a strongly hierarchical mass spectrum of the
Majorana neutrinos.
Let us first consider the scattering processes. Ratios of

the improved reaction densities to the conventional ones
are presented in Fig. 8. Note that the Majorana (as well as
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the quark) Yukawa couplings cancel out in these ratios and
for this reason we do not specify them here. The dashed
lines show the ratio of the reaction density computed using
(73)–(75), i.e., taking into account the effective thermal
masses but neglecting the quantum-statistical corrections,

to the conventional ones. For the Ni
�‘ $ �Qt process

(dashed red line), the effective masses decrease the avail-
able phase space and lead to a suppression of the reaction
density in the whole range of temperatures. Note that the
ratio does not approach unity at low temperatures.
Qualitatively this behavior can be understood from (72).
Let us assume for a moment that the scattering amplitude is
momentum independent. The reaction density at low tem-
peratures can then be estimated by evaluating the distribu-
tion functions at the average momenta hpii and hpai � 3T.
In the ratio of the reaction densities the Majorana distribu-
tion function cancels out and

h�X
Y iMB;m�0

h�X
Y iMB;m¼0

� exp ð�Ea=TÞ
exp ð�hpai=TÞ � exp ð�m2

a=2hpaiTÞ:

A more accurate estimate for the ratio of h�X
Y iMB;m�0 and

h�X
Y iMB;m¼0 is � exp ð�m2

a=T
2Þ. Since to a good approxi-

mation ma / T we conclude that this ratio is a constant
smaller than unity. In other words, despite the fact that at
low temperatures the quark masses become small com-
pared to the Majorana mass this ratio is not expected to
approach unity as the temperature decreases. Note also that
(in a very good agreement with the numerical cross-check)
this ratio does not depend on the masses of the final states.

Of course, the momentum dependence of the scattering
amplitude somewhat changes the low-temperature behav-
ior of the reaction density. Interestingly enough, for the
NiQ $ ‘t process the inclusion of the thermal masses
actually enhances the reaction density at high temperatures
(dashed blue line). This occurs because the induced in-
crease of the amplitude turns out to be larger than the
phase-space suppression. At low temperatures the effective
masses become negligible in the scattering amplitude but
still play an important role in the kinematics. As a result,
the ratio becomes smaller than unity and continues to
decrease as the temperature decreases. Let us note that
for a (moderately) strong washout regime most of the
asymmetry is typically produced at z & 10 and the low-
temperature behavior of the reaction densities does not
affect the generation of the asymmetry. Since all particles
in the initial and final states are fermions, the quantum-
statistical effects further suppress the reaction densities
(solid blue and red lines) and render the ratio of the
improved and conventional reaction densities smaller

than unity for both NiQ $ ‘t and Ni
�‘ $ �Qt in the

whole range of temperatures. Ratios of the improved
CP-violating scattering reaction densities to the conven-
tional ones are presented in Fig. 9. For both scattering
processes the improved CP-violating reaction densities
are enhanced at high temperatures. This is explained by
the enhancement of theCP violation in theMajorana decay
observed in [16,22]. At the intermediate temperatures
the relative enhancement of the CP-violating parameters
gets smaller and is overcompensated by the effective
mass and Fermi-statistics induced suppression of the
washout reaction densities that we have observed in

FIG. 8 (color online). Ratios of the scattering reaction den-
sities obtained taking into account the thermal masses (dashed
lines) and the thermal masses plus quantum-statistical effects
(solid lines) to the conventional ones. The thick solid lines
correspond to (68b) whereas the thin ones to (71).

FIG. 9 (color online). Ratio of the CP-violating reaction den-
sities to the ones computed using Boltzmann statistics and
neglecting the thermal masses of the initial and final states.
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Fig. 8. The low-temperature behavior is somewhat differ-

ent for the two scattering processes. For the Ni
�‘ $ �Qt

process the effective mass and quantum-statistical effects
get smaller in both the (unintegrated) CP-violating pa-
rameter and the washout reaction density, such that the
ratio of the CP-violating reaction density to the conven-
tional one slowly approaches a constant value. On the other
hand, for the NiQ $ ‘t process the suppression of the
washout reaction density induced by the effective masses
of the initial and final states that we observed in Fig. 8 also
leads to a suppression of the CP-violating reaction density
that gets stronger at low temperatures.

Next we consider the three-body decay. Neglecting the
quantum-statistical effects and using vacuum approxima-
tion for theNi $ ‘ �Qt decay amplitude in (68) and (71), we
recover the conventional expression for the decay reaction
density:

h�Ni

‘ �Qt
i � gN

2�2
TM2

i �Ni!‘ �QtK1ðMi=TÞ: (78)

Note that it is important to retain the effective thermal
masses of the quarks in the calculation of �Ni!‘ �Qt. The

four-momentum of the intermediate Higgs, see Fig. 5,
varies in the range ðmQ þmtÞ2 
 k2 
 ðMi �m‘Þ2. The
relation m� <mQ þmt, which is fulfilled in the SM,

ensures that the intermediate Higgs remains off shell and
prevents a singularity in the Higgs propagator. The ratio of
the reaction density computed taking into account the
quantum-statistical effects and effective masses to the
one computed taking into account only the effective
masses is presented in Fig. 10. Note that since mQ � mt �
0:4T andm‘ � 0:2T this three-body decay is kinematically
allowed only at T & Mi. As one would expect, at high
temperatures the fermionic nature of the initial and final
states leads to a suppression as compared to the Boltzmann
approximation. At low temperatures the quantum-
statistical effects play no role and the ratio slowly ap-
proaches unity. The ratio of the CP-violating reaction
density for the Ni $ ‘ �Qt process is presented in Fig. 11.
At high and intermediate temperatures the medium en-
hancement of the (unintegrated) CP-violating parameter
is overcompensated by the suppression of the washout
decay reaction density that we have observed in Fig. 10.
At low temperatures the effective mass and quantum-
statistical effects get smaller in both the (unintegrated)
CP-violating parameter and the washout reaction density,
such that the CP-violating reaction density slowly ap-
proaches the conventional one.

To conclude this section we present the ratio of the
three-body decay and 2 $ 2 scattering processes to the
reaction density ofNi $ ‘� process, see Fig. 12. As can be
inferred from this plot, the three-body decay is subdomi-
nant in the whole range of temperatures and can be safely
neglected. The inclusion of the effective masses has a
very similar effect on the two-body decay and scattering

reaction densities such that the ratios of the two almost
do not change as compared to the one computed in the
massless approximation. The inclusion of the quantum-
statistical corrections has a stronger effect on the scattering

FIG. 10 (color online). Ratio of the Ni $ ‘ �Qt decay reaction
density obtained taking into account effective thermal masses
and quantum-statistical effects to the conventional one computed
taking into account only the effective thermal masses of the final
and intermediate states. The thick solid line corresponds to (68)
whereas the thin one to (71).

FIG. 11 (color online). Ratio of the CP-violating reaction
density of the Ni $ ‘ �Qt process obtained taking into account
effective thermal masses and quantum-statistical effects to the
ones computed taking into account only the effective thermal
masses.
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processes such that the ratio of the reaction densities
is smaller than the ratio of the conventional ones. Let us
also note that the scattering processes are very important
at high temperatures but become subdominant at low
temperatures.

VII. SUMMARY

In this work we have studied �L ¼ 1 decay and scat-
tering processes mediated by the Higgs with quarks in the
initial and final states using the formalism of nonequilib-
rium quantum field theory.

Starting from the Kadanoff-Baym equations for the
lepton propagator we have derived the corresponding
quantum-corrected Boltzmann and rate equations for the
total lepton asymmetry. As compared to the canonical
ones, the latter are free of the notorious double-counting
problem and ensure that the asymmetry automatically
vanishes in thermal equilibrium. To compute the collision
term we have taken into account one- and two-loop con-
tributions to the lepton self-energy and used the extended
quasiparticle approximation for the Higgs propagator.
The impact of the SM gauge interactions on the collision
term has been approximately taken into account in the
form of effective thermal masses of the Higgs, leptons
and quarks.

We find that the inclusion of the effective masses and
quantum-statistical terms suppresses the washout reaction
densities of the decay and scattering processes with respect
to the conventional ones, where these effects are neglected,
in the whole relevant range of temperatures. For the

Ni
�‘ $ �Qt process the ratio of the improved and conven-

tional washout reaction densities slowly approaches a con-
stant value close to unity at low temperatures. Interestingly
enough, for the NiQ $ ‘t processes this ratio decreases
even at low temperatures. Finally, for the Ni $ ‘ �Qt pro-
cess the ratio slowly approaches unity at low temperatures.
As far as theCP-violating reaction densities are concerned,
we find that for the scattering processes the ratio of the
improved and the conventional ones is greater than unity at
high temperatures but is smaller than unity at intermediate
and low temperatures because of the thermal masses and
quantum-statistical effects. For the three-body decay this
ratio is smaller than unity in the whole relevant range of
temperatures.
We expect that the effects studied here can induce a

Oð10%Þ correction to the total generated asymmetry. For a
detailed phenomenological analysis it is necessary to in-
clude further phenomena such as flavor effects and process
with gauge bosons in the initial and final states.
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APPENDIX A: HIGGS SELF-ENERGY

The top quark contribution to the Higgs self-energy is
derived from the 2PI effective action. At one-loop the
contribution of the top quark is given by

i�2 ¼ gsj�j2
Z
C
d4ud4v tr½SQbaðv; uÞPRStðu; vÞ	

� ��bc�cdðv; uÞ�Tda; (A1)

where the factor gs ¼ 3 comes from the summation over
color indices and � ¼ i�2. In a SUð2ÞL symmetric state,
the Higgs and lepton propagators are proportional to the
identity in the SUð2ÞL space, and so is the Higgs self-
energy,

�abðx; yÞ � �ðx; yÞ�ab ¼ �i�2

�baðy; xÞ
¼ gsj�j2tr½SQðy; xÞPRStðx; yÞPL	�ab: (A2)

Its Wightman components are given by

�_ðx; yÞ ¼ gsj�j2tr½SQ+ðy; xÞPRSt_ðx; yÞPL	: (A3)

FIG. 12 (color online). Ratio of the washout scattering and
three-body decay reaction densities to the reaction density of the
Ni $ ‘� process. The dashed lines denote the ratios of the
conventional reaction densities, the thin solid lines the ratios
computed taking into account only the effective masses in all the
reaction densities, and finally the thick solid lines the ratios
computed taking into account the effective masses and quantum-
statistical corrections in all the reaction densities. The reaction
density h�Ni

‘�iW is computed using (5) and the definition (68b),

see also [22].
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Finally, performing a Wigner transform of the above
equation, we find

�_ðt; kÞ ¼ gsj�j2
Z

d�4
pQpt

ð2�Þ4�ðk� pt þ pQÞ
� tr½SQ+ðt; pQÞPRSt_ðt; ptÞPL	: (A4)

APPENDIX B: REACTION DENSITY
OF 1 ! 3 DECAY

For Ni ! ‘ �Qt decay the general expression (71) takes
the form

h�Ni

‘ �Qt
i¼

Z
d�

qppQpt

Ni‘ �Qt
ð2�Þ4�ðq�p�pQ�ptÞ

��Ni!‘���2
RþAðpQþptÞ��! �Qtf

eq
Ni
½ð1�f

eq
‘ Þ

�ð1�feq�Q Þð1�feqt Þþfeq‘ feq�Q feqt 	; (B1)

where we have used the explicit form of the decay ampli-
tude (13). To reduce it to a form suitable for the numerical
analysis we insert an identity:

1 ¼
Z

ds
Z

d4k�ðpQ þ pt � kÞ�þðk2 � sÞ; (B2)

where k is the four-momentum of the intermediate Higgs.
Approximating furthermore �2

RþA by �2
T we can rewrite

the reaction density in the form

h�Ni

‘ �Qt
i ¼

Z
d�q

Ni
f
eq
Ni

Z ds

2�
�2

TðsÞ
Z

d�pk
‘�ð2�Þ4

� �ðq� p� kÞ�Ni!‘�

Z
d�

pQpt

�Qt
ð2�Þ4

� �ðk� pQ � ptÞ��! �Qt½ð1� feq‘ Þð1� feq�Q Þ
� ð1� feqt Þ þ feq‘ feq�Q feqt 	: (B3)

Note that in the regime m� <mQ þmt realized in the

considered case the Higgs is always off shell and its width
can be neglected in �T . For the second line in (B3) we can
use [22]

Z
d�pk

‘�ð2�Þ4�ðq� k� pÞ ! 1

8�jqj
Z Eþ

p

E�
p

dEp

Z 2�

0

d’

2�
:

(B4)

The integration limits are given by

E

p ¼ 1

2
½Eqð1þ x‘ � x�Þ 
 jqj�1

2ð1; x‘; x�Þ	; (B5)

where x‘ � m2
‘=M

2
i , x� � s=Mi and �ðx; y; zÞ � x2þ

y2 þ z2 � 2xy� 2xz� 2yz is the usual kinematical func-
tion. For the third line we can use a similar expression with
xQ ¼ m2

Q=s and xt ¼ m2
t =s.

Expressed in terms of the integration variables the
amplitudes take the form

�Ni!‘� ¼ gwðhyhÞiiðM2
i þm2

‘ � sÞ; (B6a)

��! �Qt ¼ gsj�j2ðs�m2
Q �m2

t Þ: (B6b)

Since they do not depend on the angles between the quarks
and leptons, the integration over ’ is trivial and the reac-
tion density takes the form

h�Ni

‘ �Qt
i ¼

Z
d�q

Ni
feqNi

Z ds

2�
�2

TðsÞ
Z Eþ

p

E�
p

dEp

8�jqj

��Ni!‘�

Z Eþ
pQ

E�
pQ

dEpQ

8�jkj��! �Qt

� ½ð1� feq‘ Þð1� feq�Q Þð1� feqt Þ þ feq‘ feq�Q feqt 	:
(B7)

The three-momentum of the intermediate Higgs is given

by jkj ¼ ðE2
k � sÞ12 and Ek ¼ Eq � Ep. Note that if we

neglect the quantum-statistical factors in (B7) the reaction
density takes the standard form.

APPENDIX C: MAJORANA SPECTRAL
SELF-ENERGY

We compute here the Majorana spectral self-energy. In a
CP-symmetric medium it reads [22]

�ij

 ¼ � gw

16�
½ðhyhÞijPL þ ðhyhÞ�ijPR	LS; (C1)

where we have defined the loop function LSðqÞ,

LSðqÞ ¼ 16�
Z

d�4
pkð2�Þ4�ðq� p� kÞ6p

� ½�FðkÞS
ðhÞðpÞ þ �
ðhÞðkÞSFðpÞ	: (C2)

Using the eQP for the Higgs, see (45), one can split the
functionLS into a decay part, identical to the one computed
in [22],

Ld
SðqÞ ¼ 16�

Z
d�‘�

pk
~F q;pk

ðNiÞ$‘� 6p; (C3)

where we have assumed q0 > 0, and defined

~F
papb...;pipj...

ðaÞb...$ij... � ð2�Þ4�ðpa þ pb þ � � � � pi � pj � � � �Þ
� ½fpb

b . . . ð1
 fpi

i Þð1
 f
pj

j Þ . . .
þ fpi

i f
pj

j . . . ð1
 fpb

b Þ . . .	; (C4)

and a scattering part,

Ls
SðqÞ ¼ 16�

Z
d�4

ppQpt
ð2�Þ4�ðqþ pQ � p� ptÞ

� S
ðpÞSQ
ðpQÞSt
ðptÞ�2
RþAðpt � pQÞ

����t! �Q 6p½fpQ

Q ð1� fp‘ Þð1� fpt
t Þ

þ fp‘ f
pt
t ð1� f

pQ

Q Þ	: (C5)

SYSTEMATIC APPROACH TO �L ¼ 1 PROCESSES . . . PHYSICAL REVIEW D 87, 125006 (2013)

125006-15



Performing the frequency integration as explained above,
see (53), we can rewrite (C5) as a sum of four terms,
corresponding to the three scattering and one three-body
decay process as well as their CP conjugates. Assuming
q0 > 0 we obtain

Ls
SðqÞ ¼ 16�

Z
d�

ppQpt

‘Qt ½ ~F qpQ;ppt

ðNiÞQ$‘t�
2
RþAðpt � pQÞ

���Q!t þ ~F
qpt;ppQ

ðNiÞ�t$‘ �Q
�2

RþAðpt � pQÞ
����t! �Q þ ~F

qp;pQpt

ðNiÞ �‘$ �Qt
�2

RþAðpt þ pQÞ
���! �Qt þ ~F

q;ppQpt

ðNiÞ$‘ �Qt
�2

RþAðpt þ pQÞ��Q!t	6p:
(C6)

In the regime m� <mQ þmt the intermediate Higgs can-

not be on shell. Therefore one can neglect the Higgs width
in �2

RþA and approximate it by �2
T .

As can be inferred from the definition (C4) for the

scattering terms ~F vanishes in vacuum, whereas for the
decay term it does not. Because of Lorentz covariance in
vacuum both Ld

S and Ls
S must be proportional to the four-

vector q. Using (B4) and (B5) we find that the coefficient
of proportionality is equal to unity for the decay contribu-
tion, i.e., Ld

S ¼ q, if thermal masses of the Higgs and

leptons are neglected. Using (B7) we find that for the

scattering contribution the coefficient of proportionality
reads

gsj�j2
16�2

Z ðMi�m‘Þ2

ðmQþmtÞ2
ds

M2
i

�
1
2ð1; xQ; xtÞ�1

2ð1; x‘; x�Þ

� ðs�m2
t �m2

QÞðM2
i þm2

‘ � sÞ
ðs�m2

�Þ2
: (C7)

Note that since we have omitted the Higgs decay width,
this expression is convergent only if m� <mQ þmt. The

vacuum result (C7) provides also a very good approxima-
tion for nonzero temperatures provided that M=T � 1.
The thermal masses of the quarks then ensure that the
Higgs remains off shell and therefore that (C7) is finite.
It is important to note that due to the temperature depen-
dence of the effective masses the coefficient (C7) is tem-
perature dependent as well. A numerical analysis shows
that it grows as the temperature decreases.
Using LS we can calculate the in-medium CP-violating

parameter in Ni $ ‘� process. For a hierarchical mass
spectrum [22],

� ¼ �vac0

pLS

qp
; (C8)

where �vac0 denotes the vacuum CP-violating parameter

calculated neglecting contributions of the Higgs-mediated
processes, i.e., using only Ld

S. As has been mentioned

above, if thermal masses of the Higgs and leptons
are neglected then Ld

S ¼ q in vacuum and we recover

� ¼ �vac0 . Once the contribution of the Higgs-mediated

processes is taken into account �vac � �vac0 . To estimate

the size of the corrections induced by (C6) we plot the
ratio of thermally averaged CP-violating parameter, h�i �
h��D

Ni=h�D
Ni, to �vac0 , see Fig. 13. Note that we have ne-

glected thermal masses of the final-state Higgs and lepton
in the numerics. The blue line corresponds to the
CP-violating parameter computed using (C3). In agree-
ment with the above discussion the ratio reaches unity at
low temperatures. The dashed red line corresponds to the
CP-violating parameter computed using the sum of (C3)
and the scattering (lines two to four) contributions to (C6).
As expected, at high temperatures we observe an enhance-
ment of the ratio, whereas at low temperatures it reaches
unity. The solid red line is obtained by considering the sum
of (C3) and all of the terms in (C6). Since the three-body
process is kinematically suppressed at high temperatures,
the dashed and solid lines overlap for z & 1. At lower
temperatures the quantum-statistical effects are small.
However, in agreement with the discussion below (C7),
the effective thermal masses of the Higgs and quarks lead
to a slow rise of the ratio at low temperatures.

FIG. 13 (color online). Ratio of the thermally averaged
CP-violating parameter to the one calculated in vacuum neglect-
ing the contribution of the Higgs-mediated processes. The blue
line corresponds to (C3), whereas the red lines to the sum of (C3)
and (C6). The dashed red line is obtained by omitting the
contribution of the three-body decay in (C6).
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