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We study motion of an electric current-carrying string loop oscillating in the vicinity of the

Schwarzschild black hole immersed in an external uniform magnetic field. The dependence of boundaries

and different types of motion of the string loop on magnetic field strength is found. The dynamics of the

string loop in the Cartesian xy plane depends both on value and direction of the magnetic field and current.

It is shown that the magnetic field influence on the behavior of the string loop is quite significant even for

weak magnetic field strength. The oscillation of the string loop becomes stronger or weaker in dependence

on the direction of the Lorenz force. We illustrate the various regimes of the trajectories of the string loop

that can fall down into the black hole, escape to infinity, or be trapped in the finite region near the horizon

for the different representative values of the magnetic field. We have also considered the flat spacetime

limit as the condition of the escape of the string loop from the neighborhood of the black hole to infinity.

We found the expression for the magnetic field strength for which the oscillatory motion of the string loop

totally vanishes and the string loop can have maximal acceleration in the perpendicular direction to the

plane of the loop.
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I. INTRODUCTION

Current carrying strings moving axisymmetrically along
the axis of a Kerr black hole [1], a Schwarzschild-de Sitter
black hole [2,3], or a braneworld black hole or naked
singularity [4] could represent a toy model of plasma that
exhibits associated stringlike behavior via dynamics of the
magnetic field lines in the plasma [5–8] or due to thin
isolated flux tubes of plasma that could be described by
an one-dimensional string [9]. Tension of such a string loop
prevents its expansion beyond some radius, while its world
sheet current introduces an angular momentum barrier
preventing the loop from collapsing into the black hole.
Such a configuration was also studied in [10,11]. It has
been proposed in [1] that the current carrying string can be
used as a model for relativistic jet formation around the
black hole and in [3] that it can model high-frequency
quasiperiodic oscillations in the vicinity of the black hole
horizon.

In our preceding recent paper [3], the possibility to
convert motion of a string loop originally oscillating around
a black hole in one direction to the perpendicular direction,
modeling thus an accelerating jet, has been studied. It is
well known that due to the chaotic character of the motion
of string loops such a transformation of the energy from the

oscillatory to the linear mode is possible [1,2,10] and in the
preceding paper [3] we have estimated its efficiency and
studied the role of the cosmic repulsion, that can be, sur-
prisingly, relevant in astrophysical phenomena [4].
Here we extend our previous research to the case

when the black hole is embedded in the magnetic field
and investigate the motion of an axisymmetric electric
current-carrying string loop in the background of the
Schwarzschild black hole and external, uniform, axisym-
metric magnetic field. There exist both theoretical and
experimental indications that a magnetic field may be
present in the vicinity of black holes. A regular magnetic
field can exist near a black hole surrounded by conducting
matter (plasma), e.g., if the black hole has an accretion
disk. The magnetic field near a stellar mass black hole may
contain a contribution from the original magnetic field of
the collapsed progenitor star. The dynamo mechanism in
the plasma of the accretion disk might generate a regular
magnetic field inside the disk. Such a field cannot cross the
conducting plasma region and is trapped in the vicinity of
the black hole (see, e.g., discussion in Frolov [12]).
Stellar mass and supermassive black holes often have

jets that are collimated fluxes of relativistic plasma. It is
generally believed that the magnetohydrodynamics of the
plasma in strong magnetic and gravitational fields of the
black holes would allow one to understand formation and
energetics of the black hole jets [1]. The magnetic field in
the vicinity of the black holes might play an important role
in transfer of the energy from the accretion disk to jets.
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Existence of a regular magnetic field near black holes
is also required for the proper collimation of the plasma
in the jets.

For the estimation of the magnetic field strength at the
horizon radius of Schwarzschild black holes, we use the
magnetic coupling process in dependence on the black hole
mass MBH and the accretion rate _M performed in [13] and
based on the use of the fundamental variability plane for
stellar mass black holes, active galactic nuclei and quasi-
stellar objects. The variability plane can be presented in the
following form

log�b ¼ log _M� 2 logM� 14:7; (1)

where _M is the accretion rate in g/s, M ¼ MBH=M� is the
black hole mass in M�, and �b is the break frequency in
Hz. The magnetic field strength is derived in a result of the
magnetic coupling (MC) process which is responsible for
the interaction between the black hole and its surrounding
accretion disk.

The MC process provides the relation between the mag-
netic field strength at the horizon of Schwarzschild black
hole BH and its mass M and the accretion rate _M. This
relation is based upon the balance between the pressure of
the magnetic field at the horizon and the accreted matter
pressure of the innermost part of an accretion flow:

BH ¼ 1

RH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2km _Mc

q
; (2)

where RH ¼ 2GMBH=c
2 is the radius of the Schwarzschild

black hole. km is a magnetization parameter indicating the
relative power of the MC process with respect to the disk
accretion. If the MC process dominates over the disk
accretion, km > 1, and if it is dominated by latter, km<1.
The case km � 1 corresponds to equipartition between
these two processes. At logarithm scaling, this can be
written in the form

2 logBH ¼ log _M� 2 logMþ 2 log fðkmÞ; (3)

where

fðkmÞ ¼ c2
ffiffiffiffiffiffiffiffiffiffiffi
2kmc

p
2GM�

ffi 0:83
ffiffiffiffiffiffi
km

p
: (4)

Equations (1) and (3) gave together

BH � 0:83
ffiffiffiffiffiffiffiffiffiffiffi
�bkm

p � 107:35: (5)

It was shown in paper [14] that the break frequency �b is
determined by both the black hole mass MBH and the
accretion rate _mEdd ¼ _M= _MEdd as follows:

�b ¼ 0:029" _mEdd

�
106

M�
MBH

�
; (6)

where " is the efficiency of the mass to energy conversion
(usually one assumes " ¼ 0:1). Using equations stated
above, one can estimate the strength of the magnetic field
in thevicinity of stellarmass and supermassive black holes as

B � 108 G; for M � 10M�; (7)

B � 104 G; for M � 109M�: (8)

Charged particle motion in electromagnetic fields sur-
rounding the black hole has been studied in different works
(see e.g., [15,16]). Off-equatorial motion of charged parti-
cles in background gravitational and electromagnetic fields
has been studied in papers [17,18]. Detailed analysis of the
astrophysics of rotating black holes in the presence of
electromagnetic fields in connection with energetic mecha-
nisms such as the Penrose process has been discussed by
Wagh and Dadhich in paper [19]. The Blandford-Znajek
mechanism applied for the black hole with a toroidal
electric current was investigated in papers [20,21].
Observational evidences of the existence of a magnetic
field around black holes can be found in papers (see,
e.g., [22,23]).
In this paper, we study dynamics of electric current-

carrying string loop in the magnetic field around the black
hole. To make our discussion more concrete, we use the
evaluation for the magnetic field given in papers [13,15].
Namely, the characteristic scales of the magnetic field B
are of the order of B1 � 108 G near the horizon of a stellar
mass (M1 � 10M�) black hole, and of the order of B2 �
104 G near the horizon of a supermassive (M2 � 109M�)
black hole. We use the estimates above to describe only the
domain of the physical parameters, which characterize our
system, and to define the validity of the adopted approx-
imations. Let us notice that both the fields B1 and B2 are
weak in the following sense: The spacetime local curvature
created by the magnetic field B is of the order ofGB2=c4. It
is comparable to the spacetime curvature near a black hole
of mass M only if

GB2

c4
� 1

r2g
� c4

G2M2
: (9)

For a black hole of mass M, this condition holds if the
strength of such a magnetic field satisfies the condition

B� BM ¼ c4

G3=2M�

�
M�
M

�
� 1019

M�
M

G: (10)

Evidently, the quantities B1;2 for both the stellar mass and

supermassive black holes presented above are much
smaller than the corresponding BM. In what follows we
assume that the magnetic field is weak B � BM and its
energy momentum does not modify the background black
hole geometry. This means that for our problem the field B
can be considered as a test field in the given gravitational
background. Such a magnetic field practically does not
affect motion of neutral particles.
To characterize relative strength of magnetic and gravi-

tational forces acting on an electric current-carrying string
loop with mass m and charge q in the vicinity of a black
hole of massM immersed in a magnetic field with strength
B, one can use the following dimensionless quantity [12]:
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b ¼ jqjBGM
mc4

: (11)

However, hereafter we suppose that the string loop is
massless and the dimensionless quantity b being valid for
the massive particle motion can be applied for the estima-
tion of the efficiency of a magnetic field even for the
massless string loop.

The influence of the magnetic field induced by the
Lorentz force of the order of qB=ðmcÞ can be quite strong
and non-negligible. The simple estimation of the quantity b
in the black hole environment gives [12,24]

b� 4:7� 106
�
q

e

��
m

mp

��1
�

B

108 G

��
M

M�

�
; (12)

where e and mp are the charge and mass of the proton,

respectively. On the basis of this estimation, one can con-
clude that the effect of the magnetic field on the motion of
such relativistic systems cannot be neglected even in weak
magnetic field approximation.

Our investigation may be relevant for understanding of
the phenomena of collimated jets which are exhibited in
systems that range from accreting young stars, neutron
stars, and black holes to supermassive black holes in active
galactic nuclei and quasars.

The paper is organized as follows. Section II is devoted
to study of the equations of string motion in the magnetic
field background. In Sec. III the influence of the magnetic
field on the oscillatory motion of the string loop in the flat
spacetime has been considered. In Sec. IV the behavior of
the string loop and relevant effects in the vicinity of the
black hole immersed in an external magnetic field is
studied. The concluding remarks and discussions are pre-
sented in Sec. V.

Throughout the paper, we use a spacetime signature as
ð�;þ;þ;þÞ and a system of geometric units in which
G ¼ 1 ¼ c. (However, for those expressions with an as-
trophysical application we have written the speed of light
explicitly). Greek indices are taken to run from 0 to 3.

II. STRING LOOP MOTION IN THE COMBINED
GRAVITATIONAL AND EXTERNAL

MAGNETIC FIELD

We study motion of an axisymmetric electric current-
carrying string loop threaded onto an axis passing through
the symmetry center of the Schwarzschild black hole
spacetime and chosen to be the y axis in the presence of
an external magnetic field which is also directed along the
y axis (see Fig. 1). The string loop can oscillate, changing
its radius in the x-z plane, while propagating in the y
direction. Assumed axial symmetry of the string loop
allows one to investigate only one point on the loop
because one point path can represent the whole string
movement. The trajectory of the loop is then represented
by a curve given in the 2D x-y plane. The string loop

tension and the world sheet current corresponding to an
angular momentum parameter form barriers governing its
dynamics. These barriers are modified by the gravitational
field of the Schwarzschild black hole characterized by the
mass M and by the external uniform magnetic field with
the strength B.
The Schwarzschild spacetime metric in spherical coor-

dinates reads

ds2 ¼ �fðrÞdt2 þ f�1ðrÞdr2 þ r2ðd�2 þ sin 2�d’2Þ;
(13)

where the metric function

fðrÞ ¼ 1� 2M

r
(14)

is expressed through the total mass M of the black hole.
Since the string loop preserves its axial symmetry during

motion, it is obvious from Fig. 1 that the description of the
trajectory of only one point of the string allows us to define
full string loop motion [25]. Therefore according to [1,2] it
is useful to use the Cartesian coordinates

x ¼ r sin �; y ¼ r cos � (15)

for the proper description of the string loop motion.
Then the 3þ 1 dimensional Schwarzschild spacetime

metric (13) with coordinates ðt; r; �; ’Þ can be rewritten in
new coordinate notations ðt; x; y; ’Þ in the following 3þ 1
dimensional form:

y

x
z r

Black hole

String loop

String trajectory plane 

j

F

F
j

FIG. 1. Electric current-carrying string loop in external mag-
netic field moving around a Schwarzschild black hole. The
behavior of only one point on the loop can describe all string
movement. Then string trajectory is shown on the x-y plot. In the
presence of the electric current there is a Lorenz force acting on
the string perpendicularly to the plane of magnetic field strength
and electric current. The direction of the Lorenz force is
‘‘positive’’ when it acts on the string loop in the direction from
the black hole to space (solid arrow). The Lorenz force is
‘‘negative’’ when it is directed into the black hole (dashed arrow).
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ds2 ¼ �fdt2 þ x2d’2 þ x2 þ fy2

fðx2 þ y2Þdx
2

þ fx2 þ y2

fðx2 þ y2Þdy
2 þ 2

ð1� fÞxy
fðx2 þ y2Þdxdy; (16)

where the characteristic function of the line element is
taken in the form

fðx; yÞ ¼ 1� 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p : (17)

According to Wald [26] the existence of the spacetime
Killing vectors �� which satisfy the Killing equation

��;� þ ��;� ¼ 0 (18)

gives us the right to write the solution of vacuum Maxwell
equations hA� ¼ 0 for the vector potential A� of the

electromagnetic field in the Lorentz gauge in the form

A� ¼ C1�
�
ðtÞ þ C2�

�
ð’Þ: (19)

Because of the asymptotic properties of spacetime (13) at
the infinity the integration constant C1 ¼ 0 whereas the
second integration constant C2 ¼ B=2. Consequently, the
magnetic field potential will take the following simple
form [26]:

A� ¼ B

2
��
ð’Þ; (20)

where commuting Killing vector �ð’Þ ¼ @=@’ generates

rotations around the symmetry axis. The nonvanishing
covariant component of the 4-vector potential of the elec-
tromagnetic field will take the form

A’ ¼ B

2
r2sin 2� ¼ B

2
x2: (21)

The magnetic field is uniform at infinity where it has the
strength B � 0.

Next, we summarize the equations of string motion in
the Hamiltonian approach [25,27] in the presence of the
magnetic field. The string world sheet is described by the
spacetime coordinates X�ð�aÞ given as functions of two
world sheet coordinates �a (with a ¼ 0, 1). We adopt
coordinates ð�; �Þ as the parameter � denoting an affine
parameter related to the proper time measured along the
moving string and parameter � reflecting the axial sym-
metry of the oscillating string.

The dynamics of the string is described by the action
related to the string tension �> 0 and a scalar field ’ as
’;a ¼ ja determines current (angular momentum) of the

string [1,2]. The assumption of axisymmetry implies the
scalar field in linear form with constants j� and j�:

’ ¼ j��þ j��: (22)

It can be viewed as a 1þ 1 dimensional massless radiation
fluid, with positive energy density and equal pressure, i.e.,

tension. In a general situation, integration of the equations
of motion of string loops or open strings is a very complex
task that has to be treated by numerical methods only, and
has been discussed in a variety of papers [10,11,28–36].
It has to be emphasized that the string loop itself is the

additional source of the electric and magnetic field. The
magnetic field created by the azimuthal current in a current
loop in the Schwarzschild and Kerr spacetimes has been
considered in papers [37,38]. Following [39,40] and using

the Cartesian coordinates with r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, we find that

a current-carrying string loop located at the equatorial
� ¼ 	=2 plane, symmetrically around a black hole with
mass M at radius rs has nonvanishing components of the
magnetic field in the region r � rs expressed in the form

Bx̂¼ 3�xy

4M2r3

�
2lnfffiffiffi

f
p ð1þ ffiffiffi

f
p Þ�ð1þfÞ

�
1þ 1ffiffiffiffiffi

f3
p

�
þ4

�
; (23)

Bŷ ¼ � 3�

4M2r3

�
2 ln f

1� f

�
y2 þ x2ffiffiffi

f
p

�

þ ð1þ fÞ
�
x2ffiffiffiffiffi
f3

p � 3� f

1� f
y2
��

; (24)

where f ¼ 1� 2M=r is the characteristic function of the
line element called lapse function. It is identical to the
magnetic field of a dipole with moment

� ¼ 	r2sI

�
1� 2M

rs

�
1=2

; (25)

where I is the total electric current. The components of the
magnetic field (23) and (24) taken in the asymptotics,
i.e., f ! 1 or M=r ! 0 reduce to the flat-space form

Bx̂ ¼ 3	xy

r5
Ir2s ; (26)

Bŷ ¼ 	ð2y2 � x2Þ
r5

Ir2s : (27)

In terms of the string loop given by [1,2] current I corre-
sponds to j� ¼ J�. Then the norm of the magnetic field
of the current-carrying string loop in arbitrary point with
r � rs can be written as

Bs ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 4y2

p
ðx2 þ y2Þ2 J�r2s : (28)

Clearly, Bs is maximal when rs ¼ r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and de-

creases with the increase of rs. For the parametrization
taken in papers [2,3], one can estimate the typical value of
the magnetic field of the string loop with radius rs ¼ 10,
angular momentum J=

ffiffiffiffi
�

p ¼ 11, and the maximal current

parameter � ¼ 1 as

Bs � 1:34� 10�3 G: (29)
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For the parametrization taken above, we used the limiting
tension for the Nambu-Goto string model of the cosmic
strings [41] as � ¼ 1:5� 10�7. Its contribution to the
energy of the string which is proportional to B2

s is negligibly
small in comparison with those of the external magnetic
field which is estimated as �108 G for stellar mass black
holes and�104 G for supermassive black hole. On the other
hand, in the following we will not neglect the interaction of
the external and self-magnetic fields which leads to the
appearance of the rotating moment which is proportional
to the electric current of the string and external magnetic
field B. In vector form a rotating moment can be written as

~M� J� ~Br2s : (30)

This implies that in the presence of an electric current in the
string loop there exists a force which tries to hold the string
perpendicularly to the vector of the strength of the ambient
magnetic field (i.e., in the x-z plane) while the string loop
can freely propagate in the y direction. Therefore the self-
magnetic field of the string loop appears in the expression
for the effective energy (38) as an interaction with the
ambient magnetic field rather than a free term of order B2

s .
The symmetry of the Schwarzschild spacetime and the

assumption of the axisymmetric string oscillations enables
a substantial simplification and the string motion can be
treated using the Hamiltonian formalism. Following [27],
one can introduce the Hamiltonian (further we choose a
system of units with string tension � ¼ 1)

2H ¼ g��P�P� þQþ x2 þ 2ðj2� þ j2�Þ

þ ½2ðj2� � j2�Þ �Q	2
4x2

; (31)

where P� ¼ p� þ qA� is the generalized 4-momentum of

the string loop and parameter Q denotes

Q 
 A’ð2
ffiffiffi
2

p
j� þ A’Þ: (32)

Equation (31) with the above-mentioned statements
means that the string loop can be described by the usual
Hamiltonian of a point particle of charge q� j� propagat-
ing in the four-dimensional curved spacetime and electro-
magnetic background given by the vector potential A�.

To parametrize the solution, one can introduce new
variables of the current components:

J2 
 j2� þ j2�; ! 
 �j�=j�: (33)

The minus sign in the definition of ! is chosen in order to
obtain correspondence of positive angular momentum and
positive !. Note that �j�=j� ¼ j�=j�. J determines the
angular momentum parameter of the string.

Because of the spherical symmetry of the spacetime we
can assume J > 0 in the following, while ! can be both
positive and negative. The case with ! ¼ 0 corresponds to
the stable current-carrying loop [27]. The current j� can be
expressed in terms of J and ! as

j2� ¼ J2!2

!2 þ 1
: (34)

Two spherical coordinates t and ’ allow one to find the
constants of motion. We use the existence of two conserved
quantities associated with the Killing vectors:

E ¼ ���
ðtÞP� ¼ �Pt; (35)

L ¼ �
�
ð’ÞP� ¼ �2j�j� þ qA’: (36)

A. Effective potential of the motion

In the spherically symmetric spacetime (13) using
Eqs. (21) and (33)–(36) the Hamiltonian can be expressed
in the form

H ¼ 1

2
fðrÞP2

r þ 1

2r2
P2
� �

E2

2fðrÞ þ
Veff

2fðrÞ ; (37)

where

Veff ¼ fðrÞ
�
B2x3

8
þ�JBxffiffiffi

2
p þ

�
1þ J2

x2

�
x

�
2

(38)

is an effective potential for the string motion in a
magnetic field in Cartesian coordinates, B is the strength
of the external magnetic field and a new dimensionless
parameter �:

� 
 !ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ!2

p (39)

varies in the range �1<�< 1.
The first term in the right-hand side of effective

potential (38) is responsible for the pure contribution of
the external magnetic field background to the ‘‘effective’’
energy because the density of the magnetic field energy is
proportional to B2 and the space volume to x3.
The second term in the right-hand side of effective

potential (38) is responsible for the interaction between
the electric current carried in the string loop and the
external magnetic field. This term can be associated as
the interaction of two magnetic fields, where one of them
is ‘‘global’’ external magnetic field�B, and another one is
the ‘‘local’’ self-magnetic field of the string loop �J�=x,
according to (34) and (39). The sign of this term can be
either positive or negative depending on the sign of�, i.e.,
the direction of the electric current carrying on the loop.�
is positive if the direction of the vector of the self-magnetic
field strength coincides with the direction of the vector of
the strength of the external magnetic field and negative if
these vectors are directed in opposite sides. Since the
direction of the external magnetic field is given as an initial
condition, the direction of the Lorenz force acting on the
string is determined by the direction of the current. The last
term in the right-hand side of effective potential (38)
corresponds to the contribution to the effective energy
produced by the current (angular momentum) and the
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tension of the string loop. This term coincides with those of
the paper [2] which is obtained for the nonmagnetic case
and electric-neutral string.

Hereafter for some representative plots we will consider

only three different values of� ¼ �1=
ffiffiffi
2

p
, 0, 1=

ffiffiffi
2

p
related

to the boundaries of motion. The case � ¼ 0 (i.e., ! ¼ 0)
corresponds to the null electric current while � ¼ � 1ffiffi

2
p

corresponds to ! ¼ �1. The sign of the parameter �
depends on the choice of the direction of the electric
current. In accordance with [2], one may call � as an
electric current parameter, J as an angular momentum
parameter (or string parameter), and B as the magnetic
field parameter or magnetic parameter. Notice that in con-
trast to the case when there is no magnetic field [2], here,
the Hamiltonian depends on parameter � together with
J and B.

B. Boundary energy function

The condition H ¼ 0 which determines the regions
allowed for the string motion [25] can be written in the
form

E2 ¼ _r2 þ fðrÞr2 _�2 þ Veff : (40)

The loci where the string loop has zero velocity ( _r ¼ 0
and _� ¼ 0) form boundary of the string motion. We can
define the boundary energy function by equating it to the
effective potential:

E2
b ¼ Veff : (41)

In the Cartesian coordinates one can get the relation

Ebðx; y; J; B;�Þ ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

q
gðxÞ; (42)

where r ¼ rðx; yÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and

gðxÞ ¼ B2x3

8
þ�JBffiffiffi

2
p xþ

�
1þ J2

x2

�
x: (43)

The function fðrÞ reflects the spacetime properties, while
gðxÞ is responsible for the interaction of the charged string
loop with magnetic field. The behavior of the boundary
energy function of the string motion is given by the inter-
play of the functions fðrÞ and gðxÞ. Assuming that the
string loop is at rest initially, i.e., assuming _rð0Þ ¼ 0 and
_�ð0Þ ¼ 0, the initial position of the string can be located at
some point of the energy boundary function Ebðx; yÞ of its
motion. Notice that the term gðxÞ is independent of the
coordinate y, which enters only the spacetime term fðxÞ

Since we use the Cartesian coordinates it is easy to find
the local extrema of the boundary energy function Eb

determined by the relations

xf0rgðxÞ þ 2fðrÞrg0x ¼ 0; (44)

gðxÞyf0r ¼ 0; (45)

where the prime ðÞ0m denotes the derivative with respect to
the coordinate m.

III. MOTION IN THE FLAT SPACETIME LIMIT
AND ESCAPE CONDITION

We use the following procedure in order to determine
the condition whether the oscillating string escapes to
infinity. The string loop can escape to infinity if its energy
is bigger than the rest energy at infinity or when E> Eflat

and the escape is determined by the limiting energy
determined in the flat spacetime. It is easy to find condi-
tions for the boundary energy function for the flat space-
time taking the characteristic function of the line element
in the form

fðrÞ ¼ 1 (46)

and the energy boundary function in flat spacetime takes
the simple form

EflatðxÞ ¼ gðxÞ: (47)

Therefore, the energy tends to the infinity when x ! 0, i.e.,
Eflatðx ! 0Þ ! 1, and the energy tends to the zero when
x ! 1, i.e., Eflatðx ! 1Þ ! 1. In the presence of a mag-
netic field, a minimum of the function (47) always exists
(for B> 0, J > 0 and �1<�< 1) that is located at

xmin
flat ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
3B2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3B2J2 þ 2K2

p
� ffiffiffi

2
p

K
	s
; (48)

where

K 
 1þ�JB=
ffiffiffi
2

p
: (49)

In the absence of a magnetic field (i.e., for B ¼ 0) the
minimum of the energy of the string loop in the flat space-
time will be located at

xmin
flat ¼ J; (50)

and takes the value

Eflat ¼ 2J: (51)

Profiles of the energy boundary function for the flat
spacetime are given in Fig. 2 where we compare the case
B ¼ 0,� ¼ 0with those B> 0,� ¼ 0 and B> 0,��0.
As one can see from Fig. 2 the presence of the negative
current reduces the minimum of the oscillatory energy
which means that in such conditions the string loop will
have the strongest acceleration in the y direction. Hereafter
in the figures for the energy of the string loop the curves
corresponding to the flat spacetime are indicated by dashed
curves.
In accord with the result of the string loop motion in the

Schwarzschild spacetime [2], one can conclude that the
string loop can escape to infinity if its energy is bigger than
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the rest energy at infinity, i.e., when E> Eflat, given by the
condition (47). If the energy is equal or lower than the rest
energy (47), the string loop cannot escape and must be
trapped in a finite region above the horizon or captured by
the black hole. The regions of trapped oscillations are most
extended at the equatorial plane, when y ¼ 0 and shrink
with an increase of the value of y. When y ! 1 the region
reduces to the flat line according to the expressions (47)
and (48).

According to [1,2], the oscillatory energy of the string
loop in the background of black hole spacetime can be
transmitted into the kinetic energy of the translational
motion of string along the y axis and inversely the trans-
lational energy can be converted into the energy of string
oscillations. This phenomenon is called transmutation
effect. As indicated in paper [3] in the absence of a
magnetic field this effect completely works only in one
direction since there remains inconvertible energy of string
loop E0ðmin Þ ¼ 2J being the constant of motion (when

J > 0). But in the presence of a uniform magnetic field
the situation is completely different and the string oscil-
latory energy Ex can be lowered for the appropriately
defined values of the motion parameters.

In order to find a complete solution of this problem and
find the influence of magnetic field to this effect we first
consider the decomposition of the full energy of string loop
in the flat spacetime.

Decomposition of the energy of string loop (40) in the
flat spacetime (fðrÞ ¼ 1) in the Cartesian coordinates at
the presence of magnetic field gives

E2 ¼ _y2 þ _x2 þ gðxÞ2 ¼ E2
y þ E2

x; (52)

where the x and ymodes of energy are denoted in the form

E2
y ¼ _y2; (53)

E2
x ¼ _x2 þ

�
B2x3

8
þ�JBffiffiffi

2
p xþ

�
1þ J2

x2

�
x

�
2
: (54)

The x mode of full energy Ex is minimal at the location
given by Eq. (48). Then neglecting higher orders of the
magnetic parameter B (since we work in weak magnetic
field), the minimal value of the energy Ex can be written in
the following form:

Exðmin Þ ¼ 2J þ J2�Bffiffiffi
2

p þ 1

8
ð1��2ÞJ3B2: (55)

In the absence of a magnetic field (i.e., when B ¼ 0) this
expression turns out to the condition E0 ¼ 2J which
coincides with Eq. (25) from the paper [3], where there
is no possible transmutation between x and y energy
modes. However, in the presence of magnetic field, with
the increasing of the magnetic parameter B, the energy Ex

decreases while Ey remains constant. For the critical value

of the magnetic parameter B,

Bcrit ¼ 2
ffiffiffi
2

p ð�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�2 � 2

p
Þ

Jð�2 � 1Þ ; (56)

the x mode of the energy Exðmin Þ ¼ 0, i.e., oscillations of
string loop vanish at the location xmin

flat given by the ex-

pression (48). Then the total amount of oscillatory energy
can be transmitted into the translational energy. Note that
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FIG. 2. Influence of the magnetic field and the electric current
on the x profile of the energy for the fixed value of the angular
momentum parameter J ¼ 9. The case of zero magnetic field is
indicated by a solid thick curve while the case of nonzero
magnetic field B ¼ 0:1 is shown for the following three repre-
sentative values of the electric current parameter: � ¼ þ 1ffiffi

2
p is

dashed, � ¼ � 1ffiffi
2

p is dotted, and � ¼ 0 is a solid thin.
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FIG. 3. Critical values of the magnetic parameter B in depen-
dence on J for three representative values of electric current
parameter: � ¼ �0:82 is dashed, � ¼ �0:85 is dot-dashed,
and � ¼ 0:99 is dotted.
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such a critical magnetic field can be defined only for
negative values of the current parameter in the region

�1<� � � ffiffiffiffiffiffiffiffi
2=3

p
. The dependence of the critical mag-

netic field on the current is shown in Fig. 3.

IV. MOTION IN THE SCHWARZSCHILD
SPACETIME

A. Equations of the motion

The characteristic function of the line element for the
Schwarzschild spacetime takes the following form:

fðrÞ ¼ 1� 2M

r
: (57)

Introducing an affine parameter of the string motion 
 ,
the Hamilton-Jacobi equations

dX�

d

¼ @H

@P�

;
dP�

d

¼ � @H

@X� (58)

applied to the Hamiltonian (37) imply an equation of
motion in the form

_r ¼ fPr;

_Pr ¼ 1

f

P2
�

r4

�
fr� 1

2

df

dr
r2
�
� df

dr
P2
r � 1

f

dVeff

dr
;

(59)

_� ¼ P�

r2
; _P� ¼ � 1

f

dVeff

d�
; (60)

where the dot denotes the derivative with respect to the
affine parameter 
 as _F ¼ dF=d
 .

B. Boundaries of motion in dependence
on the magnetic field

Analysis of the boundaries of motion allows us to
classify the types of dynamics and determine their depen-
dencies on the magnetic field and other parameters of the
string loop. If the string motion is given by initial
conditions ( _r ¼ 0 and _� ¼ 0) and nonvanishing angular
momentum (J � 0) then the string energy can be calcu-
lated from the energy boundary function E ¼ EbðJÞ. The
Schwarzschild geometry introduces a characteristic length
scale corresponding to the radius of the black hole horizon
rh ¼ 2M. We restrict our consideration to the region above
the black hole horizon, r > rh. In the Schwarzschild space-
time the function Eb ! þ1 when r ! 1, but Eb ! 0
when r ! 2M.

It is more convenient to introduce the dimensionless
coordinates taking them in the form

x ! x

M
; y ! y

M
; r ! r

M
; (61)

and introduce the normalized parameters of the angular
momentum, energy, and magnetic field as

J ! J

M
; E ! E

M
; B ! BM: (62)

Then the extrema equation (44) can be written in the
form of a quintic equation in the x coordinate

3

8
B2x5 � 5

8
B2x4 þ

�
1þBJ�ffiffiffi

2
p

�
ðx3 � x2Þ � J2xþ 3J2 ¼ 0;

(63)

while Eq. (45) gives us the solution y ¼ 0.
Assuming that the magnetic field in the given gravita-

tional background is weak, one can write the extrema
equation for angular momentum parameter J as the expan-
sion of the small-parameter B in the form

J ¼ JEðx; B;�Þ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffi
x� 1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
x� 3

p þ�Bx2ðx� 1Þ
2

ffiffiffi
2

p ðx� 3Þ ; (64)

where the first term in the right-hand side of Eq. (64)
exactly coincides with Eq. (78) of paper [2] obtained for
the nonmagnetic case while the second term in the right-
hand side of (64) is responsible for the contribution of the
interactive magnetic field term on the extrema function J.
In the following we assume J > 0 due to the spherical
symmetry of the spacetime.
Plots of the function JEðxÞ for the selected values of the

magnetic parameter B are presented in Fig. 4 and indicated
by solid curves. However, in the presented figures we have
used the original expression for J without the expansion
where the terms being proportional to B2 in Eq. (64) were
neglected. In the region above the black hole horizon the
function JEðxÞ diverges at the distance xdiv ¼ 3 similarly to
the case of Schwarzschild spacetime in the absence of the
external magnetic field.
The local extrema xmin of the function JE can be found

by equalization of the derivative with respect to x of the
function (64) to zero. The location xmin determines the
marginally stable stationary position of string loops in
the Schwarzschild spacetime and it is substantially lower
in comparison with the innermost stable circular orbit
radius. Then substituting the value of xmin into (64), one
can obtain the minimal value of JE:

JEðxmin Þ ¼ JEðmin Þ: (65)

This position is interesting since the boundary energy
function for the values of string parameter J > JEðmin Þ
has two extrema, i.e., maximum and minimum (see
Fig. 5). For J < JEðmin Þ there are no extrema of the energy

boundary function above the black hole horizon (x > 2).
For J ¼ JEðmin Þ the energy boundary function Ebðx; JÞ has
an inflex point. Quantitative changes of the values JEðmin Þ
from the values of magnetic parameter B for three different
cases of current � are given in Fig. 6.
Using the extrema equation (63) in the equatorial plane

y ¼ 0, one can obtain both maxima and minima of the
energy boundary function in dependence on J and B for the
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different values of the current parameter � as shown in
Fig. 5. As one can see from the plots in the 2nd and 3rd
rows, an increase of the magnetic parameter B leads to the
narrowing of the energy boundaries, while in the 1st row
for the weak magnetic field the situation is quite different
and boundaries of the energy (maximum and minimum)
move away from each other for the negative values of the

current parameter � ¼ �1=
ffiffiffi
2

p
. The oscillatory motion

is allowed for the string loops with J > JEðmin Þ and energy

satisfying the condition Ebðmin ÞðJÞ<E< Ebðmax ÞðJÞ.
String loops with J < JEðmin Þ, or with E< Ebðmin ÞðJÞ and
J > JEðmin Þ can be captured by the black hole.

The most interesting regions in Fig. 5 are zones between
dashed and the lowest solid lines in which the string loop
may neither escape to infinity nor be captured by the central
black hole. These are so-called ‘‘trapped’’ states of the
string loop motion. As one can see from the first row of
Fig. 5 with the increase of magnetic field the trapped states

of the loop decrease while the boundaries become wider.
The situation in the second and third rows of Fig. 5 is
opposite to the first row for the case of the weak magnetic
field. In order to determine the conditions for trapped state
existence we use the method developed in our preceding
paper [2]. The trapped states of the string loop near the
black hole correspond to ‘‘lakes’’ determined for appropri-
ately chosen energy levels by the energy boundary function
Ebðx; y; J; B;�Þ. First, the restrictions for the trapped
oscillations in the x direction have to be represented by
‘‘projected’’ angular momentum function Jp determined

through the projection of the extremal (maximal) energy
level Ebðmax Þðxmax ; y; J; B;�Þ onto the energy boundary

function itself. It can be easily done with the help of the
numerical simulation. Choosing the value of Jp for the fixed

y, one can find the corresponding value of the maximum of
the energy boundary function Ebðmax Þðxmax ; y; Jp; B;�Þ and
the related coordinate xp where
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FIG. 4. String parameter function JðxÞ for different representative values of the magnetic parameter B and electric current parameter
�. Solid curves represent the extrema angular momentum (string parameter) JE as a function of the Cartesian coordinate x. The dashed
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Ebðmax Þðxmax ; y; Jp; B;�Þ ¼ Ebðxp; y; Jp; B;�Þ: (66)

Then we solve the equation

Ebðx;y;J;B;�Þ¼2JþJ2�Bffiffiffi
2

p þ1

8
ð1��2ÞJ3B2; (67)

where the expression in the right-hand side is the energy
of the string loop in the flat spacetime Eflat

min determined by

Eq. (55). Consequently, the existence of the trapped states
of the oscillating string loop are restricted by the condition

JL1ðx; yÞ< J < JL2ðx; yÞ; (68)

where the lake angular momentum functions JL1ðx; yÞ and
JL2ðx; yÞ are solutions of Eq. (55). They are illustrated by
the dashed curves in Fig. 4. The regions of the trapped states
are shaded.

One of our main interests is to describe the influence
of the magnetic field on the energy of the electric

current-carrying string loop in the case when� is negative
and the Lorenz force acting on the string decreases the
value of the effective potential (38). One can easily find the
location of the string

xb ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p j�jJ
B

s
; (69)

where the energy of the electromagnetic field is balanced
by the Lorenz force energy and it is the position where the
string loop has the same energy level as in the absence of a
magnetic field.
For the loop positions x < xb, the Lorenz force energy

will dominate the electromagnetic field energy and the
bound string energy will be lower in comparison with
that in the case without magnetic field. For the loop posi-
tions x > xb the energy of the electromagnetic field will
prevail the Lorenz force energy and the boundary energy of
the string loop will be bigger in comparison with that in the
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FIG. 5. Boundaries of the energy as a function of string parameter J for different values of the magnetic parameter B and electric
current parameter �. Thick solid curves correspond to the maxima and minima of the boundary energy function Eb in Schwarzschild
spacetime, while dashed curves represent the minimum of the boundary energy taken for the flat spacetime and given by (47). Thin
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case without a magnetic field. This effect is relevant only
for the negative values of the parameter �< 0 while for
the positive values of the parameter �> 0 the boundary
energy always grows with the increase of the magnetic
field. It is interesting that the position (69) does not depend
on the gravitational field properties and is valid for both

Schwarzschild and flat spacetimes. This means that the
appearance of the specific space position in the magnetic
background in which the string loop behaves exactly as in
the nonmagnetized case is the property purely governed
by the magnetic field. The position of the string loop
x ¼ xb and its corresponding energy for the fixed angular
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FIG. 6. Dependence of the local minimal value of string function JE on the magnetic parameter B for three representative values of
parameter �.
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momentum parameter is represented in Fig. 2 as the inter-
section point of the solid thick and the dotted curves. The
x profile of the boundary energy function for the different
values of the magnetic B and current � parameters are
represented in Fig. 7.

C. String trajectory in the magnetic field

In Fig. 8 the boundaries of the motion and the numerical
simulation of the corresponding trajectories of the string
loop for the fixed value of the angular momentum parame-
ter J ¼ 12 and the different values of magnetic field and
electric current are presented. In the first row� ¼ � 1ffiffi

2
p , in

the second row � ¼ 0, and in the third row � ¼ 1ffiffi
2

p ; the

magnetic field takes the values B ¼ 0, B ¼ 0:1, B ¼ 0:2,
and B ¼ 0:3. The boundaries of the string motion (dashed
curves) are obtained as solutions of the equation of the
energy boundary function (42). The trajectories of the
string loop motion (solid curve) inside the boundaries are
obtained by the integration of the equations of motion (59)
and (60). The string starts motion from the initial position
with coordinates x0 ¼ 13, y0 ¼ �11. For each parameter
� the representation starts from the nonmagnetic case

when B ¼ 0. As one can see from the first column there
is no difference between these plots due to the absence
of the term responsible for the interaction between the
magnetic field and electric current. For the different values
of the magnetic field and the same initial conditions, one
can obtain different types of the motion of the string loop.
This confirms the fact that depending on the value of the
magnetic field one can change the type of string loop
motion, e.g., from trapping into escaping to the infinity
or capturing by the black hole.

V. CONCLUSION

We have studied the influence of the external uniform
magnetic field on the dynamics of an electric current-
carrying string loop moving axisymmetrically on the back-
ground of the Schwarzschild black hole. Equations of
string motion and the relevant effective potentials in the
presence of magnetic field were studied.
It has been shown that the string loop itself is a source of

the magnetic field but contribution of the self-magnetic
field to the energy of the string motion is negligible being
proportional to the square of the self-field. However, this
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FIG. 8. Boundaries of the motion and numerical simulations of the corresponding trajectories of string loop for the fixed value of the
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field has been taken into account as the interaction between
global and local fields as the second term of the effective
potential of the string motion using introduced string
parameters.

Using the effective potential we have obtained an equa-
tion for the energy boundaries of the string loop motion
which includes the energy of the electromagnetic back-
ground, string fluid energy depending on the angular
momentum of the string loop, and the energy given by
the Lorenz force which can be associated as the interaction
between the magnetic field and the electric current-
carrying loop and can be either positive or negative. To
the better understanding of the effect of a magnetic field on
string motion, we have illustrated the cases for the absence
of a magnetic field along with the cases for different values
of magnetic field parameter and different values of the
current for relevant results.

It is shown that in the case of the negative current there is
a location in spacetime where the electromagnetic field
energy can be balanced with the Lorenz force energy.
Below this location the effect of the magnetic field will
decrease the oscillations of string loop while after this
location the oscillations of string loop will increase. By
considering a number of examples and various plots of the
relevant functions, the possible types of string motion were
identified. We have also found the boundaries of the angu-
lar momentum parameter in dependence on both the mag-
netic field and electric current which minimum helped us
to identify the possible types of the string loop motion. It is
possible to change the type of string loop motion by
changing the value of the magnetic field. The most relevant
from an astrophysical point of view is the possibility of the
escape of string loop to infinity. Because of this reason, we
have investigated the flat spacetime limit as the condition

of the escape. It was shown that the total energy of the
string can be decomposed in the Cartesian components and
x component of the energy providing the energy of string
oscillations can be equalized to zero which means that
string oscillations vanish. In that case the total energy of
the string loop will be equal to the y component of the
decomposed energy which is responsible for the linear
motion of the string loop in the y direction; in such cases
the acceleration of the string loop will be maximal. We
plan to study acceleration of the jets in dependence on the
external magnetic field in a forthcoming paper.
For the configuration under study the magnetic field is

orthogonal to the plane of the string motion and it will
effect the string oscillation in the x direction only. However
no string motion or acceleration in the y direction due to
magnetic field is expected. This is contrary to the effect of
the repulsive cosmological constant [3] when the string is
effected also in the y direction mainly when it crosses the
static radius [42–44].
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