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Affine-null metric formulation of Einstein’s equations
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The details are presented of a new evolution algorithm for the characteristic initial-boundary value
problem based upon an affine parameter rather than the areal radial coordinate used in the Bondi-Sachs
formulation. The advantages over the Bondi-Sachs version are discussed, with particular emphasis on the
application to the characteristic extraction of the gravitational waveform from Cauchy simulations of

general relativistic astrophysical systems.
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I. INTRODUCTION

There has been important progress in computing
accurate gravitational waveforms by means of Cauchy-
characteristic extraction (CCE) [1], whereby data from a
Cauchy simulation provides the inner boundary data for a
characteristic evolution extending to future null infinity
J*, where the waveform is defined unambiguously. CCE
has become an important tool for gravitational wave data
analysis [2]. It has been applied to compute waveforms
from simulations of binary black hole inspiral and mergers
[3-5], from rotating stellar core collapse [6,7], to explore
the memory effect [8] and to study the effect of spin on
gravitational waves from precessing binary black holes [9].

A CCE module [10] has been prepared for public use as
part of the Einstein toolkit [11]. The module is based upon
the PITT null code [12,13], which implements the world-
tube—null-cone version [14] of the Bondi-Sachs [15,16]
characteristic initial-boundary value problem. There are
technical complications in applying the Bondi-Sachs for-
mulation to CCE arising from the use of an areal radial
coordinate to parametrize the outgoing null geodesics. This
paper considers an alternative approach to the world-tube-
null-cone problem, which replaces the areal coordinate by
an affine parameter. The details of an evolution algorithm
for the affine system of Einstein equations are presented.
The comparative advantages with the Bondi-Sachs version
for application to CCE are discussed.

Recent success in simulating general relativistic astro-
physical systems has been achieved by Cauchy codes,
which evolve the spacetime metric inside an artificially
constructed outer boundary. In doing so, it iS common
practice to compute the gravitational waveform from data
on an extraction world tube inside the outer boundary,
using perturbative methods based upon introducing a
Schwarzschild background in the exterior region. This
has been carried out using the Regge-Wheeler-Zerilli
[17,18] treatment of the perturbed metric, as reviewed in
Ref. [19], and also by calculating the Newman-Penrose
[20] Weyl curvature component Wy, as first done for the
binary black hole problem in Refs. [21-24]. In this
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approach, errors arise from the finite size of the extraction
world tube, from nonlinearities and from gauge ambigu-
ities involved in the arbitrary introduction of a background
metric. The gauge ambiguities might seem less severe in
the case of W, (vs metric) extraction, but there are still
delicate problems associated with the choices of a pre-
ferred null tetrad and preferred worldlines along which to
measure the waveform (see Ref. [25] for an analysis).

In order to properly approximate the waveform at J*, the
extraction world tube must be sufficiently large but at the
same time causally and numerically isolated from errors
propagating in from the outer boundary. Considerable im-
provement in the perturbative approach has resulted from
techniques for dealing with large outer boundaries and
extrapolating the extracted waveform to infinity. However,
this is not an ideally efficient approach. It is especially
impractical in simulations of stellar collapse, where it is
most strategic to restrict the computational domain to just
outside the stellar surface. CCE is a different approach,
which is specifically tailored to study radiation at 7.

In problems with isolated sources, the radiation zone
can be compactified inside a finite grid boundary with the
metric rescaled by 1/r2 as an implementation of Penrose’s
[26] conformal boundary at J*. Because J* is a null
hypersurface, no extraneous outgoing radiation condition
or other artificial boundary condition is required. In CCE,
Cauchy data on the extraction world tube provides the
inner boundary data for a characteristic evolution extend-
ing to a compactified J*, where the waveform is defined
unambiguously by geometric methods. This eliminates
waveform error due to asymptotic approximations and
gauge ambiguities introduced by the choice of extrac-
tion world tube. In addition, the extraction world tube
can be placed in the near zone surrounding the sources in
order to enhance computational efficiency. See Ref. [27]
for a review.

High accuracy waveforms from a binary inspiral and
merger are important for the design of the detection tem-
plates that are critical for the success of gravitational wave
astronomy. This has stimulated efforts to increase the
accuracy of characteristic evolution for use in CCE.
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Another global approach applicable to isolated systems is
to base the Cauchy problem itself on the analogue of the
hyperboloidal Cauchy hypersurfaces in Minkowski space,
which asymptote to J*. This approach, first extensively
developed by Friedrich [28], is potentially the basis for a
very attractive numerical approach to simulate gravita-
tional wave production. For reviews of progress on the
numerical implementation, see Refs. [29-31]. In spite of
the attractiveness of the hyperboloidal approach and its
recent success with model problems [32-35], considerable
work remains to make it applicable to systems of astro-
physical interest.

The Cauchy evolution codes have incorporated increas-
ingly sophisticated numerical techniques, such as mesh
refinement, multidomain decomposition, pseudospectral
collocation and high order (in some cases eighth order)
finite difference approximations. Work has begun to
incorporate such techniques in characteristic codes [36].
However, such high accuracy methods cannot by themselves
cure some of the major complications and sources of error
arising in CCE. The timelike extraction world tube 7~ at the
inner boundary of CCE is constructed from a coordinate
sphere x*> + y*> + z2 = R?, R = const, cut out from the
Cartesian Cauchy grid. However, the radial grid points of the
Bondi-Sachs system are based upon an areal coordinate r,
with the angular grid lying on the spheres »r = R = const.
As a result, the extraction world tube 7~ does not lie on the
grid points of the Bondi-Sachs system (except for special
cases such as spherical symmetry). This necessitates the
introduction of an auxiliary characteristic coordinate system
in the neighborhood of T~ in which the radial coordinate is
replaced by an affine parameter A along the outgoing null
rays. By taking advantage of the affine freedom, 7~ can then
be parametrized by A = 0. The Cauchy data is first trans-
formed into the affine characteristic system and expanded
about A = 0 to a sufficient power of A to determine data for
the inner r-grid points of the Bondi-Sachs system in the
neighborhood of 7. This is a complicated procedure which
introduces interpolation error and has even led to inconsis-
tent inner boundary conditions in the initial implementation
of CCE (see Ref. [10] for a discussion).

In view of this, the question naturally arises: Why not
use the affine-null system in the first place for the charac-
teristic evolution algorithm and grid? The history behind
this choice goes far back. It has to do with the simple
hierarchical structure that the Einstein equations take in
the Bondi-Sachs system, but which is seemingly broken in
the affine system. We explain this in Sec. II.

The difference in behavior between an areal coordinate r
and an affine parameter arises from focusing effects on the
null rays. The affine coordinate A only becomes singular at
caustics, whereas the areal coordinate r also becomes sin-
gular at points where the expansion of the null rays vanishes.
We deal here with the vacuum Einstein equations, where
such focusing effects do not arise in the spherically

PHYSICAL REVIEW D 87, 124027 (2013)

symmetric case, and the areal coordinate is also an affine
parameter along the radial null geodesics. However, there is
another important application of characteristic coordinates
to cosmology where, due to the lensing effect of matter,
even in spherical symmetry the areal coordinate is not affine.
The natural role of the past null cone in astronomical
observations has been incorporated into to a new approach
to cosmology [37,38]. Bishop and his collaborators [39—41]
have initiated a program to implement this null cone version
of observational cosmology by means of a characteristic
evolution code based upon the Bondi-Sachs formalism. In
principle, data obtained from observations on the past null
cone could be evolved backward in time to obtain the earlier
history of the Universe. At present, their simulations have
been confined to the spherically symmetric case, but they
recognized that an areal coordinate would limit the approach
to the region of the Universe prior to refocusing. They
developed a stable, convergent characteristic evolution
code in which the areal coordinate was replaced by an affine
parameter. The techniques developed in the present paper
could be easily generalized to include matter and applied to
extend their treatment to anisotropic cosmologies.

In Sec. III, we discuss the details of the Einstein equations
in the affine-null system and show how the hierarchical
structure of the evolution system can be restored. This
provides the basis for a new world-tube—null-cone evolution
algorithm.

II. NULL SPHERICAL COORDINATE SYSTEMS

The coordinates of both the Bondi-Sachs system and
null-affine system are based upon a family of outgoing null
hypersurfaces emanating from the spherical cross sections
of a timelike world tube T, where the null coordinate u
labels these hypersurfaces and the angular coordinates x*
(A = 2, 3) label the spherical set of null geodesic rays. In
the Bondi-Sachs system, the surface area coordinate r
labels the points along the outgoing null rays. In the
resulting x® = (u, r, x*) coordinates, the metric takes the
Bondi-Sachs form [15,16]:

\%
ds* = —(ezﬁ— — rZhABUAUB)dM2 —2e*Pdudr
r

—2rh g UBdudx® + r*h,pdx*dx®, 2.1)
where det (h,5) = det(ga5) = q(x€), with g,5(x¢) some
standard choice of unit round-sphere metric. The fields S,
UA, V and h,p are functions of (u, r,x4). Here h,p is
the metric of the topological two-spheres (# = const,
r = const) after conformal rescaling by 1/r% to surface
area 47r. Its inverse is defined by K Chqp = 8.

The affine-null system is similarly based upon the
outgoing null hypersurfaces u = const emanating from
T with coordinates x* labeling the null rays, but now an
affine parameter A is used to coordinatize points along the
rays. The affine freedom
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A — A, x)A + B(u, x*)

is used to prescribe the normalization (Véu)V, A = —1
and set A = 0 on T . In the resulting x* = (u, A, x*) coor-
dinates, the metric takes the form

ds> = —(V — gugWAWE)du? — 2dud A

— 2g s WAdudx® + g,pdx*dx®. (2.2)

In addition, we again set g5 = r’hyp, where deth,p =
det g4 with g45(x¢) a unit round-sphere metric. However,
r is now a metric function of (u, A, x*) along with W4, V
and hyp.

At the metric level, such affine-null coordinates were
introduced by Sachs [42] in formulating a double-null
initial value problem. They are also the natural coordinates
adopted in the Newman-Penrose [20] formulation of the
Einstein equations in terms of a null tetrad and the asso-
ciated Weyl tensor components. The affine coordinate A is
singular only at caustics, whereas the areal coordinate r is
also singular at points where the expansion of the null rays
vanishes. In particular, this occurs at the points on a
stationary event horizon. As a result, codes based upon
an areal coordinate have poor accuracy in tracking the late
time tail preceding black hole formation; cf. Ref. [43] for a
discussion in the context of black hole perturbation theory.
The affine-null metric and the Bondi-Sachs metric are
related by the transformation A(u, r, x*) determined by

9, A(u, r, x*) = &%, (2.3)

However, the simplicity of this transformation is mislead-
ing because the surfaces r = const which determine the
partial derivatives d4 and 9, in the Bondi-Sachs system
differ from the A = const surfaces that determine the
partial derivatives d, and 9, in the affine-null system. It
is important to keep this distinction in mind in the follow-
ing comparison of the corresponding evolution systems.

The role of the different components of the Einstein
equations in formulating a characteristic initial value prob-
lem can be best described in terms of an orthonormal
null tetrad (L% N¢ M“ M%), corresponding to the metric
decomposition:

8ab = _L(aNb) + M(aMb)’ NaLa = —2,
MM, = 2. (2.4)
We choose L, = —u, to be the future pointing normal to

the null hypersurfaces (so that L¢ is tangent to the outgoing
rays) and choose M to be a complex spatial vector tangent
to the null hypersurfaces. This uniquely determines N¢.
Then the vacuum Einstein equations G,, = 0 decompose
into the main equations

L'G,, =0 2.5)

M*M*G,, =0
and the supplementary equations

(2.6)
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1
Gab = Rab - EgabR'

It is a consequence of the Bianchi identities that if the
main equations are satisfied, then N’R,, satisfies a first
order ordinary differential equation along the null rays. As
a result, if the main equations are satisfied and the supple-
mentary equations N’R,, = 0 are satisfied on the world
tube T, then they will be satisfied everywhere. This result
was first demonstrated for the Bondi-Sachs system in
Refs. [15,16], but it also holds for the affine-null system.
See Ref. [44] for a recent discussion of the supplementary
equations as a system of world tube conservation laws that
impose symmetric hyperbolic constraints on the world tube
data. In CCE, the world tube data is supplied by solutions
of the Finstein equations determined by the Cauchy evo-
lution, and it is assumed this data is consistent with the
supplementary equations. Thus, we concentrate here on the
main equations.

First consider the Bondi-Sachs equations. In that case,
following the formalism developed in Ref. [45], the main
equations (2.5) take the schematic form of hypersurface
equations:

NPR,, =0, 2.7)

B, = Npglhcp] (2.8)
(rfe 2PhypUE), = N ylhep, B (2.9)
V, = Nylhep, B, U], (2.10)

where a comma denotes partial derivatives, e.g. 8, = 9,3,
and the main equations (2.6) take the form of evolution
equations:

MAM®(rhag,)., = Nylhep, B, US, V1.

Here the N terms on the right-hand sides of
Egs. (2.8)—(2.11) can be calculated from the values of their
arguments on a given u = const null hypersurface.
Moreover, each N term only depends upon previous mem-
bers in the sequential order [hcp, B, US, V]. Because of
this hierarchical structure of the system, given h,p on an
initial null hypersurface # = 0, the main equations can be
integrated radially in sequential order to determine the
initial values of B, UA, V and h,p, at u = 0 in terms of
their integration constants on T, ie.

Bl Uz, Usly, Vi, hag |7

In addition, the location of the world tube, specified by
rl7 = R(u, x*), is another essential part of the data. After
determining h,p, at u = 0, the hypersurface data h45 can
be advanced to u = Au by a finite difference procedure.
Given the world tube data (2.12), this procedure can be
iterated to form a world-tube-null-cone evolution algo-
rithm. This evolution algorithm is extremely simple and
economical compared to Cauchy evolution algorithms. It is
the algorithm underlying the PITT null code.

(2.11)

(2.12)
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Now consider the affine-null system, for which the main
equations take the schematic form,

r o= H lhepl (2.13)

(r*hagW5h) 2 = Hylhep, 1] (2.14)

(), = V) D2 = Hylhep, W (2.15)
MAME (rhyg) yp = H plhep, r, WE, V], (2.16)

where the 7 terms on the right hand sides of
Egs. (2.13)—(2.16) can again be calculated from the values
of their arguments on a given u = const null hypersurface.

As in the Bondi-Sachs case, the JH terms depend upon
the metric functions in sequential order, in this case in the
order [hcp, r, WE, V. However, the hierarchical structure
of the radial integration scheme is broken by the appear-
ance of the term (r?), term on the left-hand side of
Eq. (2.15). Thus, Eq. (2.15) is not a pure hypersurface
equation, and the radial integration scheme does not produce
an evolution algorithm in the same way as for the Bondi-
Sachs system. This was the reason that the affine-null
formulation was not chosen in building the PITT null code.

However, by reformulating the hypersurface equation
(2.15) by the introduction of an auxiliary variable, the
pure hypersurface form of the radial integration scheme
can be restored. This new formulation is described in
Sec. III after presenting the details of the main equations
of the null-affine system.

III. THE NULL-AFFINE EVOLUTION SYSTEM

In presenting the details of the Einstein equations for the
affine-null system, we begin with some useful formula for
describing the metric (2.2) and its associated connection
and curvature. We then proceed to describe the construc-
tion of a numerical evolution algorithm.

A. Calculation of the Einstein tensor
The contravariant components of the metric (2.2) are
given by
gu/\ — _1’ guu — guA — O,
P ="V, g8 = p2pAB,

It is convenient to introduce a dyad vector m, to represent
the two-metric by

gM = —WA,
(3.1

hAB = m(Ath), hAB = m(Al’hB),

3.2
mA — hABmB ( )

hypmAm® =
For that purpose, we chose the vector M“ forming the
null tetrad (2.4) to lie tangent to the surfaces (# = const,
r = const), so that it has components M* = (0,0, M*).

We then set M4 = r~!m?. Here we raise and lower indices
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of two-dimensional vector and tensor fields on the sphere
with hyup and W48, e.g. W, = hysWE. We recall that
deth,z = detq,p, where @up(x€) is some standard
choice of unit round-sphere metric. The determinant con-
dition implies

hABhAB,u - mAn_’lBhAB,u - O,

WABh, = mAmPhy, , =0 G-3)
AB, A AB, A .

We fix the spin rotation freedom in the dyad mA —
el®wA) A by requiring

A

m-my ) = 0 (34)

and

(3.5)

mtmy Ir=o = 0.
Note that the determinant condition (3.3) also implies

A (3.6)

m mA’/\ + mAn_iA’/\ = (.
The spin rotation freedom then reduces to a phase factor
¢(x*), which is determined by the choice of conventions at
(u = 0, A = 0). Given these conventions, h,p and m, are
in one-to-one correspondence.

As an example, for stereographic coordinates x* =

(1, p) on the unit round-sphere with metric
qapdx*dx® = \[q(dn* + dp®),

4 3.7)
Va

1+ n* + p?’
the rescaled metric on the general curved topological
sphere can be represented as

€% cosh 2«
h =
A ﬁ( sinh 2a

sinh 2« (3.8)
e cosh2a ) ’

— sinh 2«
), 3.9

hWAB =
e cosh 2«

Nz

where y and « represent the two degrees of freedom.
A specific choice of polarization dyad associated with
this representation is

1 ( e % cosh2a

—sinh 2«

my = q'/*(e?(cosh a + isinh @),

ie"Y(cosh @ — isinh @)), (3.10)

m* = g~ "/*(e"?(cosh a — isinh a),

ie?(cosh & + i sinh ). (.11)

The components of the Einstein tensor can be calculated

in terms of the metric functions h,p, r, WA, V from the
components of the curvature tensor,

ROy g =0 — a0, + T, =T,

R,, = R° (3.12)

ach’
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where

1
I, ==80p8ca + 0:8ba — 9a8pc)  (3.13)

2
are the Christoffel symbols. The components of the
Christoffel symbols in terms of the metric functions are
given in the appendix. We denote two-dimensional cova-
riant derivatives of tensor fields on the sphere with respect

to hyp by a colon, e.g.
WA, = dzWA + 4 W€, (3.14)

where

Wra . = —h*P(dghep + dchpp — Iphpe) (3.15)

N[ —

is the Christoffel symbol associated with /5.
In terms of these conventions and notation, the main
affine-null equations (2.13)—(2.16) have the specific form

2 1
0=Rhu, ="M~ ZpCop, (3.16)
r 4
0 = Rzu)b
1 r r
== ﬁ(r4hABWl/;\),A + (‘T)‘)A - (’TB)hBChAC,A
1
- EhBChAC,/\:B (3.17)
0 = hABRAB
1
= OR + @), = V)04 + (W)
4
) r
= (n )4y = S hasWARWS (3.18)

0= mAmBRAB
1
= mAmB{r(rhAB),,M - E(FZVhAB,/\),A

+rricWChap y + (PWazp)

2

+ ZhAB,/\mCmD(WC:D — WP:€6)

r2 4

+ 5 WEhag r:c — %hAchBDWﬁWa}- (3.19)

B. Restoration of the hypersurface equation hierarchy

The strategy now is to use the auxiliary variable

y:V_Zr,M

r,,\

(3.20)

to eliminate the explicit appearance of the r, derivative
in Eq. (3.25) and reexpress it as a hypersurface equation
for Y. In that process, the substitution of Y for V in
the evolution equation (3.19) leads to the intermediate
expression
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1
mAmB{r(rhAB),u)\ - 5 (FZVhAB,,\),A}

rr
— .. A, B _
=rm-m {rhAB,u —hAB,A}
ra A

1
- mAmBE(”zyhAB,A),A (3.21)

or, using Eq. (3.4),
1
mAmB{r(rhAB),u). - E(rzthB,)\),/\}
= r{mAmBr<hAB,u - ﬁhAB,)\)]’
r A A

PP Yhyp ) (3.22)

When Eq. (3.22) is inserted back into Eq. (3.19), it gives
a hypersurface equation for a combination of the time
derivatives m*m®h,p, and r,. In order to complete an
evolution system, we need an additional radial equation
for r,. This is obtained from the u derivative of the
Raychauduri equation (3.16), which determines the rate
of change of the expansion of the outgoing rays. In order
to formulate a hierarchical radial integration scheme, we
introduce the auxiliary variables

p=r, (3.23)
and
kap = hap .y (3.24)
Then the u derivative of Eq. (3.16) gives
Par= gh,c,\DhCD,A + ghf\ckzzc,/\’ (3.25)

where the determinant condition implies that the undiffer-
entiated k,p terms vanish, i.e.

hBDhﬁEhED’/\kBC = 0. (326)

In assembling the foregoing results into a radial integra-
tion hierarchy, simplifications result from using the spin-
weighted scalars,

1 1
g = ZmAmBhAB’)\ = EmAmA,A,

(3.27)

1
K = ZmAmBkAB, kAB = KﬁlAi’hB + RmAmB (328)
and

J=4(rk — po) = rm*mBhyg,, — r ,m*mBhyg .

(3.29)

Then Eq. (3.22) becomes
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1
mAmB{V(rhAB),uA - E(FQVhAB,/\),A}

J 1
B r<r_) = m*mP > (rPYhyp ), (3.30)
r /A 2

and Eq. (3.25) becomes
PN = —POT —FrOK), — rokK,)

_ P (P _TO(]
= ——(roa), —2roa|— —(—
A ’ raJa 4 \ra/a

_ra(])
4 r,)\ ’)l’

where, from Egs. (3.16) and (3.27),

(3.31)

(3.32)

rog = —r )

C. Evolution algorithm

By assembling the results in Sec. IIIB, the main
equations (3.16)—(3.19), along with Eq. (3.31), now take
the desired form:

r_lr,)”\ = —00 = Hr[hCD] (333)

(r4hABW€\),A = 2”2(2\) - zrr,BthhAC,A - r2hBChAC,/\ZB
, r)a

= Hylhcp, ] (3.34)

_ (ln r2)2A 4

Y0 = OR + (5040,

4
/%
- EhABWé\ng = Hy[hCD, r, WC] (335)

rJ 1
(—) = mAmB{_(rzyhAB,A),/\ — r:cWChap
r ) 2r

1 r _ . .
- ;(”ZWA:B),A - ZhAB,AmCmD(WC'D — WPb:6)
2

= HJ[hCD’ r, W€, y]

J J
(). = 02), o))
r’,\ AN 4)"‘)\ r,,\ A ry)\ A

(3.37)

r r3
—=WChappc + 5 hAchBDWﬁWﬁ}

(3.36)

where the H terms can be calculated from the values
of their arguments on a u = const null hypersurface.
Given hug5(u, A, x©), the system (3.33)—(3.37) forms a hier-
archy of radial hypersurface equations which can be inte-
grated to determine the remaining variables in the
sequential order [r, WA, Y, J, p].
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This gives rise to the following initial-boundary value
problem. Specify the initial hypersurface data

[hag,r),  u=0,  A=0 (3.38)
and the initial boundary data
[F W WAWA Y, 1 ppa]l u=0 A=0, (339

subject to the constraint (3.33), which constitutes an ordi-
nary differential radial equation. On the boundary, specify

(WA WA, Y. T, p,pal (3.40)

subject to the conditions (2.7). Using the initial data,
integrate Eqs. (3.33)—(3.37) to determine the initial values
of [r, WA, Y, J, p].

Given this initialization and the boundary data, the
evolution system can be integrated by a finite difference
approximation. The initial values p(0, A, x*) and J(0, A, x*)
determine the values of r and h,p at u = Au through
Egs. (3.23) and (3.29). Using the boundary data,
Egs. (3.34)~(3.37) can then be integrated in sequential
order to determine [W4 VY, J,p] at u= Au. Now
[hap, v, WAV, J, p] are known at u = Au, and this process
can be repeated to provide a finite difference evolution
algorithm. If the algorithm converges as Au — 0, then it
produces a solution to the affine-null initial-boundary value
problem for Einstein’s equations.

u>0, A=0,

IV. DISCUSSION

We have constructed an evolution algorithm based upon
the affine-null system, which, like the Bondi-Sachs system,
is based upon a hierarchy of radial equations along the
outgoing characteristics. It has the additional advantage of
the flexibility in describing an arbitrary inner world tube
boundary as a coordinate surface. This is especially im-
portant for application to CCE, where the inner boundary,
which is constructed in terms of the Cauchy coordinates,
generically differs from the r = const Bondi-Sachs world
tubes. As a result, the affine-null algorithm offers the
possibility of increased economy and accuracy.

The formal solution of the null-affine problem con-
structed in Sec. IIIC yields an exact solution provided
the finite difference approximation converges as Au — 0.
A necessary condition for this is the well-posedness of the
underlying analytic initial-boundary value problem. Well-
posedness, i.e. the existence of a unique solution which
depends continuously on the data, is a necessary condition
for a successful numerical treatment. Although character-
istic evolution codes based upon the Bondi-Sachs formal-
ism have been demonstrated to be stable in a large number
of test cases [13,46], there remains some lingering doubt
because well-posedness of the analytic problem has not
yet been established. Rendall [47] has shown that the
affine-null problem is well-posed in the double null case
where the inner boundary is also a null hypersurface.
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However, Rendall’s approach cannot be applied to the
corresponding problem where the inner boundary is a
timelike world tube. The well-posedness of the world-
tube—null-cone characteristic initial-boundary value prob-
lem for Einstein’s equations remains an outstanding issue.

The only source of error in CCE which does not decrease
with numerical resolution arises from the mismatch be-
tween the initial Cauchy data and initial characteristic data.
This results because the radius R, of the outer Cauchy
boundary is larger than the radius R of the inner world
tube boundary of the characteristic evolution. Whereas the
Cauchy data in the region R; = R = R, is chosen, say,
by some constraint solver for binary black hole initial data,
the characteristic initial data for R = R, is chosen to
suppress the initial radiation content by requiring that the
Newman-Penrose Weyl component W, = (0. This mis-
match between the initial Cauchy and characteristic data
leads to an extraneous error in the extracted waveform
which is related to the spurious radiation content in the
Cauchy data. This error decreases as R, — R, but
present day Cauchy codes require that the outer boundary
be in the far zone of a binary black hole to avoid incoming
radiation generated by the outer boundary condition. As a
result, the full potential of CCE is not realized.

This mismatch can be eliminated by Cauchy-
characteristic matching (CCM) [48]. CCE is one of the
pieces of CCM in which the characteristic world tube data
is extracted from the Cauchy evolution. In CCM, data on the
outer Cauchy boundary are in turn obtained from the char-
acteristic evolution. In doing so, it is possible to place the
radius R, of the Cauchy boundary just outside the radius
‘R, of the characteristic extraction world tube. In fact, in a
finite difference implementation of CCM for a model scalar
wave problem [49], it has been possible to arrange that
R, — R, in the continuum limit. This resulted in a seam-
less interface between the Cauchy and characteristic evolu-
tions with no mismatch in the initial data.

The success of CCM depends upon the proper mathe-
matical and computational treatment of the initial-boundary
value problem for the Cauchy evolution. At present, the only
successful 3D application of CCM in general relativity has
been to the linearized matching problem between a charac-
teristic code and a Cauchy code based upon harmonic
coordinates [50]. Considerable work remains to apply it to
astrophysical systems. The linearized harmonic code satis-
fied a well-posed initial-boundary value problem, which
seems to be a critical missing ingredient in earlier attempts
at CCM in general relativity. More recently, a well-posed
initial-boundary value problem has been established for
fully nonlinear harmonic evolution [51,52], which should
facilitate the extension of CCM to the nonlinear case.
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APPENDIX: CHRISTOFFEL SYMBOLS

The calculation of the Ricci tensor
Rup = FZB,V - an‘ﬁ + rgﬂr;,, - I";,J‘ZB (A1)

which enters the main equations can be carried out explic-
itly in terms of the Christoffel symbols for the affine-null
metric (2.2). The components are listed according to the
notation (x0, x1, x4) = (u, A, x4),

¢, =9,In (rz\/ﬁ) (A2)
r,=o0 (A3)
e =0 (A4)
2
T8 = rrhyp + EhAB,/\ (AS)
1 r C c
Lig = E(hACW:B + hpeWS + hag, — Vhap))
+ rhug(rcWE +r, — Vr)) (A6)
1
FEB = rr,,\WchAB + EVZWC]’IAB,/\
1
+ ;(r,35§ + 1485 — rph®Phyg) + WIS, (A7)
)
Io, = _E(hAB,/\WB + hapWE) — rr\ha g W2 (A8)
| 1 r Ay/B
FIO = E/V’/\ - EhABW W)\ (A9)
2
0 1 1, Avi/B
Y, = _EV’A + 5(r hagWAWE) , (A11)
1 1
Fgl =;r,,\5/§ +§hCDhAD’)\ (A12)
1 1 L, ApB 4 b 2 Avi/B
FOO:EW’O-’_E(r hAB),OW w +§V(V—r hABW W )’)‘
1
—EWA(V—rZhBCWBWC),A (A13)
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