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Scalar-tensor theories are a compelling alternative to general relativity and one of the most accepted

extensions of Einstein’s theory. Black holes in these theories have no hair, but could grow ‘‘wigs’’

supported by time-dependent boundary conditions or spatial gradients. Time-dependent or spatially

varying fields lead in general to nontrivial black hole dynamics, with potentially interesting experimental

consequences. We carry out a numerical investigation of the dynamics of single and binary black holes in

the presence of scalar fields. In particular we study gravitational and scalar radiation from black-hole

binaries in a constant scalar-field gradient, and we compare our numerical findings to analytical models. In

the single black hole case we find that, after a short transient, the scalar field relaxes to static

configurations, in agreement with perturbative calculations. Furthermore we predict analytically (and

verify numerically) that accelerated black holes in a scalar-field gradient emit scalar radiation. For a

quasicircular black-hole binary, our analytical and numerical calculations show that the dominant

component of the scalar radiation is emitted at twice the binary’s orbital frequency.
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I. INTRODUCTION

Scalar fields are ubiquitous in physics, either as a proxy
for more complex interactions or as fundamental quantities
in their own right. For example, one of the best-studied
modifications to general relativity is scalar-tensor gravity,
in which spacetime curvature couples to scalar fields
(which are sufficiently light to be relevant for astrophysics
and/or cosmology). The historical development of this
theory goes back to the 1940s, and involves several re-
search groups with different views on the physical inter-
pretation of the scalar degree of freedom [1–3]. In recent
times, interest in scalar-tensor gravity has been driven by
theoretical attempts to unify gravity with quantum me-
chanics at high energies and solve the cosmological con-
stant and hierarchy problems, as well as observations of the
cosmic microwave background and the highly anticipated
direct detection of gravitational waves [4–6].

The simplest version of scalar-tensor gravity is Brans-
Dicke theory [7–9], which consists of a single massless
scalar �, whose coupling to curvature is controlled by a

dimensionless parameter !BD. Generalizations include
varying scalar-curvature couplings !ð�Þ and a scalar po-
tential Vð�Þ (‘‘Bergmann-Wagoner’’ theories [10,11]) as
well as the possibility of multiple interacting scalar fields:
see e.g. Refs. [4,12,13] for comprehensive treatments of
the subject. These generalizations (commonly referred to
as ‘‘scalar-tensor theories’’) are compelling due to their
simplicity, but (perhaps as a consequence) they are also
very well constrained observationally. The classic book by
Will [14] presents an overview of the subject, and compre-
hensive reviews of the state of the art in experimental tests
of gravitational theories can be found in Refs. [15,16].
In this paper we shall focus, for simplicity, on scalar-

tensor theories involving a single scalar field. In general
relativity, because of the conservation of total momentum
for isolated systems, gravitational radiation is quadrupolar
in nature. A possible smoking gun of scalar-tensor gravity is
the existence of dipole radiation, essentially due to viola-
tions of the equivalence principle. Solar System experi-
ments and observations of binary pulsar systems place
strong constraints on the coupling functions of the theory
[12,14,15,17–27], and other interesting constraints may
come from the direct observation of gravitational radiation
from binary systems in the near future [21,28–35]. Despite
all of these observational constraints, striking and poten-
tially observable astrophysical phenomena are still possible
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in these theories. Such phenomena include superradiant
instabilities (see e.g. Refs. [36–39] for discussions of this
phenomenon in the context of the ‘‘string axiverse’’ sce-
nario [40]) and the related possibility of floating orbits
around rotating black holes (BHs) [41].

A. Classical no-hair theorems

Theoretical studies impose remarkable constraints and
limitations on scalar-tensor theories. First of all, the fa-
mous BH no-scalar-hair theorems first proved by Hawking
[42], Thorne and Dykla [43], and Chase [44] state that
stationary BH solutions in Brans-Dicke theory are the same
as those in general relativity. These results have been
generalized and expanded upon by many authors. For
example, an extension to multiple scalars has been estab-
lished by Heusler [45], and an extension to Bergmann-
Wagoner and fðRÞ theories has been established by
Sotiriou and Faraoni [46]. The no-scalar-hair theorems
have also been confirmed by numerical studies of gravita-
tional collapse [47–52]. More generally, it has been ob-
served that the Kerr metric is a solution in a wide class of
gravity theories [53]. However, the fact that stationary
vacuum solutions of scalar-tensor theories agree with those
of general relativity does not mean that the dynamics of
BHs in these theories must be the same [48,54–56].

For a comprehensive discussion and literature survey of
no-hair theorems, the reader is referred to the reviews of
Bekenstein [57] and Chruściel, Costa, and Heusler [58].
Although the literature is vast, there are two basic assump-
tions lying at the heart of most no-hair theorems. The first is
that of stationarity, whose necessity has been demonstrated
by Jacobson’s ‘‘Miracle Hair Growth Formula,’’ a pertur-
bative construction of a hairy BH with time-dependent
scalar boundary conditions [59].

The second assumption is the truncation of the scalar-
tensor action to second order in the derivative expansion.
At this level, the most general action [Eq. (2) in the single-
scalar case] is very simple and contains only three terms,
whereas scalar-tensor gravity at the four-derivative level is
too complicated to be studied in complete generality, and
thus, attention is often restricted to particular models.

One such model is quadratically modified gravity, whose
action contains all possible terms quadratic in the Riemann
tensor, coupled to a scalar. In this theory, BHs have been
studied perturbatively, and solutions with scalar hair have
been found [60–64]. Moreover, in the special case of a
scalar coupled to a topological invariant—namely,
Einstein-dilaton-Gauss-Bonnet or dynamical Chern-
Simons gravity—a no-hair theorem for neutron stars has
been established [65]. The conclusion here is that spheri-
cally symmetric neutron stars have a vanishing scalar
monopole moment, but higher-order scalar multipoles
need not vanish. However, the presence of derivatives
higher than second order in the field equations severely
complicates the implementation of numerical simulations.

Although four-derivative actions generically lead to field
equations with more than two derivatives, there are some
noteworthy exceptions. One is the Einstein-Skyrme system,
a nonlinear sigma model with target-space SU(2), contain-
ing a term in the action quartic in scalar derivatives, and
admitting linearly stable BH solutions with scalar hair
which have been described numerically in Refs. [66–69].
Another model with second-order field equations is the
galileon [70], which is related to both higher-dimensional
Lovelock gravity [71] and massive gravity [72,73]. It sat-
isfies Solar System constraints by means of the Vainshtein
mechanism [74], and a no-galileon-hair theorem for spheri-
cally symmetric BHs has been recently established [75].
Another interesting example is Bergmann-Wagoner scalar-
tensor gravity coupled to nonlinear electrodynamics, where
the nonvanishing trace of the electromagnetic stress-energy
tensor enters as a source into the scalar-field equation. This
allows for stable asymptotically flat BHs with scalar hair,
which have been studied numerically in Refs. [76–81].

B. A generalized no-hair theorem

The ‘‘classical’’ no-hair theorems described in the pre-
ceeding paragraphs, which are statements about stationary
vacuum spacetimes, have been extended to the context of a
BH binary system. Employing the ‘‘generalized EIH’’ for-
malism developed by Eardley [82], Will and Zaglauer [17]
have shown that the leading-order post-Newtonian (PN)
dynamics of a BH binary in Brans-Dicke theory is indis-
tinguishable from that in general relativity. Recently, this
result has been extended to general scalar-tensor theories in
the extreme mass-ratio limit [34] and it has been shown to
hold up to 2.5PN order for a generic mass ratio [83]. Thus,
even a dynamical (vacuum) spacetime with two interacting
BHs does not have scalar hair in the PN limit.We can regard
this conclusion as a ‘‘generalized no-hair theorem.’’
The generalized no-hair theorem relies on the assump-

tion that the binary system is isolated, in the sense that
cosmological and environmental effects (say, due to the
galactic background surrounding the BHs) are neglected.
More precisely, it is assumed that (1) there is no matter in
the system, (2) the scalar field has zero potential, (3) the
scalar-tensor action is truncated to second order in the
derivative expansion, and (4) the metric is asymptotically
flat (in all conformal frames) and the scalar is asymptoti-
cally constant.
The vacuum assumption (1) can be relaxed either by

considering BHs in astrophysical environments or by con-
sidering compact stars, which are affected by thewell-known
spontaneous scalarization phenomenon (cf. Ref. [84] for
recent numerical studies). Other recent numerical studies
created a scalar-field ‘‘bubble’’ around the binary by using
a nonvanishing potential, i.e. relaxing assumption (2). They
found that the scalar-field bubble is rapidly accreted by the
BHs,modifying the binary dynamics [85].As for assumption
(3), compact binary dynamics in quadratically modified
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gravity has been studied analytically in a perturbative frame-
work,where one takes the point of view that themodel should
be considered as an effective low-energy theory [65,86,87].
Whether these theories are well posed for numerical evolu-
tions is currently amatter of debate.Wewill not consider this
problem in the present paper, but it is an interesting topic for
future research.

Relaxing either assumption (3) or assumption (4) intro-
duces a new length (or time) scale in the BH binary
dynamics. In the case of assumption (3) this scale is
determined by the Compton wavelength of a heavy parti-
cle, whose square enters into coefficients of four-derivative
terms in the action. In the case of assumption (4), the new
scale is determined by cosmological and/or galactic ef-
fects. A priori, it is not obvious which of these effects is
dominant, and thus it is worthwhile to explore both possi-
bilities. To our knowledge, the relaxation of assumption
(4) has not been explored in the literature, and it is the main
focus of our paper.

Asymptotic flatness of themetric is only an approximation
to the dynamics of an astrophysical binary. Observations
show that the Universe is expanding on time scales which
are very large, but nevertheless finite with respect to astro-
physical BH binary evolution. As shown in Refs. [59,88],
imposing time-varying boundary conditions endows the BHs
in a binary with scalar charge, and therefore the binary can
emit dipole scalar radiation. Furthermore, many cosmologi-
cal models consider the existence of background scalars
which can be anchored on matter [89–98]. In this case, one
can for instance conceive of a BH binary evolving in the
background of a nearly static but nonuniform scalar field
anchored on the galactic matter. The characteristic length
scale of such a scalar-field profilewould be much larger than
the binary separation, and therefore it would have the same
effect on the dynamical evolution of the binary system as the
enforcement of boundary conditions which are not asymp-
totically flat. Finally, BH dynamics in the background of
scalar fields could also be relevant to understanding accretion
inside hypothetical supermassive boson stars, where huge
scalar-field gradients are expected [99].

Scalar-field gradients can therefore allow us to circum-
vent the generalized no-hair theorem, i.e., to have a space-
time which contains only BHs and still emits scalar
radiation. Indeed, as we shall discuss below [cf. Eq. (27),
Sec. III B 2], in the presence of a spatially varying scalar-
field profile ’ð ~xÞ, a nonrotating BH of massM with world-
line ðt; ~xðtÞÞ would have a scalar charge1

QðtÞ ¼ 4M2 d~xðtÞ
dt

� ~r’ð ~xðtÞÞ ¼ 8��M2 d~xðtÞ
dt

� ẑ; (1)

where in the second equality we have assumed that the
scalar-field gradient is directed along the z axis, and we
have parametrized its magnitude by a real parameter �. If
the BH is accelerated, or if the scalar gradient is nonuni-
form, the scalar chargewould evolve in time, yielding scalar
radiation. As we show inAppendix D, for a stellar-mass BH
(M ¼ 10M�) moving near the galactic center a typical
scalar-field gradient is M�� 10�15. For a supermassive
BH with M ¼ 109M� a typical gradient could be as large
as M�� 10�7, comparable in order of magnitude to the
numerical simulations presented in this paper.

C. Executive summary and plan of the paper

The main goal of this work is to explore the consequen-
ces of the presence of a scalar-field gradient, which is
equivalent to imposing nontrivial boundary conditions on
the dynamics of a BH binary, and to verify numerically
whether, as suggested by Eq. (1), such a setup can allow
scalar radiation from a BH binary system in scalar-tensor
theory. Here we present an executive summary of our main
results and an outline of the paper.
In Sec. II we lay out our theoretical framework by

introducing generic scalar-tensor theories and presenting
the relations that allow us to transform between the Jordan
frame (where physical quantities should be computed) and
the Einstein frame (where we will perform our calcula-
tions). In particular, we show how gravitational radiation in
the Jordan frame can be computed from a knowledge of the
Newman-Penrose scalars in the Einstein frame.
In Sec. III we introduce analytical approximations for

scalar fields in the background of single and binary BH
spacetimes. These approximations are useful to validate
(and provide insight into) our numerical simulations. In
fact, numerical evolutions of initial data corresponding to a
single black hole in a scalar gradient show that, after a short
transient, the scalar field relaxes to the static configurations
predicted by these perturbative calculations. For a quasi-
circular black-hole binary, in Sec. III we show analytically
that the dipole component of the scalar radiation is emitted
at twice the binary’s orbital frequency. This prediction is
validated by our numerical simulations, which also show
that the dipole component dominates the scalar emission.
In Sec. IV we present the details of our numerical

implementation. The results of our simulations are dis-
cussed and compared with analytical results in Sec. V. In
Sec. VI we summarize our findings and point out possible
directions for future work.
To improve readability, in the Appendices we collect

technical material that illustrates various important points
of our analysis. Appendix A shows that a BH moving with
constant velocity in a uniform scalar-field gradient does not
emit scalar radiation. Appendix B (which is complemen-
tary to Sec. III B 2) collects some lengthy formulas illus-
trating the structure of gravitational radiation from a BH
binary moving in a scalar-field gradient. In Appendix C we

1The scalar charge Q and mass M are Einstein-frame quanti-
ties, and geometrical units G ¼ c ¼ 1 are employed, where G is
the Einstein-frame bare gravitational constant. The result quoted
here also assumes that the BH motion relative to the scalar-field
profile is ‘‘slow,’’ in the sense that Mðd~x=dtÞ � ~r’ � 1.
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provide explicit expressions for the evolution equations
used in our numerical code. In Appendix D we estimate
the order of magnitude of the scalar-field gradients ex-
pected in scalar-field models of dark matter.

II. THEORETICAL FRAMEWORK

We focus on general single-scalar-tensor theories in
vacuum with vanishing scalar potential, and at most two
derivatives in the action. These theories are equivalent to
Einstein’s theory extended to include a minimally coupled
scalar field with vanishing potential. This statement (which
will be clarified below) has a nontrivial consequence: the
addition of minimally coupled scalars to Einstein’s gravity
allows one to study a multitude of scalar-tensor theories at
once. For this reason our simple framework offers an
opportunity to take a glimpse at a rather broad spectrum
of physics beyond Einstein’s theory.

Our starting point is the action of a general scalar-tensor
theory for a single scalar field �, written as

S¼
Z
d4x

ffiffiffiffiffiffiffi�g
p
16�G

ðFð�ÞR�8�GZð�Þg��@��@���Uð�ÞÞ;
(2)

where R is the Ricci scalar associated to the metric g��,

and Fð�Þ, Zð�Þ, and Uð�Þ are arbitrary functions (see e.g.
Ref. [4] and references therein). This form of the action
corresponds to the choice of the so-called ‘‘Jordan frame,’’
where the scalar field is nonminimally coupled with grav-
ity and all other matter fields obey the equivalence princi-
ple. The dynamics of matter fields would be described by
an additional term Smatt on the right-hand side, which we
set equal to zero because we are interested in BHs in
vacuum.

Our numerical evolutions are more easily performed in
the so-called Einstein-frame representation, which is re-
lated to the Jordan-frame representation by a conformal
rescaling of the metric. In the Einstein frame, the scalar
field is minimally coupled with the metric tensor and it
affects the scalar-matter coupling in the matter action Smatt.
Working in the Einstein frame is convenient because we
focus on pure BH spacetimes, i.e., we set Smatt ¼ 0. Since
we are interested in the effect of boundary conditions, we
shall assume for simplicity (as in Ref. [88], and at variance
with Ref. [85]) that the effect of the scalar-field potential is
negligible: Uð�Þ ¼ 0.

A. From Jordan to Einstein and back

With Uð�Þ ¼ 0, the explicit transformations that recast
the previous action in the Einstein frame are [20]

gE�� ¼ Fð�Þg��; (3)

’ð�Þ ¼
Z

d�

�
3

2

F0ð�Þ2
Fð�Þ2 þ 8�GZð�Þ

Fð�Þ
�
1=2

; (4)

The Einstein-frame action is then

S ¼ 1

16�G

Z
½RE � g��

E @�’@�’�
ffiffiffiffiffiffiffiffiffiffi
�gE

q
d4x; (5)

and it leads to the following equations of motion:

GE
�� ¼ @�’@�’� 1

2
gE��g

��
E @�’@�’; (6)

hE’ ¼ 0; (7)

where the label E denotes quantities built out of the
Einstein-frame metric gE��, and GE

�� is the Einstein tensor.

This will be the starting point of our analysis. It is impor-
tant to stress that, even though we are formally investigat-
ing a minimally coupled theory, our results are in principle
applicable to a wide range of scalar-tensor theories. By
working in the Einstein frame we can focus on quantities
that depend on the intrinsic properties of the binary, rather
than quantities that would be measured by gravitational-
wave detectors. The latter may be obtained for any specific
theory using the transformation from the Einstein frame to
the Jordan frame.

B. Gravitational waves in the Einstein
and Jordan frames

In the Jordan frame, we describe perturbations of the
metric and of the scalar field as follows:

g�� ¼ gð0Þ�� þ h��; � ¼ �ð0Þ þ�ð1Þ: (8)

In the Einstein frame this corresponds to gE�� ¼ gð0ÞE�� þ
hE��, ’ ¼ ’ð1Þ, and from Eqs. (3)–(5) one gets

h�� ¼ Fð�ð0ÞÞ�1ðhE�� � gð0Þ��F0ð�ð0ÞÞ�ð1ÞÞ; (9)

�ð1Þ ¼
�
3

2

F0ð�ð0ÞÞ2
Fð�ð0ÞÞ2 þ

8�GZð�ð0ÞÞ
Fð�ð0ÞÞ

��1=2
’ð1Þ: (10)

In general, gravitational waves in scalar-tensor theories have
three degrees of freedom [100,101]. In the Einstein frame
they correspond to the two transverse-traceless components
of the metric perturbation, plus the scalar field. The calcu-
lation of these quantities does not present difficulties. The
physical degrees of freedom, which should be computed in
the Jordan frame, can be read off from Eqs. (9) and (10). An
alternative procedure is presented in Ref. [84], which shows
the transformation of the corresponding Newman-Penrose
quantities, with similar results. In this work we will present
results for the scalar field’ and for the curvature scalar�E

4 in
the Einstein frame, which is directly related to the two
Einstein-frame polarization states hEþ and hE� via

�E
4 ¼ €hEþ � i €hE�; (11)

where dots denote time derivatives. Quantities in the Jordan
frame can be found using Eqs. (9) and (10), once one
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specifies the underlying theory. From here onwards, having
established the relation between the Einstein and Jordan
frames, we shall work exclusively in the Einstein frame,
dropping the label ‘‘E’’ from all quantities. Unless specified
otherwise, wewill use geometrical units and setG ¼ c ¼ 1.
Note however that hereG is a bare gravitational constant, and
it is different from the quantity measured by a Cavendish
experiment.

III. SCALAR FIELDS IN SINGLE AND
BINARY BLACK-HOLE BACKGROUNDS:

ANALYTICAL APPROXIMATIONS

In this section we introduce approximate analytical solu-
tions that describe single and binary BHs in a scalar-field
gradient. These solutions will be useful below, either as code
checks or for the interpretation of our numerical results.

A. Single black holes: linearized analytical solutions

Let us assume that the scalar-field gradient is of such low
amplitude that the scalar can be treated as a perturbative
effect on the spacetime metric. Under this assumption we
can neglect terms quadratic in the scalar field, and there-
fore the field equations reduce to

R�� ¼ 0; (12)

h’ ¼ 0: (13)

We will drop this perturbative approximation in Sec. IV,
where the field equations (6) and (7) will be solved
numerically.

Equation (12) is of course identical to Einstein’s equa-
tions in vacuum. We will consider the Schwarzschild (and
later the Kerr) metrics as background BH solutions, and we
will solve the Klein-Gordon equation (13) on these back-
grounds. For the reasons explained in the Introduction we
are interested in numerical evolutions in a scalar-field gra-
dient. Therefore we will consider background scalar-field
solutions generated by distant, fixed, infinite homogeneous
planeswith constant surface scalar-charge density�. To our
knowledge, Press [102] was the first to study a closely
related problem (his setup differs from ours in that he
considered a spherical shell of scalar charge as the source
of the scalar field). Here we recast some of his results in a
form suitable for comparison with our numerical setup.

1. Spherically symmetric black-hole background

Let us first consider the Schwarzschild solution in iso-
tropic coordinates,

ds2 ¼ �ð1� M
2r̂Þ2

ð1þ M
2r̂Þ2

dt2 þ
�
1þM

2r̂

�
4ðdx2 þ dy2 þ dz2Þ

¼ � ð1� M
2r̂Þ2

ð1þ M
2r̂Þ2

dt2 þ
�
1þM

2r̂

�
4

� ½dr̂2 þ r̂2ðd�2 þ sin 2�d�2ÞÞ�: (14)

Here r̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
is the isotropic radius, which is

related to the areal radius r by r ¼ r̂ð1þ M
2r̂Þ2.

The scalar-field equation (13) on this background admits
a simple axisymmetric solution sourced by distant planes
of constant scalar-charge density, i.e.

’ext ¼ 2��ðr�MÞ cos� ¼ 2��

�
r̂þM2

4r̂

�
cos �

¼ 2��z

�
1þM2

4r̂2

�
; (15)

where z ¼ r̂ cos � is the direction orthogonal to the charged
plane. If no BH is present, Eq. (15) reduces to the field
’ext ¼ 2��z generated by homogeneously charged infinite
planes, with constant gradient @z’ext ¼ 2��. For large jzj
the constant-gradient behavior applies also to the case
where the background is a Schwarzschild BH.
We shall take as an initial condition ’ini ¼ 2��z and

test our numerical framework by checking that, after a
transient, the scalar-field profile settles to the analytical
solution ’ ¼ ’ext, up to corrections of second order in the
scalar field.
In Appendix A we derive a solution describing a BH

moving with small constant velocity in a direction orthogo-
nal to the charged planes, and show that it does not emit
scalar waves. Indeed, as we will show analytically in
Sec. III B and numerically in Sec. IV, the BH must have
nonvanishing acceleration in order to generate scalar
radiation.

2. Rotating black-hole background

In the case of a rotating BH with a rotation axis that is
not orthogonal to the charged planes, axisymmetry is lost;
however, a simple solution can still be found [102]. Let us
choose our coordinates so that the BH spins along the z
axis, at an angle � with respect to the direction orthogonal
to the charge-carrying planes. Then it can be shown that a
solution is

’ext ¼ 2��ðr�MÞðcos� cos �þ sin� sin� cos�faÞ
¼ 2��ðr�MÞ

�
z

r
cos�þ x

r
fa sin�

�
; (16)

where 	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
,

fa ¼ 1

r�M
Re

�
	
�½2� ia=	�

ea�=2	
Pia=	
1

�
r�M

	

��
; (17)

� denotes the � function and P�
�ðzÞ is an associated

Legendre function of the first kind. At large distances
fa ! 1, and it can be seen that the charged plane generates
a uniform gradient in the xz plane. Figure 1 shows contour
plots of ’ext in the y ¼ 0 plane, for different values of a
and of the angle �. Notice how the field lines are distorted
and frame-dragged close to the horizon.
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B. Black-hole binaries: analytical approximation
for quasicircular inspirals

Let us now turn to the more complicated case of a
quasicircular BH binary evolving in an external scalar field
with constant gradient. We begin our discussion by ad-
dressing the delicate problem of specifying boundary con-
ditions for this system, which will be used to perform the
numerical simulations discussed in Sec. IV.

1. Boundary conditions

In our numerical setup the boundary conditions are im-
posed by fictitious faraway charges, which are not modeled
in our numerical simulations. These charges are assumed to
lie outside the numerical grid, andmimic an external profile

due (say) to a galactic scalar-field background. This ‘‘large-
scale field’’ acts as a sort of reservoir: when the local field
begins falling into the BH, there is an ingoing flux which
restores the scalar-field gradient. The presence of this field
outside the boundaries of our numerical simulations is
implemented through the boundary conditions. At large
distances we want to allow for outgoing waves while im-
posing the existence of the scalar-field gradient, so we
require the field to behave in the following way:

’ ¼ ’ext þ�ðt� r; �; �Þ
r

; (18)

where r is the areal radius, the constant gradient corre-
sponds to the external field ’ext ¼ 2��ðr�MÞ cos�, and
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FIG. 1 (color online). Contour plots of the field ’ext in the vicinity of a rotating BH, as given by Eq. (16). Top: The infinite charged
plane is at an angle � ¼ 0, and the BH has dimensionless spin a=M ¼ 0 (left) and a=M ¼ 0:99 (right). The value of ’ext=ð2��Þ is
shown along selected contour lines; the two panels only differ because of the different size of the horizon. Bottom: A BH with
a=M ¼ 0:99 is immersed in a field gradient at angles �=4 (left) and �=2 (right). All contour plots refer to the plane y ¼ 0. Selected
contour lines correspond to the same values as the top panels.
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the second term on the right-hand side is the solution of
the homogeneous equation h’ ¼ 0 describing outgoing
(approximately spherical) scalar waves. We thus get

@

@r
ðr’Þ þ @

@t
ðr’Þ ¼ @

@r
ðr’extÞ: (19)

Since the boundary conditions are defined at large dis-
tances, ’ext ’ 2��r cos �, and we can write

@

@r
ðr’Þ þ @

@t
ðr’Þ ¼ 4��r cos �: (20)

2. Multipole expansion of the scalar field

The angular dependence of the scalar field can be de-
scribed through a multipole expansion of the form

�ðt� r; �; �Þ ¼ Mþ ni _Di þ 1

2
ninj €Qij þ � � � ; (21)

where� is the function appearing on the right-hand side of
Eq. (18), dots denote derivatives with respect to the re-
tarded null coordinate u ¼ t� r, and ~n ¼ ~x=r ¼ ~x=j ~xj is
the radial unit vector, which depends only on the angles
ð�;�Þ. The calligraphic symbols M, Di, and Qij denote

the monopolar, dipolar, and quadrupolar components of�,
respectively.

The full relativistic scalar equation to be solved ish’ ¼
0. In order to obtain a solution which describes the physics
that we are interested in—namely, a BH binary in a scalar
gradient—it is essential to impose correct boundary condi-
tions, both at null infinity, and in thevicinity of theworldlines
of the singularities of the two BHs. The boundary conditions
at null infinity have been discussed above; the near-worldline
boundary conditions that must be imposed in order to find an
approximate solution are more complicated.

In the special case of a comparable-mass BH binary
system with small size-to-separation ratio (or, equivalently,
small orbital velocity) the problem of imposing correct
near-worldline boundary conditions is substantially sim-
plified when one employs a ‘‘point-particle’’ effective
field theory, in which length scales smaller than the
Schwarzschild radii are integrated out. In this effective
field theory the matter action has the form

S
pp
matt ¼

X
A

Z
�A

dsALA; (22)

where A is an index that runs over the bodies (A ¼ 1, 2 for
a binary system), �A is the worldline of body A, dsA is the
proper differential arc length along �A, and LA is the
‘‘effective point-particle Lagrangian’’ of body A. For a
structureless particle of mass mA, one has LA ¼ �mA.

The matter action (22) gives rise to sources in the field
equations of the effective point-particle theory, and these
sources automatically enforce the correct boundary con-
ditions at the worldlines �A for both g�� and ’. For

instance, to leading nonrelativistic order, the scalar-field
equation has the explicit form

hf’ ¼ 4��’ ¼ 4�
X2
A¼1

QA	
ð3Þð ~x� ~zAðtÞÞ; (23)

wherehf is the D’Alembert operator in flat space, ðt; ~zAðtÞÞ
is an explicit parametrization of the worldline �A, and QA

are the scalar charges of the BHs.
Moreover, to leading nonrelativistic order, one finds that

the multipole moments entering into Eq. (21) are given by

M ¼
Z

d3x�’ ¼ Q1 þQ2; (24)

~D ¼
Z

d3x ~x�’ ¼ Q1 ~z1 þQ2 ~z2; (25)

and so on.
In general, calculating the scalar chargesQA is a difficult

problem. A simplification takes place if we assume that
the BH masses MA have the same order of magnitude M,
and that

� �
ffiffiffiffiffiffiffi
a

M3

r
� 1

Mv
; (26)

where a is the typical orbital separation, and v is the
typical orbital velocity. Henceforth, terms of order
ðMv�Þ2 will be dropped. Then the BH scalar charges QA

may be found by Jacobson’s formula [59], which for
Schwarzschild BHs yields

QAðtÞ ¼ 4M2
A

�
@’ðt; ~zAðtÞÞ

@t
þ ~vAðtÞ � ~r’ðt; ~zAðtÞÞ

�
¼ 8��M2

A ~vAðtÞ � ẑ; (27)

where ~vAðtÞ ¼ _~zAðtÞ is the velocity of body A, and in the
second line the full scalar field ’ðt; ~xÞ has been replaced by
the zeroth-order field ’ext ¼ 2��z.
Let us specialize to quasicircular orbits in the yz plane,

so that the trajectories take the simple form

~z relðtÞ ¼ ~z1ðtÞ � ~z2ðtÞ ¼ aðtÞ½ŷ cos
ðtÞ þ ẑ sin
ðtÞ�;
(28)

M~zCMðtÞ ¼ M1 ~z1ðtÞ þM2 ~z2ðtÞ; (29)

where aðtÞ is the orbital radius, 
ðtÞ ¼ R
!ðtÞdt is the

orbital phase, !ðtÞ is the angular frequency of the orbit,
and ~zCMðtÞ is the center of mass of the binary system. The

quantities _a, €
 ¼ _!, and ~aCM ¼ €~zCM are all small (of order
1=c5), and vanish in the absence of radiation reaction. An
explicit expression for their leading-order time evolution
may be found by solving the 2.5PN equations of motion
(given in Sec. 9 of Ref. [103]), while dropping conservative
corrections. Carrying out this calculation yields

aðtÞ ¼ að0Þ
�
1� 256t

5�q

�
1=4 ’ að0Þ

�
1� 64t

5�q

�
; (30)

NUMERICAL SIMULATIONS OF SINGLE AND BINARY . . . PHYSICAL REVIEW D 87, 124020 (2013)

124020-7



_
ðtÞ ¼ _
ð0Þ
�
1� 256t

5�q

��3=8 ’ _
ð0Þ
�
1þ 96t

5�q

�
; (31)

where að0Þ and _
ð0Þ are the (constant) radius and angular
frequency of the zeroth-order orbit, respectively, and

�q ¼
�
M1M2ðM1 þM2Þ

½að0Þ�4
��1

(32)

is the time scale over which the quadrupole tensor radiation
shrinks the orbit.

With an explicit description of the orbit in hand, the
scalar charges Q1;2 and multipole moments (24) and (25)

may be calculated (see Appendix B for the explicit ex-
pressions). In this way, we find the following:

(1) monopole radiation is emitted at the orbital
frequency,

M¼ 8��

M
½MðM2

1þM2
2Þð ~vCM � ẑÞ

þM1M2ðM1�M2Þð _asin
þa _
cos
Þ�; (33)

and it vanishes in the equal-mass limit;
(2) dipole radiation is emitted at twice the orbital fre-

quency, and more precisely

_~D ¼ _~DCM þ _~Drel;DC þ _~Drel;osc; (34)

where the ‘‘CM’’ term is emitted at the orbital frequency,

the ‘‘DC’’ component is nonoscillatory, and the ~Drel;osc

component oscillates at twice the orbital frequency: cf.
Eq. (B9).

The physical problem addressed here differs from the
situation investigated in Ref. [88]. That study considered
time-dependent scalar boundary conditions, rather than a
gradient, and it found that monopole radiation is absent,
while dipole radiation vanishes in the equal-mass limit.
One may expect dipole scalar radiation to be emitted at the
orbital frequency, rather than twice the orbital frequency.
The reason why this expectation is erroneous in our case is
that we have a background field with a gradient directed
along the orbital plane, which combines with the oscilla-
tory component sourced by the orbital motion.

A simple toy model can provide us with a complemen-
tary and perhaps more intuitive way to justify the expec-
tation that dipole radiation must be emitted at twice the
orbital frequency. Let us consider a rotating source with
frequency� on a scalar-field background ’ext ¼ 2��z ¼
2��r sin � sin� [in our ‘‘rotated’’ polar coordinates, see
Eqs. (71) below]. The source will produce a modulation in
the background field of the form

’ ¼ ’ext½1þ fð���tÞ�: (35)

Expanding in circular harmonics, fð���tÞ ¼P
mfme

imð���tÞ and

’ ¼ 2��r sin � sin�

�
1þX

m

fme
imð���tÞ

�
; (36)

which implies that the multipolar components of the field
will have the following dependence:

’lm � ðe�iðmþ1Þ�t þ e�iðm�1Þ�tÞ þ constant: (37)

Therefore the m ¼ 0 contribution should oscillate with
frequency �, the m ¼ 1 contribution with frequency 2�,
them ¼ 2 contribution with frequencies 3� and�, and so
on. As we will show below, this behavior is consistent with
our numerical simulations.

IV. NUMERICAL IMPLEMENTATION

Our numerical implementation of scalar-tensor theory
closely parallels [104], but borrows notation and conven-
tions from [105]. The physical system studied in Ref. [105]
was quite different, since that paper considered higher-
dimensional Einstein gravity in vacuum. However the
equations can be cast as a system involving a scalar field
coupled to gravity via dimensional reduction, so they
are formally similar to the system considered here, as we
show below.

A. 3þ 1 decomposition

As a preliminary step for our numerical implementation,
we perform a 3þ 1 decomposition of the spacetime (see
Ref. [106] and references therein). Let us consider a slicing
of the spacetime in a set of three-dimensional surfaces
�. Introducing the normal n� to the surface � and the

projector

��� ¼ g�� þ n�n�; (38)

we write the four-dimensional metric in the form (�, � ¼
0; . . . ; 3; i, j ¼ 1, 2, 3)

ds2 ¼ g��dx
�dx�

¼ ��2dt2 þ �ijðdxi þ idtÞðdxj þ jdtÞ; (39)

where �, i are the lapse and the shift, respectively, and

@t ¼ �nþ : (40)

We shall denote by Di the covariant derivative on �, i.e.,
the covariant derivative with respect to the three-
dimensional metric �ij.

The Lie derivative with respect to n�, then, is Ln ¼
ð@t �LÞ=�. Defining the extrinsic curvature

Kij � � 1

2
Ln�ij; (41)

we have the following evolution equations for the (three-
dimensional) metric:

ð@t �LÞ�ij ¼ �2�Kij: (42)
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Furthermore, we define the scalar curvature K’ as

K’ ¼ � 1

2
Ln’ (43)

so that

ð@t �LÞ’ ¼ �2�K’: (44)

Comparing with the definitions of the variables Qi and �
in Ref. [104], we find that

Qi ¼ Di’ffiffiffiffiffiffiffiffiffiffi
8�G

p ¼ �i�@
�’ffiffiffiffiffiffiffiffiffiffi

8�G
p ; � ¼ Ln’ffiffiffiffiffiffiffiffiffiffi

8�G
p : (45)

Therefore,

K’ ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffi
8�G

p
�: (46)

The constraint equations (2.15) and (2.16) of Ref. [104]
read

ð3ÞRþ K2 � KijK
ij ¼ �2 þQ2

f
¼ 4K2

’ þDi’D
i’;

(47)

DlK
l
i �DiK ¼ ��Qi

f
¼ 2K’Di’: (48)

The evolution equation (2.17) of Ref. [104] can be
written as

ð@t �LÞKij ¼ ð@t �LÞ�ikK
k
j

¼ �DiDj�þ �ðð3ÞRij þ KKij

�Di’Dj’� 2KikK
k
jÞ: (49)

Note that since ��
i�

�
jR�� ¼ Di’Dj’, this expression

coincides with Eq. (2.23) of Ref. [105]. Taking the trace
of Eq. (49) we have

@tK � l@lK þDiDi�� �ðð3ÞRþ K2 �Di’Di’Þ;
(50)

and using Eq. (47) we find

ð@t �LÞK ¼ �DiDi�þ �KijK
ij þ 4�K2

’; (51)

which should be compared to Eq. (2.19) of Ref. [104]. The
evolution equation (2.18) of Ref. [104] can be written as

1

�
ð@t �LÞK’ ¼ � 1

2
ffiffiffiffiffiffiffiffiffiffi
8�G

p Ln�

¼ K’K � 1

2�
Di’Di�� 1

2
DiD

i’: (52)

All of the terms in this expression appear, with the same
coefficients, in Eq. (2.37) of Ref. [105]. The additional
terms in that equation which are not present here are due to
the more complicated dynamics of the scalar field arising
from dimensional reduction.

It can be useful to write the equations also in terms of the
stress-energy tensor, which enables us to compare the
scalar-field terms with those in Ref. [106]. From Eq. (6)
we have

8�GT�� ¼ @�’@�’� 1

2
g��@�’@

�’: (53)

Since n�@�’ ¼ �2K’, ���@�’ ¼ D�’, g�� ¼
��� � n�n�, defining, as on page 87 of Ref. [106],

� ¼ n�n�T��; (54)

j� ¼ ����n�T��; (55)

we get

8�G� ¼ n�n�@�’@�’� 1

2
g��@�’@

�’

¼ 2K2
’ þ 1

2
Di’D

i’; (56)

8�Gji ¼ �8�G�i�n�T��

¼ �Di’n�@�’ ¼ 2K’D
i’; (57)

where we have used the fact that �00 ¼ 0 (see Ref. [106]),
and thus ���D�’D�’ ¼ �ijDi’Dj’. Therefore,

Eqs. (2.4.6) and (2.4.9) coincide with our constraint equa-
tions (47) and (48). Furthermore, we can compute the
quantity (cf. page 89 of Ref. [106])

S�� ¼ �����T�: (58)

We have

8�GS�� ¼ D�’D�’� 1

2
���Di’Di’þ 2���K2

’;

(59)

and the trace of this equation (since ��
� ¼ 3) yields

8�GS ¼ � 1

2
Di’Di’þ 6K2

’: (60)

Then, 8�GðS� �Þ ¼ 4K2
’ �Di’D

i’, and

4�G½ðS� �Þ�ij � 2Sij� ¼ �Di’Dj’; (61)

and therefore Eq. (2.5.6) of Ref. [106] coincides with
our Eq. (49).

B. Baumgarte-Shapiro-Shibata-Nakamura formalism

Our evolution equations use the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formalism, in which the

dynamical variables are f
;�ij; ~Aij; K; ~�
ig, defined as

follows:
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�ij ¼ 
�1 ~�ij ðwith �ij ¼ 
~�ijÞ; 
 ¼ ðdet�ijÞ�1=3;

~Aij ¼ 


�
Kij � 1

3
�ijK

�
;

�k ¼ �ij�k
ij ¼ 
~�k þ 1

2
~�kj@i
: (62)

Alternative notations replace our variable 
 by a variable
c defined as 
�1 ¼ c 4. Here we will use 
 as our dy-
namical quantity.

The Einstein equations in the BSSN formulation in the
presence of a scalar field, which appears through the quan-
tities �, ji, Sij, are implemented in an extended version of

the CACTUS-based [107] LEAN code [108,109] in the form
given in Eqs. (C1)–(C10) of Appendix C. Mesh refinement
for our simulations is provided by CARPET [110], horizon
diagnostics by AHFINDERDIRECT [111,112], and BH binary
initial data satisfying Eq. (12) by a spectral solver [113]
provided through CACTUS as the TWOPUNCTURES thorn.

C. Initial data

Our initial data sets consist of either a single BH or a BH
binary evolving in a background scalar field with a non-
vanishing gradient. The background scalar field is gener-
ated by distant sources, which are kept fixed in our time
evolutions. As a simple way to enforce this scenario,
imagine that the background scalar field is generated by
infinite homogeneous charged planes with surface density
�. As we saw in Sec. III, if a BH is present in the spacetime
and the scalar field is small enough to be treated in the
linear approximation the metric is unaffected, but the
equilibrium solution for the scalar field changes. This setup
is quite similar in spirit to the one adopted by Palenzuela
and collaborators [114,115], the main difference being that
they dealt with electromagnetic fields, and that their exter-
nal magnetic field is generated by a current loop far away
from the system.

Under these assumptions, the solution ’ext we found in
Eq. (15) should be a good approximation to the initial data
describing a single, nonrotating BH in a scalar-field gra-
dient. Except for regions close to the BH singularity, the
termM2=4r̂2 in parentheses in Eq. (15) can furthermore be
neglected. Therefore we initialize the scalar field using the
simplified expression ’ext ¼ 2��z. Our numerical simu-
lations of single BHs show indeed that the initial data (15)
and its approximate version 2��z yield (after a brief
transient, which we exclude from our analysis below)
virtually identical evolutions of the scalar field and of the
spacetime metric.

D. Upper bounds on the field gradient from the
threshold of black-hole formation

Our setup consists of a constant scalar-field gradient at
large distances. Because the energy density in any classical
field theory is proportional to the square of the field

gradient, one expects a roughly constant energy density
�� �2. The total massM in a region of linear dimension R
then scales like��R3, and thereforeM=R� �R2 � �2R2.
Therefore we expect that the initial data will contain a
horizon for � * R�1. This condition imposes a nontrivial
constraint on the size of our numerical grid. Here
we provide a more formal argument supporting this
conclusion.

We focus on conformally flat backgrounds with ~Aj
i ¼ 0,

� ¼ 0. Then the momentum constraint is identically sat-
isfied, while the Hamiltonian constraint yields

0 ¼ 4c þ 1

8
c�ij@i’@j’; (63)

where �ij is the Minkowski metric. A scalar field with
constant gradient is such that ’ ¼ 2��z, and therefore we
get the equation

4c ¼ ��2�2

2
c : (64)

Imposing regularity at r ¼ 0, the solution of this equation
is

c ¼ A sin ð��r= ffiffiffi
2

p Þ
r

: (65)

An apparent horizon exists for ðc 4r2Þ0 ¼ 0. This condition
is equivalent to finding the roots of

x cot x ¼ 1=2; with x � ��rffiffiffi
2

p : (66)

The smallest root of this equation is at x ’ 1:16556, i.e.

� ’ 1:16556

ffiffiffi
2

p
�r

’ 0:52469

r
; (67)

in good agreement with the previous back-of-the-envelope
estimate.
Our boundary conditions are enforced at a distance

r=M ¼ 160 and 384, respectively, for single and binary
BH simulations. This provides a formal upper bound of
M� 	 5� 10�3 on the magnitude of the gradients that we
can simulate. However, as we will see below, even smaller
gradientsM� 	 10�4 can generate exponentially growing
instabilities (indicating collapse) in our numerical
evolutions.

V. NUMERICAL RESULTS

In this section we first discuss our results for single BH
evolutions, verifying that for small values of the gradient
M� they are in good agreement with the analytical pre-
dictions of Sec. III A. Then we study gravitational and
scalar radiation from BH binaries in a scalar-field gradient.
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A. Single black-hole evolutions

In order to compare our numerical results with the
analytical predictions of Sec. III, it is important to mini-
mize coordinate effects. Let us denote by ~r the radial
coordinate used in our numerical simulation, which coin-
cides with the isotropic coordinate at t ¼ 0, i.e. ~rðt ¼ 0Þ ¼
r̂. This need not be true at later times, since the gauge can
dynamically change during the evolution. In order to moni-
tor the scalar field as a function of time and check that it
eventually settles to a configuration close to the analytical
solution ’ext of Eq. (15), we need to perform integrations
over spheres at given values of ~r. Furthermore, we compute
the areal radii r at these locations by performing spherical
integrations of the metric components, as discussed in
Ref. [116].

The spherical-harmonic expansion2 of the scalar field
reads

’ðt; r; �;�Þ ¼ X
lm

’lmðt; rÞYlmð�;�Þ; (69)

where

’lmðt;rÞ¼
Z
d�’ðt;r;�;�ÞY


lmð�;�Þ: (70)

Since the binary moves in the yz plane, we use noncanon-
ical rotated coordinates,

x ¼ r cos�; y ¼ r sin� cos�; z ¼ r sin� sin�:

(71)

For small scalar-field gradients, the backreaction on the
metric is very small and we expect to recover the stationary
solution ’ext found in Sec. III A, i.e., we expect that after
an initial transient

’ðt!1;r;�;�Þ¼’extðr;�Þ¼’0þ2��ðr�MÞcos�;
(72)

where ’0 is a constant. Because jY10j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð4�Þp

cos�,
the dominant nonvanishing component ’lm at late times
(up to quadratic corrections in the field) should be given by

’10 ¼
ffiffiffiffiffiffiffi
4�

3

s
2��ðr�MÞ: (73)

In this expression the areal radius r is effectively time
dependent, and it is computed dynamically during the
evolution as described above.

The numerical and analytical predictions (solid and
dashed lines, respectively) are compared in Figs. 2 and 3.
Let us focus first on Fig. 2, which refers toM� ¼ 10�5. In
this case the numerically extracted dipole mode asymp-
totes quickly to the analytical prediction. The inset shows
the percentage difference between the analytical and nu-
merical value of the scalar field at late times as a function
of the extraction radius: the agreement is remarkable at
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FIG. 2 (color online). Real part of the scalar dipole mode ’10

(the imaginary part vanishes) for M� ¼ 10�5 and extraction
radii (from top to bottom) ~r=M ¼ 50, 40, 30, 20, 15, 10, and 5,
compared to the predictions of Eq. (73). Solid lines refer to the
numerical evolution; dashed lines refer to the analytical solution
evaluated at time-dependent areal radii r, which are computed
dynamically during the evolution. The inset shows the percent-
age discrepancy between the numerical and analytical prediction
as a function of extraction radius.
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FIG. 3 (color online). Real part of the scalar dipole mode ’10

(rescaled by M�) at the largest extraction radius ~r=M ¼ 50 for
M� ¼ 10�4 and M� ¼ 10�5, compared to the predictions of
Eq. (73). Solid lines refer to the numerical evolution; dashed
lines refer to the analytical solution evaluated at time-dependent
areal radii r, which are computed dynamically during the evo-
lution. The evolution does not settle to the analytical solution for
M� ¼ 10�4: there is an exponentially growing mode. This also
shows up as an exponential growth of the subleading multipoles,
as can be seen in Fig. 4.

2This multipole expansion can be simply related to that
introduced in Eq. (21). For example, we have

_~D ¼ r

2

ffiffiffiffi
3

�

s �
’10x̂� ’11 � ’1�1ffiffiffi

2
p ŷ� i

’11 þ ’1�1ffiffiffi
2

p ẑ

�
1=r

; (68)

where the subscript 1=r denotes that only the 1=r term should be
kept.
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large radii but it gets progressively worse as we get closer
to the BH, most likely because of gauge effects (we can
exclude that the deviations are due to nonlinear effects,
because these would scale with �2, whereas the disagree-
ment seems to be independent of �). To summarize, the
analytical and numerical predictions agree within a few
percent for gradients M� � 10�5.

The situation changes significantly for larger values of
M�. In Fig. 3 we overplot the numerical and analytical
components for M� ¼ 10�5 and for a larger gradient,
M� ¼ 10�4. As expected, when rescaled by their respec-
tive gradients the dipolar components are essentially the
same, and they also converge to the value predicted by the
analytical solution. However for M� ¼ 10�4 this conver-
gence can only be seen at intermediate times, whereas at
late times the mode develops an instability: the figure
shows that the roughly constant ‘‘baseline’’ value of the
field seems to be superimposed to an exponentially grow-
ing oscillation that develops on time scales t� 102M, both
when we evaluate the field numerically (continuous black
line) and when we use the areal radii to compute the
analytical solution (dashed black line).

The existence of this instability is confirmed by Fig. 4,

where we look at higher multipoles of the field on a

logarithmic scale for M� ¼ 10�5 (left panel) and for

M� ¼ 10�4 (right panel). The right panel of this plot

shows that for the larger gradientM� ¼ 10�4 an exponen-

tially growing instability with growth time �102M is

present also in the subdominant l ¼ 0, l ¼ 2, and l ¼ 3
multipoles. The left panel illustrates that when M� ¼
10�5 the instability (if it is present at all) develops on

much longer time scales t * 103M, so it does not affect

our numerical simulations. Notice that early-intermediate

time results are physically consistent: for both values of the

gradient the scalar-field distribution is dominated by the

dipolar component, and it is in good agreement with ana-

lytical predictions.

In summary, single-BH simulations in a scalar-field
gradient show that our numerical evolutions are stable
and reliable as long as the gradient is not too large. This
conclusion is compatible with the arguments presented in
Sec. IVD above.

B. Binary black-hole evolutions: scalar
and gravitational radiation

In this section we discuss our numerical evolutions of
BH binaries in a scalar-field gradient. In this initial
study we focus on evolutions of nonspinning, unequal-
mass binaries with a gradient M� ¼ 2� 10�7 and mass
ratio q ¼ 3, because unequal-mass binaries display
two interesting features which would be absent by con-
struction in the equal-mass case: center-of-mass recoil
[see Eqs. (B1)–(B3)] and monopole scalar radiation [see
Eq. (B4)].
Gravitational waveforms, as characterized by the

Newman-Penrose scalar �4, are shown in Fig. 5. For
such low values of the scalar-field gradient, the impact
on gravitational radiation emission is hardly noticeable.
The emission of scalar radiation is much more interest-

ing. The scalar field acquires a nontrivial profile due to the
dynamics of the orbiting BH binary. The scalar radiation
has a crucial dependence on the binary setup, and more
specifically on the angle between the orbital angular mo-
mentum of the binary and the direction of the scalar-field
gradient. If this angle is zero, then effectively the individ-
ual BHs do not traverse any field gradient, and the scalar
profile is expected to be trivial. Our numerical results
confirm this expectation: the output of these simulations
is indistinguishable from vacuum evolutions in pure gen-
eral relativity [109,117].
On the other hand, the induced scalar radiation should be

maximized when the orbital angular momentum is perpen-
dicular to the field gradient, so we now focus on this case.
Our results are summarized in Figs. 5 and 6.
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FIG. 4 (color online). Absolute value of the real part of the scalar multipoles jReð’l0Þj evaluated at the largest extraction radius
~r ¼ 50M for different values of l and two values of the scalar-field gradient, M� ¼ 10�5 and M� ¼ 10�4 (left and right panel,
respectively).
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Because the binary evolves on the background of a
dipolar scalar-field profile, this constant ‘‘background’’
value of the scalar shows up as a large imaginary compo-
nent3 of the l ¼ jmj ¼ 1 scalar-field modes, which is ap-
parent in the left panel of Fig. 6 (in fact, we had to rescale the
imaginary component by a factor of 10�3 in order to show
this on this plot).

The real part of ’11 displays interesting dynamics. (The
imaginary component also has similar dynamics, but this is
partially masked by the large background dipolar field, so
the analysis of the real part turns out to be numerically
‘‘cleaner.’’) At any extraction radius Reð’11Þ is initially
zero, as the binary is simply traversing a constant scalar
field. As the binary evolves, we expect to see scalar radia-
tion crossing the extraction surface and producing a non-
vanishing scalar profile. This is indeed observed in Fig. 6,
where we show that Reð’11Þ is an oscillatory function of
time at any fixed extraction radius. This behavior is well
illustrated by the right panel of Fig. 6. There we take the
time derivative of Reð’11Þ at the largest and smallest
extraction radii, scaling the amplitude of the signal by
the ratio of the extraction radii (as expected for a wave
scaling like 1=r), and we observe that the signal is indeed
dipole scalar radiation emitted at twice the orbital fre-
quency of the binary, consistent with the predictions of
Sec. III B 2. Furthermore, in Eq. (B15) of Appendix B we
show that the amplitude of the ’11 mode is consistent in
order of magnitude with analytical predictions. We also
observe a monopole component ’00 whose amplitude is
comparable to the amplitude of ’11, consistently with
analytical predictions.

To understand the merger signal, when the two BHs
collide and relax to a final nearly stationary state, it is
useful to remember that, in vacuum, the merger of a BH
binary with mass ratio q ¼ 3 produces a Kerr BH with spin
a=M� 0:543 [117]. Thus the lowest ringdown frequencies
are expected to be, from perturbative calculations, M! ¼
0:351� 0:0936i, 0:476� 0:0849i for a l ¼ m ¼ 1 scalar
field, l ¼ m ¼ 2 gravitational mode [118,119]. We find
that �4 indeed rings down with M!� 0:48� 0:081i, in
good agreement with perturbative calculations. An analy-
sis of _’11 yields a ringdown frequency M!� 0:36�
0:070i (with errors & 10%), which is roughly consistent
with perturbative calculations of scalar (s ¼ 0) perturba-
tions of Kerr BHs [119]. Our simulations also show that the
ringdown phase, and indeed the entire scalar signal, scales
with �. We conclude that our results indeed represent
linear effects, as opposed to nonlinear mode couplings.
Although not completely obvious, there is a small DC

component in Fig. 6 (right panel), which we estimate to be

j _’DC
11 j

j _’peak
11 j � 0:2 (74)

at early times, where j _’peak
11 j is the absolute value of the

waveform at a local peak (maximum or minimum). This
numerical estimate can be compared to the analytical pre-
diction, Eqs. (B11) and (B12). We start by estimating the
angular frequency _
 through the waveform frequency, and
we findM _
� 0:025. Using Kepler’s law, one can estimate
the orbital separation, and these two ingredients together
with relations (31) allow us to estimate the relevant ratio of
the time derivatives of expressions (B11) and (B12). We
find a ratio which is smaller by almost one order of magni-
tude. This discrepancy can probably be explained by nu-
merical uncertainties and strong-field nonlinear effects.
It is apparent from Fig. 6 (left panel) that the Reð’11Þ

modes display a ‘‘drift’’: after all the dynamics has died
away, the field does not return to zero. Our data implies that
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FIG. 5 (color online). Numerical results for a BH binary inspiralling in a scalar -field gradient, with the orbital angular momentum
perpendicular to the gradient. We show the spin-weighted spheroidal harmonic components of the Weyl scalar �4, jReðc lmÞj,
extracted at r ¼ 56M for l ¼ m (the imaginary parts are identical, modulo a phase shift). Left: M� ¼ 0. Right: M� ¼ 2� 10�7.

3In both the single-BH solution (16) with � ¼ �=2 and in the
numerical solution discussed here, the polar axis (in terms of
which the polar angles, and then the harmonic decomposition,
are defined) is orthogonal to the gradient. However the ordering
of the axes is different in the two cases. This explains why the
imaginary part Imð’11Þ of the numerical solution corresponds to
the real part Reð’11Þ of the analytical solution.
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at late times Reð’11Þ � �2:7� 10�4r�1:24 forM� ¼ 2�
10�7. The most natural interpretation of this drift is related
to the DC component, Eq. (B6), which predicts a linear
growth in time—roughly the same dependence that can be
seen in Fig. 6. One should also bear in mind that the
analytical result is a slow-motion expansion, whereas the
numerical results cover only the highly dynamical, non-
linear merger signal; some deviation from a perfectly
linear dependence is therefore expected.

There are other possible contributions to such a drift. A
second possible contribution is due to the nonvanishing of
Imð’11Þ for the analytical solution (16) with � ¼ �=2
[recall that in both the single-BH solution (16) and in the
numerical solution discussed here, the polar axis is or-
thogonal to the gradient, but the ordering of the axes is
different, which explains why real and imaginary parts of
the modes are swapped]. However, the 1=r piece of that
solution is orders of magnitude smaller than the amplitude
of the drift we observe numerically, and therefore unlikely
to explain our observations.

Another possible contribution comes from gravitational
recoil. We are simulating an unequal-mass binary, which
acquires a kick from the origin of our coordinate axis as a
result of the merger. The kick introduces ‘‘spurious’’ multi-
polar components with respect to a frame which is not
comoving with the final BH. However, an order-of-
magnitude estimate shows that this effect is unlikely to
explain the observed drift. In order of magnitude, the kick
contribution to ’ can be estimated by looking at the terms

in Eq. (B11), say
_~Drecoil, that are proportional to vCM; this

yields ��������
_~Drecoil

~r

���������M�vCMvorb

~r=M
: (75)

Here M� ¼ 2� 10�7, the extraction radius is ~r=M� 102,
and vorb is the orbital velocity. The maximum recoil velocity

from a nonspinning BH binary is of order vCM � 7� 10�4

[120], so j _~Drecoil=~rj & 10�12 even if vorb approaches unity.
This contribution to the dipole radiation is way too small to
account for a significant portion of the drift seen in our
simulations.
Finally, a frame-dragging effect can also contribute with

a nonzero drift for the scalar field. The coalescing binary
drags the inertial frames, inducing a local rotation of the
coordinate lines. This induces, near the binary, an apparent
rotation in the yz plane of the extracted scalar field, which
determines a nonvanishing real part of�11. While the order
of magnitude of this effect is roughly consistent with our
numerical findings, the decay of the frame-dragging effect
with extraction radius is not consistent with our data.
Therefore frame dragging is not a dominant contribution
to the observed drift.
While the DC component accounts for the order of

magnitude of the drift observed in our numerical simula-
tions, most likely the observed drift is due to a combination
of the effects mentioned above, and possibly others. In
particular, by imposing constant-gradient boundary condi-
tions at finite distance from the binary during the evolution
we are effectively injecting energy into the system. This
causes a growth of the scalar field, which may contribute
significantly to the drift. This expectation should be con-
firmed by longer simulations and/or by simulations where
the ‘‘plates’’ generating the scalar gradient are located
farther away from the binary. We hope to return to this
problem in future work.

VI. CONCLUSIONS AND OUTLOOK

We have investigated BH dynamics in external field
profiles, by considering the very simple example of a
constant scalar-field gradient. The broad features of our
analysis should translate to other, more general settings, at
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least as long as the external force varies on length or time
scales which are larger than the typical binary separation.
Our results are in agreement with linear or slow-motion
expansions, and show conclusively that black-hole binaries
evolving in a nontrivial background produce interesting
scalar- and gravitational-field dynamics.

As discussed in Appendix D, the scalar-field profiles
currently considered in scalar-field dark matter models
correspond roughly to M�� 10�15 or less for a typical
stellar-mass BH withM ¼ 10M�. Because scalar radiation
is proportional to the gradient, the experimental relevance
of our setting for gravitational radiation from BH binaries,
as observable by Advanced LIGO or similar instruments,
seems negligible. However, it is interesting that
gravitational-wave observations may yield upper bounds
on scalar-field gradients at all. Furthermore, our estimates
in Appendix D predict larger field gradients for super-
massive black holes with M ¼ 109M�; for such binary
systems the gradient could reach values as large as M��
10�7, close to the values studied in this work. Finally,
strong field gradients can be encountered in other—albeit
more speculative—dark matter configurations, such as
supermassive boson stars [99], so the possibility to come
across this type of signal should be seriously taken into
account. The remarkable agreement we find between our
numerical results and linearized predictions indicates that
the relatively small values of M� considered in our simu-
lations fall into an effectively linear regime. For the more
speculative scenarios leading to M� significantly larger
than the value 2� 10�7 considered in Sec. VB, we there-
fore expect stronger numerical, nonlinear effects to be
present in the radiation.

Our analysis answers some questions and sparks many
new ones: why exactly do large gradients develop insta-
bilities? Are these instabilities of a physical or purely
numerical nature? Even isolated BHs moving in a scalar
field should accrete; how can we understand the details of
this accretion process? Another interesting question con-
cerns spinning BHs. The original linearized analysis by
Press [102] shows that Kerr BHs should in principle align
their rotation axis with the field gradient over long enough
time scales. Numerical simulations of this alignment and of
its nonlinear development are an interesting (but numeri-
cally challenging) open problem, which probably requires
much longer simulations than those presented in this work.
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APPENDIX A: BOOSTED BLACK-HOLE
BACKGROUND

In this appendix we shall consider the solution of the
Klein-Gordon equation in a boosted BH background, i.e.,
in the presence of a Schwarzschild BH moving with con-
stant velocity v in the direction orthogonal to the charged
planes. We shall show that this solution does not emit
scalar radiation: only accelerated BHs moving in a uniform
scalar-field gradient can emit scalar radiation.
To this aim, we shall first consider the (regular) solution

describing a scalar field on a Schwarzschild background,
generated by an infinite plane moving with velocity v
along the direction z orthogonal to the plane. Then, we
shall boost back this solution, to obtain a moving BH and a
scalar field generated by a fixed plane.
The expression

’ ¼ 2���

�
ðr�MÞ cos�þ 2Mv

�
V � r

2M
� log

r

2M

��
(A1)

describes a solution, regular at the horizon, of the Klein-
Gordon equation (13) on a Schwarzschild background. Here
r
 ¼ rþ 2M log ðr=2M� 1Þ is the tortoise coordinate,
V ¼ tþ r
 is the standard advanced time coordinate, v is a

velocity parameter, and � ¼ ð1� v2Þ�1=2. For v ¼ 0, the
previous expression reduces to the static solution (15). For
finite v and at asymptotically large distances it reduces to

’� 2���ðzþ vtÞ; (A2)

which is related to the asymptotic solution (15) by a simple
boost. Therefore, Eq. (A1) describes a scalar field (on a
Schwarzschild background) generated by an infinite plane

NUMERICAL SIMULATIONS OF SINGLE AND BINARY . . . PHYSICAL REVIEW D 87, 124020 (2013)

124020-15



moving with velocity �v along z. We shall now boost
Eq. (A1) and the Schwarzschild metric, in order to find a
solution of the field equations describing a BH moving with
velocity v in a field generated by an infinite charged plane at
rest. The boost is more easily performed in isotropic coor-
dinates ðt; r̂; �; �Þ, in which

’ ¼ 2���

�
z

�
1þM2

4r̂2

�
þ tv

� 2Mv log
4þM=r̂þ 4r̂=M

�4þM=r̂þ 4r̂=M

�
: (A3)

If we apply a Lorentz boost along the z direction,

�t ¼ �ðtþ vzÞ; �z ¼ �ðzþ vtÞ;
�x ¼ x; �y ¼ y; (A4)

we get

’ ¼ 2��

�
�zþ �2M2

4r̂2
ð �z� v�tÞ

� 2Mv� log
4þM=r̂þ 4r̂=M

�4þM=r̂þ 4r̂=M

�
: (A5)

Note that the isotropic radial coordinate reads r̂2 ¼
�x2 þ �y2 þ �2ð�z� v�tÞ2.
Along the �z axis, this expression has the form

’�2��

�
�zþM2ð1�16vÞ

4�z
þM2ð1�16vÞv�t

4�z2

�
þOð�z�3Þ:

(A6)

Introducing polar coordinates in the boosted frame,

�x ¼ �r sin �� cos ��; �y ¼ �r sin �� sin ��; �z ¼ �r cos ��;

(A7)

we have (since �2 � 1 ¼ v2�2)

r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2ð1þ v2�2 cos ��Þ � 2v�2 �t �r cos ��þ �2v2 �t2

q
:

(A8)

If we assume small boosts v � 1, so we can neglect terms
Oðv2Þ, � ’ 1. We can also assume that v�t � �r, i.e., that
v�t=�r � 1, even though this quantity can be larger than v2.
Expanding Eq. (A8) in these two dimensionless quantities,
up to first order in v2 and second order in v�t=�r � 1), we
find

r̂ ’ �r

�
1�

�
v�t

�r

�
cos ��þ 1

2

�
v�t

�r

�
2
�
: (A9)

Therefore

’ ¼ 2��

�
�r cos ��þM2

4�r

�
cos ��þ 2

�
v�t

�r

�
cos 2 ��

�

� 4M2v

�r

�
1þ

�
v�t

�r

�
cos ��

��
þO

�
1

�r3

�

¼ 2��

�
�r cos ��þM2

4�r
ðcos ��� 16vÞ

þM2v�t

2�r2
cos ��ðcos ��� 8vÞ

�
: (A10)

As discussed in Ref. [88], we find that the scalar charge is
the (spherically symmetric component of the) coefficient
of 1=�r in this expansion, divided by 2M, and thus

Q ¼ �4��Mv: (A11)

Furthermore, the scalar-field multipoles are

M ¼ 8��M2v; (A12)

_~D ¼ ���M2

2
ẑ: (A13)

All of these quantities are constant in time, and therefore
there is no emitted scalar radiation. We can conclude that if
a BH moves with constant velocity in a scalar-field gra-
dient, there is no scalar emission; in order to get scalar
radiation the BH should have a nonvanishing acceleration,
as shown analytically in Sec. III B and numerically in
Sec. VB.

APPENDIX B: APPROXIMATE SOLUTION FOR
MONOPOLE AND DIPOLE RADIATION FROM A

QUASICIRCULAR BINARY IN A SCALAR
GRADIENT

This appendix completes the approximate solution dis-
cussed in Sec. III B 2, which describes the scalar field
generated by a binary BH in quasicircular orbit in a
scalar-field gradient. The center-of-mass acceleration is

~a CM ¼ 4að0Þ _
ð0Þ

5�q

ðq� 1Þ
ðqþ 1Þ ½ẑ cos


ð0Þ � ŷ sin
ð0Þ�; (B1)

~vCM ¼ 4að0Þ

5�q

ðq�1Þ
ðqþ1Þ ½ŷðcos


ð0Þ �1Þþ ẑsin
ð0Þ�þ ~V0;

(B2)

~zCM ¼ 4að0Þ

5�q _
ð0Þ
ðq� 1Þ
ðqþ 1Þ ½ŷ sin


ð0Þ � ẑðcos
ð0Þ � 1Þ�

þ ~V0ðt� t0Þ; (B3)

where q ¼ M1=M2 is the mass ratio, 
ð0ÞðtÞ ¼ _
ð0Þtþ c 0

is the zeroth-order orbital phase, which vanishes at t ¼ t0,

and ~V0 ¼ ~vCMðt ¼ t0Þ is the initial velocity of the center
of mass relative to the scalar gradient. Without loss of
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generality, the choice ~zCMðt ¼ t0Þ ¼ 0 has been made.
Note that in the equal-mass limit (q ! 1), the center-of-
mass recoil vanishes, on account of symmetry.

Given the scalar charges

Q1 ¼ 8��M2
1

M
ðM ~vCM � ẑþM2½ _a sin
þ a _
 cos
�Þ;

Q2 ¼ 8��M2
2

M
ðM ~vCM � ẑ�M1½ _a sin
þ a _
 cos
�Þ;

the monopole component of the scalar field is

M ¼ Q1 þQ2 ¼ 8��

M
ðMðM2

1 þM2
2Þð ~vCM � ẑÞ

þM1M2ðM1 �M2Þ½ _a sin
þ a _
 cos
�Þ; (B4)

while the dipole component reads

~D ¼ Q1 ~z1ðtÞ þQ2 ~z2ðtÞ ¼ ~DCM þ ~Drel;DC þ ~Drel;osc;

(B5)

with

~DCM ¼ 8��M1M2ðM1�M2Þa
M

ð~zCM _
cos
þð ~vCM � ẑÞ
�ðŷcos
þ ẑsin
ÞÞ; (B6)

~Drel;DC ¼ 8��M2
1M

2
2a

M2
ð _a ẑþa _
 ŷÞ; (B7)

~Drel;osc ¼ 8��M2
1M

2
2a

M2
ð _a½ŷ sin ð2
Þ � ẑ cos ð2
Þ�

þ a _
½ŷ cos ð2
Þ þ ẑ sin ð2
Þ�Þ: (B8)

From the previous expression we find

_~D ¼ _~DCM þ _~Drel;DC þ _~Drel;osc; (B9)

with

_~DCM ¼ 8��M1M2ðM1 �M2Þa
M

� ð _
ð ~vCM cos
� ~zCM _
 sin
Þ þ ð ~aCM � ẑÞ
� ðŷ cos
þ ẑ sin
Þ þ ð ~vCM � ẑÞ _

� ðẑ cos
� ŷ sin
ÞÞ; (B10)

_~Drel;DC ¼ 8��M2
1M

2
2a

M2
ð €a ẑþð2 _a _
þa €
ÞŷÞ; (B11)

_~Drel;osc ¼ 8��M2
1M

2
2a

M2
ðð €a� 2a _
2Þ½ŷ sin ð2
Þ

� ẑ cos ð2
Þ� þ ð4 _a _
þa €
Þ
� ½ŷ cos ð2
Þ þ ẑ sin ð2
Þ�Þ; (B12)

where M ¼ M1 þM2 is the total mass, ~vCM and ~aCM are
the velocity and acceleration of the center of mass,

respectively, and terms of order higher than 1=c5 in the
dipole moment have been dropped. If we neglect radiative
effects, and express the dipole waveform using the ‘, m
multipole components introduced in Eq. (69), we find

’10 ¼ 0; (B13)

’1�1 ¼ iAe2i
 þ gradient term; (B14)

where the amplitude of oscillation is given by

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
512�3

3

s
ðM�ÞM

r
�2ðM _
Þ2=3; (B15)

and � ¼ M1M2=M
2 is the symmetric mass ratio. For our

simulation with q ¼ 3 and M� ¼ 2� 10�7 we find that
M _
� 2� 10�2, and therefore the theoretical prediction
for the dipole amplitude is A� 4� 10�10. This is in order-
of-magnitude agreement with the observed dipole radia-
tion in our numerical simulations.

APPENDIX C: 3þ 1 EVOLUTION EQUATIONS

In terms of the BSSN variables defined in Eq. (62), the
scalar field ’, and the scalar curvature K’ defined in

Eq. (43), the BSSN evolution equations are given by

@t ~�ij ¼ m@m ~�ij þ 2~�mði@jÞm � 2

3
~�ij@m

m � 2� ~Aij;

(C1)

@t
 ¼ m@m
þ 2

3

ð�K � @m

mÞ; (C2)

@t ~Aij ¼ m@m ~Aij þ 2 ~Amði@jÞm � 2

3
~Aij@m

m

þ 
ð�Rij �DiDj�ÞTF þ �ðK ~Aij � 2 ~Ai
m ~AmjÞ

� �


�
@i’@j’� 1

3
~�ij ~�

mn@m’@n’

�
; (C3)

@tK ¼ m@mK �DmDm�

þ �

�
~Amn ~Amn þ 1

3
K2

�
þ 4�K’;

(C4)

@t~�
i ¼ m@m~�

i � ~�m@m
i þ 2

3
~�i@m

m þ 2�~�i
mn

~Amn

þ 1

3
~�im@m@n

n þ ~�mn@m@n
i � 4

3
�~�im@mK

� ~Aim

�
3�

@m




þ 2@m�

�

� 2

3
ð~�i � ~�mn~�i

mnÞ@kk � 4K’ ~�
im@m’: (C5)

Likewise, we write the Hamiltonian and momentum
constraints in terms of the BSSN variables as
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ð3ÞRþ 2

3
K2 � ~�mn ~�kl ~Amk

~Anl ¼ 4K2
’ þ @i’@

i’; (C6)

~Dm
~Am

i �
2

3
@iK � 3

2

~Am

i@m
 ¼ 2K’@i’: (C7)

The lapse function and shift vector are evolved as in the
case of vacuum general relativistic BH simulations
(cf. Ref. [121]) according to

@t� ¼ m@m�� 2�K; (C8)

@t
i ¼ m@m

i þ 3

4
~�i � �i: (C9)

Following Ref. [122], we use a position-dependent pa-
rameter �; specifically, we set

� ¼ �0

R2

r2 þ R2

j~r1j þ j~r2j
2ðM1j~r1j þM2j~r2jÞ ; (C10)

where r is the coordinate distance from the origin, ~r1;2 are
the position vectors from either hole, and M1;2 are the BH

masses. Lapse and shift are initialized as � ¼ ffiffiffiffi



p
and

i ¼ 0, respectively.

APPENDIX D: ORDER OF MAGNITUDE OF THE
SCALAR GRADIENT IN A COSMOLOGICAL

SCENARIO

Scalar fields on galactic scales have been considered by
many authors as a possible explanation for the rotation
curves in galaxies and as alternatives to cold dark matter
[89–97] (see also Ref. [98]). The aim of this appendix is to

estimate the typical magnitudes of the scalar-field gra-
dients predicted by these models.
Sadeghian et al. [123] recently studied the distribution

of dark matter around massive BHs in full general relativity
using a Hernquist profile [124], which is a good description
of isolated dark matter halos [125]. According to
Ref. [123], a typical density for the dark matter halo is ��
1010 GeV=cm3. One should be very cautious in comparing
our stationary, free scalar-field configuration with those
suggested by cosmological models. Indeed, in many of
the works cited above the scalar field is rapidly oscillating,
and the mass term and the potential always play a role. In
order to estimate the order of magnitude of the scalar-field
gradient we can simply note that, neglecting the contribu-
tion of the potential Vð’Þ and restoring physical units, the
mass-energy density is of the order (see e.g. Ref. [92])

G�� j’;tj2 þ c2j’;rj2; (D1)

and therefore the gradient �� ’;r is at most

��
ffiffiffiffiffiffiffi
G�

c2

s
� 10�16 km�1 � 10�15

10M�
: (D2)

In our simulations we set the BH mass M ¼ 1. For a
stellar-mass BH (M ¼ 10M�) moving near the galactic
center a typical scalar-field gradient is therefore M��
10�15; for a supermassive BH (M ¼ 109M�), a typical
gradient would be M�� 10�7, the same order of magni-
tude studied in this paper. This should be considered as a
rough upper limit: in scenarios in which the scalar field is
rapidly oscillating the kinetic term should contribute to the
energy density more than the gradient.
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Hannam, and S. Husa, Phys. Rev. Lett. 98, 091101 (2007).

[121] J. R. van Meter, J. G. Baker, M. Koppitz, and D.-I. Choi,
Phys. Rev. D 73, 124011 (2006).

[122] E. Schnetter, Classical Quantum Gravity 27, 167001
(2010).

[123] L. Sadeghian, F. Ferrer, and C.M. Will, arXiv:1305.2619.
[124] L. Hernquist, Astrophys. J. 356, 359 (1990).
[125] E. Visbal, A. Loeb, and L. Hernquist, arXiv:1206.5852.

BERTI et al. PHYSICAL REVIEW D 87, 124020 (2013)

124020-20

http://arXiv.org/abs/astro-ph/9802258
http://dx.doi.org/10.1103/PhysRevD.62.103517
http://dx.doi.org/10.1103/PhysRevD.62.103517
http://dx.doi.org/10.1103/PhysRevD.62.061301
http://dx.doi.org/10.1103/PhysRevD.62.061301
http://dx.doi.org/10.1103/PhysRevD.64.123528
http://dx.doi.org/10.1103/PhysRevD.64.123528
http://dx.doi.org/10.1103/PhysRevD.68.023511
http://dx.doi.org/10.1103/PhysRevD.68.023511
http://dx.doi.org/10.1088/1475-7516/2007/06/025
http://dx.doi.org/10.1088/1475-7516/2007/06/025
http://dx.doi.org/10.1088/0264-9381/19/19/314
http://dx.doi.org/10.1088/0264-9381/19/19/314
http://arXiv.org/abs/1302.2646
http://dx.doi.org/10.1103/PhysRevD.8.3308
http://dx.doi.org/10.1103/PhysRevD.8.3308
http://dx.doi.org/10.1103/PhysRevLett.30.884
http://dx.doi.org/10.1086/151551
http://dx.doi.org/10.12942/lrr-2006-4
http://dx.doi.org/10.1103/PhysRevD.77.104010
http://dx.doi.org/10.1103/PhysRevD.81.084052
http://dx.doi.org/10.1103/PhysRevD.81.084052
http://www.cactuscode.org/
http://www.cactuscode.org/
http://dx.doi.org/10.1103/PhysRevD.76.104015
http://dx.doi.org/10.1088/0264-9381/28/13/134004
http://dx.doi.org/10.1088/0264-9381/21/6/014
http://dx.doi.org/10.1088/0264-9381/21/6/014
http://dx.doi.org/10.1103/PhysRevD.54.4899
http://dx.doi.org/10.1088/0264-9381/21/2/026
http://dx.doi.org/10.1103/PhysRevD.70.064011
http://dx.doi.org/10.1103/PhysRevD.70.064011
http://dx.doi.org/10.1103/PhysRevD.81.084007
http://dx.doi.org/10.1103/PhysRevD.81.084007
http://dx.doi.org/10.1103/PhysRevLett.103.081101
http://dx.doi.org/10.1103/PhysRevD.82.104014
http://dx.doi.org/10.1103/PhysRevD.82.104014
http://dx.doi.org/10.1103/PhysRevD.75.124017
http://dx.doi.org/10.1103/PhysRevD.73.064030
http://dx.doi.org/10.1103/PhysRevD.73.064030
http://dx.doi.org/10.1088/0264-9381/26/16/163001
http://dx.doi.org/10.1088/0264-9381/26/16/163001
http://dx.doi.org/10.1103/PhysRevLett.98.091101
http://dx.doi.org/10.1103/PhysRevD.73.124011
http://dx.doi.org/10.1088/0264-9381/27/16/167001
http://dx.doi.org/10.1088/0264-9381/27/16/167001
http://arXiv.org/abs/1305.2619
http://dx.doi.org/10.1086/168845
http://arXiv.org/abs/1206.5852

