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In this article we study the geodesic motion of test particles and light in the five-dimensional (rotating)

black string spacetime. If a compact dimension is added to the four-dimensional Schwarzschild or Kerr

spacetime, the new five-dimensional metric describes a (rotating) black string. The geodesics in the

Schwarzschild and Kerr spacetime have been studied in great detail; however, when a compact dimension

is added new behavior occurs. We present the analytical solutions of the geodesic equations and discuss

the possible orbits. The motion in the ordinary four-dimensional Schwarzschild and Kerr spacetime is

compared to the motion in the (rotating) black string spacetime.
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I. INTRODUCTION

In 1916 Schwarzschild introduced the first exact solu-
tion of the vacuum Einstein equations in four dimensions
[1]. This unique solution describes a spherically symmetric
black hole. About fifty years later, in 1963, the solution of a
rotating black hole was discovered by Kerr [2].

If a compact dimension is added to the Schwarzschild
metric, it describes a five-dimensional black string.
Analogously the Kerr spacetime turns into the spacetime
of a rotating black string if a compact dimension is added.

The idea of compact dimensions came up in the 1920s
after Kaluza suggested adding a fifth dimension to general
relativity [3]. This was one of the first attempts to unify
gravity and the electromagnetic forces. In 1926 Klein
proposed a physical interpretation [4]: The added dimen-
sion is compact, i.e. it is curled up in itself and has a certain
length, which is too small to be observed. But still the
theory of Kaluza and Klein could not explain the weakness
of gravity in comparison to the electromagnetic forces.

In the 1960s and 1970s the string theory was developed.
Here the existence of higher dimensions is essential for the
internal consistency of the theory; mostly they are also
assumed to be compact.

The equations of motion for test particles in the
Schwarzschild spacetime were solved in 1931 by Hagihara
[5] in terms of the elliptic Weierstraß }, � and � functions.
In the Taub-NUT [6], Reissner-Nordström [7] and Myers-
Perry [8] spacetimes the equations of motion were also
solved in terms of the elliptic Weierstraß functions.

The integration of geodesics was advanced in the papers
of Hackmann and Lämmerzahl [9,10]. They integrated
the geodesics in the four-dimensional Schwarzschild–
de Sitter spacetime analytically in terms of the hyperelliptic
� and � functions. The mathematical problem is based on
the Jacobi inversion problem, which can be solved if re-
stricted to the � divisor. Thismethodwas also applied to find
the analytical solutions of the equations of motion in higher-
dimensional Schwarzschild, Schwarzschild–(anti-)de Sitter,

Reissner-Nordström and Reissner–Nordström–(anti-)de
Sitter spacetimes [11], as well as in Kerr–(anti-)de Sitter
spacetimes [12] and in higher-dimensional Myers-Perry
spacetime [13]. Recently, the geodesics equations in special
cases were solved analytically in the singly spinning black
ring spacetime [14] and in the (charged) doubly spinning
black ring spacetime [15].
The test particle motion in different spacetimes

containing black strings was studied in Refs. [16–20]. In
Refs. [21,22] the analytical solutions of the equations of
motion in the Schwarzschild and Kerr spacetimes pierced
by a black string were presented. Furthermore, the geode-
sic motion of test particles in field theoretical cosmic string
spacetimes were investigated, namely Abelian-Higgs
strings [23], two interacting Abelian-Higgs strings [24]
and cosmic superstrings [25].
In this paper we will consider static and rotating black

strings, which can be obtained by adding an extra compact
dimension to the Schwarzschild and Kerr metric. The
geodesic motion in the ordinary Schwarzschild spacetime
and the Kerr spacetime has already been analyzed in detail;
however, when a compact dimension is added, new behav-
ior occurs, which is studied in this article. We present the
analytic solutions of the geodesic equations in terms of the
elliptic Weierstraß functions and discuss the corresponding
orbits. In the first part, the nonrotating black string is
studied and compared to the Schwarzschild black hole.
In the second part, the rotating black string is analyzed
and compared to the Kerr black hole.

II. BLACK STRING SPACETIME

In this section we will discuss the geodesics in the static
black string spacetime and present analytical solutions of
the equations of motion.

A. The geodesic equations

The well-known Schwarzschild metric is the unique
static, spherically symmetric solution to the vacuum
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Einstein equations in four dimensions. If an extra compact
spatial dimension w is added, the metric takes the form

ds2 ¼ �
�
1� 2M

r

�
dt2 þ

�
1

1� 2M
r

�
dr2

þ r2ðd#2 þ sin 2#d’2Þ þ dw2; (1)

whereM is proportional to the mass of the black hole. This
solution describes a neutral uniform black string. As usual
the singularity is located at r ¼ 0. The horizon is located at
r ¼ 2M and covers the extra dimension. The gravitational
constant and the velocity of light are set to 1.

The Hamilton-Jacobi equation

@S

@�
þ 1

2
g�� @S

@x�
@S

@x�
¼ 0 (2)

has a solution of the form

S ¼ 1

2
��� Etþ L’þ Jwþ SrðrÞ: (3)

Here � is an affine parameter along the geodesic. The
parameter � is equal to 1 for particles and equal to 0 for
light. E, L and J are the conserved momenta; E is the
energy, L denotes the angular momentum, and J is a new
constant of motion according to the compact dimension w.
We set # ¼ �

2 since the orbits lie in a plane if plotted in

Cartesian x-y-z coordinates (x ¼ r cos’ sin#, y ¼
r sin’ sin#, z ¼ r cos#) due to the spherical symmetry
of the original Schwarzschild metric.

For convenience, we introduce dimensionless quantities
(rS ¼ 2M)

~r ¼ r

rS
; ~w ¼ w

rS
; ~t ¼ t

rS
;

~� ¼ �

rS
; ~L ¼ L

rS
:

(4)

In these dimensionless quantities the horizon is at ~rH ¼ 1.
The Hamilton-Jacobi equation (2) separates and yields a

differential equation for each coordinate�
d~r

d	

�
2 ¼ R; (5)

d’

d	
¼ ~L; (6)

d ~w

d	
¼ J~r2; (7)

d~t

d	
¼ E~r3

~r� 1
(8)

with the polynomial

R ¼ E2~r4 � ð�þ J2Þð~r4 � ~r3Þ � ~L2ð~r2 � ~rÞ: (9)

We also used the Mino time 	 as ~r2d	 ¼ d~� [26]. The new
constant of motion J due to the compact dimension is only

present in the ~r equation (5) and of course in the ~w
equation (7). The other equations are the same as in the
original Schwarzschild spacetime without the compact
dimension.

B. Classification of the geodesics

Before discussing the ~r motion in detail, we introduce a
list of all possible orbits:
(1) Terminating orbit (TO) with ranges ~r 2 ½0;1Þ or

~r 2 ½0; r1� with r1 � ~rH. The TOs end in the singu-
larity at ~r ¼ 0.

(2) Escape orbit (EO) with range ~r 2 ½r1;1Þ with
r1 > ~rH.

(3) Bound orbit (BO) with range ~r 2 ½r1; r2� with
r1 < r2 and r1, r2 > ~rH.

The right-hand side of the differential equation (5) has
the form R ¼ P

4
i¼1 ai~r

i with the coefficients

a4 ¼ E2 � �� J2; (10)

a3 ¼ �þ J2; (11)

a2 ¼ � ~L2; (12)

a1 ¼ ~L2: (13)

R � 0 is required in order to obtain real values for ~r.
The regions for which R � 0 are bounded by the zeros of
R. The number of zeros can be determined with the help of
the rule of Descartes. One can distinguish four cases:
(1) If E2 � �þ J2 and ~L2 > 0, then two or no zeros are

possible.
(2) If E2 � �þ J2 and ~L ¼ 0, no zeros are possible.
(3) If E2 < �þ J2 and ~L2 > 0, then one or three zeros

are possible.
(4) If E2 < �þ J2 and ~L ¼ 0, one zero is possible.

Since E is real and therefore E2 � 0, �þ J2 � 0 is re-
quired. So if J ¼ 0 (where the equations of motion reduce
to the original Schwarzschild case without the compact
dimension), the cases 3 and 4 are not possible for light
(� ¼ 0). But if J � 0, there are three possible zeros of R
for � ¼ 0, which means that in the Schwarzschild space-
time with an extra compact dimension we have the possi-
bility of stable bound orbits for light, which are not
possible in the original Schwarzschild spacetime.
We define an effective potential V from Eq. (5) by�

d~r

d	

�
2 ¼ ~r4ðE2 � VÞ; (14)

thus

V ¼
�
1� 1

~r

��
�þ J2 þ ~L2

~r2

�
: (15)

In the limit ~r ! 1 the effective potential V converges to
�þ J2. If ~r ! 0, we have V ! �1. ðd~rd	Þ2 ¼ 0 determines

the turning points of an orbit. Depending on the number of
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turning points and the shape of the effective potential, four
different types of orbits are possible:

(i) Type A: no zeros. Only TOs are possible.
(ii) Type B: one zero. Only TOs are possible. The turn-

ing point can coincide with the event horizon.
(iii) Type C: two zeros. TOs and EOs are possible. If the

energy E coincides with the maximum of the ef-
fective potential, then there is a single zero, which
corresponds to an unstable circular bound orbit.

(iv) Type D: three zeros. TOs and BOs are possible. If
the energy E coincides with the minimum of the
effective potential, then there are two zeros. TOs
and circular BOs are possible.

Table I shows an overview of the types of orbits. Some
examples for energies corresponding to certain orbits in the
effective potential can be seen in Fig. 1.

C. Solution of the geodesic equations

In this section we present the analytical solution of the
equations of motion [Eqs. (5)–(8)].

1. The ~r equation

The polynomial R ¼ P
4
i¼1 ai~r

i can be reduced to cubic
order by the substitution ~r ¼ � 1

x : R
0 ¼ P3

i¼0 bix
i. A fur-

ther substitution, x ¼ 1
b3
ð4y� b2

3 Þ, transforms R0 into the

Weierstraß form so that Eq. (5) turns into�
dy

d	

�
2 ¼ 4y3 � g2y� g3 ¼ P3ðyÞ; (16)

where

g2 ¼ b22
12

� b1b3
4

; g3 ¼ b1b2b3
48

� b0b
2
3

16
� b32

216
: (17)

The differential equation (16) is of elliptic type and is
solved by the Weierstraß } function [27]:

yð	Þ ¼ }ð	� 	0
in; g2; g3Þ; (18)

where 	0
in ¼ 	in þ

R1
yin

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y3�g2y�g3

p with yin ¼ � b3
4~rin

þ b2
12 .

Then the solution of Eq. (5) acquires the form

~r ¼ � b3

4}ð	� 	0
in; g2; g3Þ � b2

3

: (19)

2. The ’ equation

Equation (6) has the trivial solution

’ð	Þ ¼ ~Lð	� 	inÞ þ ’in: (20)

TABLE I. Types of orbits of light and particles in the black
string spacetime. The thick lines represent the ranges of the
orbits. The turning points are shown by thick dots. The horizon is
indicated by a vertical double line.

Type Zeros Range of ~r Orbit

A 0 TO

B 1 TO

B0 TO

C 2 TO, EO

D 3 TO, BO

FIG. 1 (color online). Examples of the effective potential in the black string spacetime. The grey area is a forbidden zone, where no
motion is possible. Horizontal red dashed lines represent energies, and red points mark the turning points. The horizon is marked by a
vertical black dashed line.
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3. The ~w equation

Using Eq. (5) and the subsitution ~r ¼ � b3

4y�b2
3

, the ~w

equation (7) becomes

d ~w ¼ Jb23
16ðy� b2

12Þ2
dyffiffiffiffiffiffiffiffiffiffiffiffi
P3ðyÞ

p : (21)

The right-hand side is an elliptic differential of the third

kind. After the substitution y ¼ }ðvÞ with }0ðvÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4}3ðvÞ � g2}ðvÞ � g3

p
and integration of Eq. (21), one

gets

~wð	Þ � ~win ¼ Jb23
16

Z v

vin

1

ð}ðv0Þ � }ðuÞÞ2 dv
0; (22)

where v ¼ vð	Þ ¼ 	� 	0
in, vin ¼ vð	inÞ and }ðuÞ ¼ b2

12 ¼
� ~L2

12 . The solution of this integral is given in terms of the

elliptic }, � and � functions [6,7]:

~wð	Þ¼�Jb23
16

}00ðuÞ
ð}0ðuÞÞ3

�
�
2�ðuÞðv�vinÞþ ln

�ðv�uÞ
�ðvin�uÞ� ln

�ðvþuÞ
�ðvinþuÞ

�

�Jb23
16

1

ð}0ðuÞÞ2
�
2}ðuÞðv�vinÞþ2ð�ðvÞ��ðvinÞÞ

þ }0ðvÞ
}ðvÞ�}ðuÞ�

}0ðvinÞ
}ðvinÞ�}ðuÞ

�
þ ~win: (23)

4. The ~t equation

Using Eq. (5), the ~t equation (8) becomes

d~t ¼ E~r3

~r� 1

d~rffiffiffiffiffiffiffiffiffi
Rð~rÞp : (24)

Now we substitute ~r ¼ � b3

4y�b2
3

and apply a partial fractions

decomposition. Then we get

d~t ¼
�X2
i¼1

Ki

y� pi

þ K2
1

ðy� p1Þ2
�

dyffiffiffiffiffiffiffiffiffiffiffiffi
P3ðyÞ

p ; (25)

where p1 ¼ � ~L2

12 , p2 ¼ ~L2

6 , K1 ¼ E ~L2

4 and K2 ¼ � E ~L2

4 .

The right-hand side consists of elliptic differentials of the

third kind. After the substitution y ¼ }ðvÞ with }0ðvÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4}3ðvÞ � g2}ðvÞ � g3

p
and integration of Eq. (25), one

gets

~tð	Þ�~tin ¼
Z v

vin

�X2
i¼1

Ki

}ðv0Þ�}ðviÞþ
K2

1

ð}ðv0Þ�}ðv1ÞÞ2
�
dv0;

(26)

where v ¼ vð	Þ ¼ 	� 	0
in, vin ¼ vð	inÞ and pi ¼ }ðviÞ.

The solution of this integral is given in terms of the elliptic
}, � and � functions [6,7]:

~tð	Þ¼X2
i¼1

Ki

}0ðviÞ
�
2�ðviÞðv�vinÞþ ln

�ðv�viÞ
�ðvin�viÞ

� ln
�ðvþviÞ
�ðvinþviÞ

�
�K1

}00ðv1Þ
ð}0ðv1ÞÞ3

�
2�ðv1Þðv�vinÞ

þ ln
�ðv�v1Þ
�ðvin�v1Þ� ln

�ðvþv1Þ
�ðvinþv1Þ

�

� K1

ð}0ðv1ÞÞ2
�
2}ðv1Þðv�vinÞþ2ð�ðvÞ

��ðvinÞÞþ }0ðvÞ
}ðvÞ�}ðv1Þ�

}0ðvinÞ
}ðvinÞ�}ðv1Þ

�
þ~tin:

(27)

D. The orbits

With these analytical results, we have found the com-
plete set of orbits for light and test particles in the black
string spacetime. Depending on the parameters �, ~L, J and
E, BOs, EOs, and TOs are possible. BOs can be seen in
Figs. 2 and 3. An EO is depicted in Fig. 4, and Fig. 5 shows
a TO. In Cartesian x-y-z coordinates, the orbits lie in a

FIG. 3 (color online). � ¼ 1, ~L ¼ ffiffiffi
5

p
, J ¼ 0:2 and E ¼ 1:

Bound orbit for particles in the black string spacetime. The
sphere or cylinder is the horizon.

FIG. 2 (color online). � ¼ 0, ~L ¼ ffiffiffi
5

p
, J ¼ 1 and E ¼ 0:973:

Bound orbit for light in the black string spacetime. This orbit is
not possible in the ordinary four-dimensional Schwarzschild
spacetime. The sphere or cylinder is the horizon.
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plane. However, this is not the case if the orbit is plotted in
x-y-w coordinates.

In the black string spacetime BOs for light are possible
(see Fig. 2). Such orbits do not exist in the ordinary four-
dimensional Schwarzschild spacetime.

III. ROTATING BLACK STRING SPACETIME

In this section we will discuss the geodesics in the
rotating black string spacetime and present analytical
solutions of the equations of motion. The rotating black
string metric is derived from the Kerr metric by adding
an extra compact dimension. A detailed analysis of the
geodesics in the original Kerr spacetime without a compact
dimension can be found in e.g. Ref. [28].

A. The geodesic equations

The Kerr metric is the rotating axially symmetric
solution of the Einstein equations in four dimensions. If
an extra compact spatial dimension w is added, the metric
takes the form

ds2¼��r


2
ðdt�asin2#d’Þ2þsin2#


2
ððr2þa2Þd’�adtÞ2

þ
2

�r

dr2þ
2d#2þdw2; (28)

where �r ¼ r2 � 2Mrþ a2 and 
2 ¼ r2 þ a2cos 2#.
This solution describes a rotating uniform black string.
M is proportional to the mass of the black string, and a
is proportional to the angular momentum. The gravita-
tional constant and the velocity of light are set to 1.
The (ring) singularity is located at 
2 ¼ 0, i.e. at r ¼ 0
and # ¼ �

2 . Hence, geodesics with r ¼ 0 and # � �
2 do

not end in the singularity. So in the rotating black string
spacetime, negative r values are allowed as in the Kerr
spacetime [28]. There are two horizons defined by �r ¼ 0,
and for a2 <M2 they are given by

r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
: (29)

Note that the metric is given in Boyer-Lindquist coordi-
nates r, #, ’. Cartesian coordinates can be obtained by the
transformation

x¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þ

q
sin# cos’; y¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þ

q
sin# sin’;

z¼ rcos#: (30)

The Hamilton-Jacobi equation

@S

@�
þ 1

2
g�� @S

@x�
@S

@x�
¼ 0 (31)

has a solution of the form

S ¼ 1

2
��� Etþ L’þ Jwþ SrðrÞ þ S#ð#Þ: (32)

Here � is an affine parameter along the geodesic. The
parameter � is equal to 1 for particles and equal to 0 for
light. E, L and J are the conserved momenta; E is the
energy, L denotes the angular momentum, and J is a new
constant of motion according to the compact dimension w.
For convenience, we introduce dimensionless quantities

(rS ¼ 2M)

~r ¼ r

rS
; ~w ¼ w

rS
; ~t ¼ t

rS
; ~� ¼ �

rS
;

~L ¼ L

rS
; ~a ¼ a

rS
; ~K ¼ K

rS
:

(33)

K is the famous Carter constant resulting from the separa-
tion of the Hamilton-Jacobi equation, see Ref. [29]. In
these dimensionless quantities the horizons are located at

~r� ¼ 1
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 � ~a2

q
.

The Hamilton-Jacobi equation (2) separates and yields a
differential equation for each coordinate:�

d~r

d	

�
2 ¼ R; (34)

�
d#

d	

�
2 ¼ �; (35)

FIG. 4 (color online). � ¼ 0, ~L ¼ ffiffiffi
5

p
, J ¼ 1:1 and E ¼ 1:109:

Escape orbit for light in the black string spacetime. The sphere or
cylinder is the horizon.

FIG. 5 (color online). � ¼ 1, ~L ¼ 2, J ¼ 0:1 and E ¼ 1:0025:
Terminating orbit for particles in the black string spacetime. The
sphere or cylinder is the horizon.
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d’

d	
¼ ~a

~�r

½ð~r2þ ~a2ÞE� ~a ~L�� 1

sin2#
ð~aEsin2#� ~LÞ; (36)

d ~w

d	
¼ J~
2; (37)

d~t

d	
¼ ~r2 þ ~a2

~�r

½ð~r2 þ ~a2ÞE� ~a ~L� � ~að~aEsin 2# � ~LÞ;

(38)

with the polynomial R and the function �:

R ¼ ½ð~r2 þ ~a2ÞE� ~a ~L�2 � ~�rð ~K þ ð�þ J2Þ~r2Þ;
� ¼ ~K � ð�þ J2Þ~a2cos 2# � 1

sin 2#
ð~aEsin 2# � ~LÞ2:

(39)

We also used the Mino time 	 as ~
2d	 ¼ d~� [26]. The new
constant of motion J due to the compact dimension is
present in the ~r equation (34), the # equation (35) and of
course in the ~w equation (37). The other equations are the
same as in the original Kerr spacetime without the compact
dimension. To obtain the geodesic equations of the original
Kerr spacetime, one can choose J ¼ 0.

B. Classification of the geodesics

The function � and the polynomial R define the
properties of the orbits depending on the parameters of
the metric and the test particle. In this section we will
analyze the function � and the polynomial R to determine
the possible types of orbits. A similar analysis of the Kerr
spacetime can be found in Ref. [28]; for the Kerr–(anti–)de
Sitter spacetime see Ref. [12].

To obtain real values of # and ~r the conditions � � 0
and R � 0 have to be fulfilled; otherwise no motion is
possible. From � � 0 we can immediately conclude that
~K � 0. If ~K ¼ 0, the motion takes place in the equatorial
plane [28].

Furthermore, we see that a geodesic hits the singularity at
~
2 ¼ 0 if ~K ¼ ð~aE� ~LÞ2: A solution of ~
2 ¼ ~r2 þ
~a2cos 2# ¼ 0 is ~r ¼ 0, and simultaneously # ¼ �

2 . Since

�

�
�

2

�
¼ ~K � ð~aE� ~LÞ2 � 0 and

Rð0Þ ¼ �~a2½ ~K � ð~aE� ~LÞ2� � 0;
(40)

it follows that ~K ¼ ð~aE� ~LÞ2. Additionally, an orbit
lies in the equatorial plane (# ¼ �

2 ) if ~K ¼ ð~aE� ~LÞ2
(compare Refs. [12,28]). From Eq. (40) we also see the
following:

(1) ~K > ð~aE� ~LÞ2: The geodesics cross # ¼ �
2 but do

not cross ~r ¼ 0.
(2) ~K < ð~aE� ~LÞ2: The geodesics do not cross # ¼ �

2 ,

but it is possible to cross ~r ¼ 0.

Here the rotating black string shows the same properties as
the Kerr black hole (see Ref. [28]).

1. The # motion

As in Ref. [12] we substitute � ¼ cos 2# (with � 2
½0; 1�) in the function �ð#Þ:

�ð�Þ ¼ ~K � ð�þ J2Þ~a2�� ~a2E2ð1� �Þ

þ 2~aE ~L� ~L2

ð1� �Þ : (41)

Now we want to determine the number of real zeros of
�ð�Þ in ½0; 1�. The number of zeros only changes if a zero
crosses 0 or 1, or if a double zero occurs. � ¼ 0 is a zero of
� if

�ð� ¼ 0Þ ¼ ~K � ð~aE� ~LÞ2 ¼ 0; (42)

and therefore

~L ¼ ~aE�
ffiffiffiffi
~K

p
: (43)

Since � ¼ 1 is a pole of�ð�Þ for ~L � 0, it is only possible
that � ¼ 1 is a zero of �ð�Þ if ~L ¼ 0.

�ð� ¼ 1; ~L ¼ 0Þ ¼ ~K � ð�þ J2Þ~a2 ¼ 0 (44)

yields that ~K ¼ ð�þ J2Þ~a2. Note that due to the new
constant of motion J (the momentum in the ~w direction),
the value of ~K is different here in comparison to the Kerr
spacetime.

So ~L ¼ ~aE�
ffiffiffiffi
~K

p
and ~L ¼ 0 ^ ~K ¼ ð�þ J2Þ~a2 are

border cases of the # motion.
Next we consider the polynomial

�0ð�Þ ¼ ~a2ð�þ J2 � E2Þ�2 þ ½2~aEð~aE� ~LÞ
� ð�þ J2Þ~a2 � ~K��þ ~K � ð~aE� ~LÞ2 (45)

to remove the pole of �ð�Þ at � ¼ 1. � and �0 are related
by �ð�Þ ¼ 1

1���
0ð�Þ. Double zeros of �ð�Þ in ½0; 1Þ, and

hence of �0ð�Þ, occur if

�0ð�Þ ¼ 0 and
d�0ð�Þ
d�

¼ 0: (46)

From these conditions we obtain

~L ¼ E� ð~a2ð�þ J2Þ � ~KÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ð�þ J2Þp

2~að�þ J2Þ : (47)

Therefore, double zeros are only possible if E2 � �þ J2.
With the help of Eqs. (43) and (47), parametric ~L–E2

diagrams can be drawn. Figure 6 shows a typical example
of a ~L–E2 diagram in the rotating black string spacetime,
which resembles the parametric diagrams in the Kerr or
Kerr–(anti-)de Sitter spacetime [12]. Here we recognize
four regions. In regions (a) and (d) we have �ð�Þ< 0 for
all � 2 ½0; 1�, and therefore no geodesic motion is pos-
sible. In region (b), �ð�Þ has one real zero in ½0; 1�; here
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~K > ð~aE� ~LÞ2 and the orbit crosses # ¼ �
2 . In region (d),

�ð�Þ has two real zeros in ½0; 1�; here ~K < ð~aE� ~LÞ2 and
# ¼ �

2 is not crossed. However, crossing ~r ¼ 0 is possible

in region (d) but not in (b).

In the special case ~L ¼ 0, there is a single zero at �0 ¼
~a2E2� ~K

~a2ðE2�ð�þJ2ÞÞ (not necessarily in ½0; 1�). If additionally ~K ¼
ð�þ J2Þ~a2, then this zero is at � ¼ 1, and if ~K ¼ ~a2E2,
this zero is at � ¼ 0. In the case ~K > ð�þ J2Þ~a2 there
is a zero �0 in ½0; 1� if ~K < ~a2E2, and �ð�Þ> 0 for all
� 2 ½0; 1� if ~K > ~a2E2. In the case ~K < ð�þ J2Þ~a2 there
is a zero �0 in ½0; 1� if ~K > ~a2E2, but �ð�Þ< 0 for all
� 2 ½0; 1� if ~K < ~a2E2.

2. The ~r motion

The zeros of the polynomial R are the turning points of
orbits of light and test particles, and therefore R determines
the possible types of orbits. In contrast to the nonrotating
black string, here we can consider negative ~r values too,
since there is no singularity for r ¼ 0 and # � �

2 . Orbits

that cross ~r ¼ 0 are called crossover orbits [12]. Before
discussing the ~r motion in detail, we introduce a list of all
possible orbits:

(1) Transit orbit (TrO) with range ~r 2 ð�1;1Þ. This
orbit is a crossover orbit.

(2) Escape orbit (EO) with range ~r 2 ½r1;1Þ with
r1 > ~rþ, or with range ~r 2 ð�1; r1� with r1 < 0.

(3) Two-world escape orbit (TEO) with range ½r1;1Þ
where 0< r1 < r�. The TEOs cross both horizons
twice and emerge into another universe.

(4) Crossover two-world escape orbit (CTEO) with
range ½r1;1Þ where r1 < 0. The CTEOs cross both
horizons twice and emerge into another universe.
~r ¼ 0 is crossed.

(5) Bound orbit (BO) with range ~r 2 ½r1; r2� with
0< r1 < r2 and
(a) either r1, r2 > rþ
(b) or r1, r2 < r�.

(6) Many-world bound orbit (MBO) with range ~r 2
½r1; r2� where 0< r1 � r� and r2 � rþ. The
MBOs cross both horizons several times. Each
time both horizons are traversed twice, the test
particles emerge into another universe.

(7) Terminating orbit (TO) with ranges ~r 2 ½0;1Þ or
~r 2 ½0; r1� with
(a) either r1 � ~rþ
(b) or 0< r1 < ~r�.

The TOs end in the singularity at ~r ¼ 0 and # ¼ �
2 .

~K ¼
ð~aE� ~LÞ2 is required.
The possible orbit types depend on the number of real

zeros of the polynomial R. The number of zeros can only
change if double zeros occur, i.e. if

Rð~rÞ ¼ 0 and
dRð~rÞ
d~r

¼ 0: (48)

With the help of Eq. (48) parametric ~L–E2 diagrams can be
drawn, where five regions with a different number of real
zeros of R appear (see Fig. 7). Also, the # equation has to
be taken into account. Both parametric ~L–E2 diagrams for
the # motion and the ~r motion have to be combined in
order to detect all possible behaviors of light and test
particles in the rotating black string spacetime (see Fig. 8).
Additionally, one may define an effective potential con-

sisting of the two parts Vþ and V� by the equation

Rð~rÞ ¼ ð~r2 þ ~a2Þ2ðE� VþÞðE� V�Þ; (49)

FIG. 6 (color online). � ¼ 1, ~a ¼ 0:45, J ¼ 1, ~K ¼ 2:
Parametric ~L–E2 diagram of the # motion. In the grey regions
(a) and (d) we have �ð�Þ< 0 for all � 2 ½0; 1�, and hence no
motion is possible. In region (b),�ð�Þ has one real zero in ½0; 1�,
and in region (d), �ð�Þ has two real zeros in ½0; 1�.

FIG. 7. � ¼ 0, ~a ¼ 0:45, J ¼ 1:3, ~K ¼ 2: Parametric ~L–E2

diagram of the ~r motion. In region (I), R has no real zeros. In
regions (II) and (V), R has two zeros. Four zeros are possible in
regions (III) and (IV). Here we see that in the rotating black
string spacetime all five regions are present for � ¼ 0, whereas
in the Kerr spacetime region (III) and (V) do not exist if � ¼ 0.
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thus

V� ¼ ~a ~L�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r½ ~K þ ~r2ð�þ J2Þ�

q
~r2 þ ~a2

: (50)

The area between Vþ and V� is a forbidden zone, since
there Rð~rÞ< 0. Vþ and V� meet at the horizons ~r�, where
V�ð~r�Þ ¼ ~a ~L

~r�
. In the limits ~r ! 1 and ~r ! �1 the effec-

tive potential V� converges to �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ J2

p
. If the sign of ~L

changes, the effective potential is mirrored at the ~r axis.
Taking all information into account, we can now

determine the possible orbits in the different regions of
the parametric diagrams (below we always assume that
ri < riþ1):

(1) Region (I):No real zeros and Rð~rÞ> 0 for all ~r. Here
only transit orbits are possible which cross ~r ¼ 0.
Since region (I) intersects with region (d), # ¼ �

2 is

not crossed.
(2) Region (II): Rð~rÞ has two real zeros r1, r2, and

Rð~rÞ � 0 for ~r 2 ð�1; r1� and ~r 2 ½r2;1Þ.
Region (II) intersects with region (b) and region
(d) from the # motion.
In part (IIb), there is a negative and a positive
zero, so that escape orbits are possible for ~r < 0
and two-world escape orbits are possible for ~r �
0. Here the orbits cross the# ¼ �

2 plane. The turning

point of the TEO can coincide with the inner horizon
~r�. In the special case ~K ¼ ð~aE� ~LÞ2, the former
positive zero is now at ~r ¼ 0 so that the two-world
escape orbit turns into a terminating orbit and the
motion takes place in the equatorial plane.
In part (IId), R has two negative zeros, so there is an
escape orbit for ~r < 0 and a crossover two-world
escape orbit. This time # ¼ �

2 is not crossed.

(3) Region (III): R has four positive zeros r1, r2, r3, r4,
and Rð~rÞ � 0 for ~r 2 ½r1; r2� and ~r 2 ½r3; r4�.
Possible orbits are bound orbits with ~r > ~rþ and
many-world bound orbits. One or both (for ~L ¼ 0)
of the turning points of the many-world orbit can
coincide with the horizons. Since region (III) inter-
sects with region (b), the orbits cross # ¼ �

2 .

(4) Region (IV): R has one negative zero r1 and three
positive zeros r2, r3, r4. Rð~rÞ � 0 for ~r 2 ð�1; r1�,
~r 2 ½r2; r3� and ~r 2 ½r4;1Þ. Escape orbits with ei-
ther ~r < 0 or ~r > ~rþ and many-world bound orbits
are possible. If ~K is small, then bound orbits with
0< ~r < ~r� are also possible instead of the
many-world bound orbits. These orbits are hidden
behind the inner horizon. In the special case
~K ¼ ð~aE� ~LÞ2, one of the turning points of the
(many-world) bound orbit is now at ~r ¼ 0, so that
the orbit turns into a terminating orbit and the
motion takes place in the equatorial plane.

(5) Region (V): R has two positive zeros r1, r2, and
Rð~rÞ � 0 for ~r 2 ½r1; r2�. Only many-world bound
orbits are possible. One or both (for ~L ¼ 0) of the
turning points can coincide with the horizons.
Since region (V) intersects with region (b), the orbit
crosses # ¼ �

2 . In the special case ~K ¼ ð~aE� ~LÞ2,
one zero is now at ~r ¼ 0, so that the orbit turns into a
terminating orbit and the motion takes place in the
equatorial plane.

Table II shows all possible types of orbits in the rotating
black string spacetime. Some examples of energies corre-
sponding to the various orbit types in the effective potential
can be seen in Fig. 9.
If we consider the original Kerr spacetime, then regions

(III) and (V) are not present for � ¼ 0, but in the rotating
black string spacetime all five regions are present both for

FIG. 8 (color online). Combined parametric ~L–E2 diagram of the # motion and the ~r motion. In region (I), R has no real zeros. In
regions (II) and (V), R has two zeros. Four zeros are possible in regions (III) and (IV). In the grey area, the # equation does not allow
geodesic motion. In region (b), the geodesics cross # ¼ �

2 , but ~r ¼ 0 cannot be crossed. However, in region (d), ~r ¼ 0 can be crossed

but # ¼ �
2 is not crossed.
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TABLE II. Types of orbits of light and particles in the rotating black string spacetime. The thick lines represent the ranges of the
orbits. The turning points are shown by thick dots. The horizons are indicated by a vertical double line. The single vertical line
represents ~r ¼ 0.

Type Zeros Region Range of ~r Orbit

A 0 Id TrO

B 2 IIb EO, TEO

B� EO, TEO

B0 EO, TO

C 2 IId EO, CTEO

D 4 IIIb MBO, BO

D� MBO, BO

D� MBO, BO

Dþ MBO, BO

E 4 IVb EO, MBO, EO

E� EO, MBO, EO

Eþ EO, MBO, EO

F 4 IVb EO, BO, EO

Fþ EO, BO, EO

F0 EO, TO, EO

F0þ EO, TO, EO

G 2 Vb MBO

G� MBO

G� MBO

Gþ MBO

G0 TO

G0þ TO
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� ¼ 0 and � ¼ 1. That means that in the rotating black
string spacetimewe have bound orbits for light with ~r > ~rþ
[see Fig. 9(b)] which were not possible in the Kerr
spacetime.

C. Solution of the geodesic equations

In this section we present the analytical solution of the
equations of motion [Eqs. (34)–(38)].

1. The ~r equation

The right-hand side of the ~r equation (34) is a poly-
nomial of fourth order with the coefficients

a4 ¼ E2 � ð�þ J2Þ; (51)

a3 ¼ �þ J2; (52)

a2 ¼ 2~aEð~aE� ~LÞ � ~a2ð�þ J2Þ � ~K; (53)

a1 ¼ ~K; (54)

a0 ¼ ~a2½ð~aE� ~LÞ2 � ~K�: (55)

The polynomial R ¼ P
4
i¼1 ai~r

i can be reduced to
cubic order by the substitution ~r ¼ � 1

x þ ~rR (where ~rR is

a zero of R): R0 ¼ P
3
i¼0 bix

i. A further substitution, x ¼
1
b3
ð4y� b2

3 Þ, transforms R0 into the Weierstraß form so that

Eq. (34) turns into�
dy

d	

�
2 ¼ 4y3 � g~r

2y� g~r
3 ¼ P~r

3ðyÞ; (56)

where

g~r
2 ¼

b22
12

� b1b3
4

; g~r3 ¼
b1b2b3
48

� b0b
2
3

16
� b32

216
: (57)

The differential equation (56) is of elliptic type and is
solved by the Weierstraß } function [27]

yð	Þ ¼ }ð	� 	0
in; g

~r
2; g

~r
3Þ; (58)

where 	0
in ¼ 	in þ

R1
yin

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y3�g~r

2
y�g~r

3

p with yin ¼ � b3
4~rin

þ b2
12 .

Then the solution of Eq. (34) acquires the form

~r ¼ � b3

4}ð	� 	0
in;g

~r
2; g

~r
3Þ � b2

3

þ ~rR: (59)

2. The # equation

To solve the # equation (35) we substitute � ¼ cos 2#
(with � 2 ½0; 1�) in Eq. (35):�
d�

d	

�
2¼4�ð1��Þ½ ~K�ð�þJ2Þ~a���4�½~aEð1��Þ� ~L�2:

(60)

The right-hand side of Eq. (60) is a polynomial of third
order

P3
i¼1 ci�

i with the coefficients

c3 ¼ �4~a2½E2 � ð�þ J2Þ�; (61)

c2 ¼ 4½2~aEð~aE� ~LÞ � ~a2ð�þ J2Þ � ~K�; (62)

c1 ¼ 4½ ~K � ð~aE� ~KÞ2�: (63)

So Eq. (60) can be transformed into the Weierstraß form
using the substitution � ¼ 1

c3
ð4u� c2

3 Þ:

FIG. 9 (color online). Examples of the effective potential in the rotating black string spacetime. In the grey area no motion is
possible, since here R < 0. In the dashed area the motion is forbidden by the # equation. Horizontal red dashed lines represent
energies, and red points mark the turning points. The horizons are marked by vertical black dashed lines.
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�
du

d	

�
2 ¼ 4u3 � g#2 u� g#3 ¼ P#

3 ðuÞ; (64)

where

g#2 ¼ c22
12

� c1c3
4

; g#3 ¼ c1c2c3
48

� c32
216

: (65)

Equation (64) is solved by the Weierstraß } function, and
the solution #ð	Þ of Eq. (35) can then be obtained by
resubstitution:

#ð	Þ ¼ arccos

0
@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c3

�
4}ð	� 	00

in;g
#
2 ; g

#
3 Þ �

c2
3

�s 1
A;

(66)

with 	00
in¼	inþ

R1
uin

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u3�g#

2
y�g#

3

p and uin¼ c3
4 cos

2#inþ c2
12 .

3. The ’ equation

Using the ~r equation (34) and the # equation (35), we
can write the ’ equation (36) in the following way:

d’ ¼ ~a
~�r

½ð~r2 þ ~a2ÞE� ~a ~L� d~rffiffiffiffi
R

p

� 1

sin 2#
ð~aEsin 2# � ~LÞ d#ffiffiffiffiffi

�
p : (67)

So the ’ equation consists of an ~r-dependent integral and a
#-dependent integral:

’� ’in ¼
Z ~r

~rin

~a
~�r

½ð~r02 þ ~a2ÞE� ~a ~L� d~r
0ffiffiffiffi
R

p

�
Z #

#in

1

sin 2#0 ð~aEsin 2#0 � ~LÞ d#
0ffiffiffiffiffi

�
p ¼ I~r � I#:

(68)

Let us first consider I~r. Here we substitute ~r ¼ � b3

4y�b2
3

þ
~rR and apply a partial fraction decomposition, so that I~r
turns into

I~r ¼
Z y

yin

C0 þ
X2
i¼1

Ci

y0 � pi

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffi
P~r
3ðy0Þ

q ; (69)

where p1 ¼ b2ð~rþ�~rRÞ�b3
12ð~rþ�~rRÞ and p2 ¼ b2ð~r��~rRÞ�b3

12ð~r��~rRÞ are first-

order poles of I~r. The sign of �b3 depends on the chosen

sign in the substitution ~r ¼ � b3

4y�b2
3

þ ~rR. Ci are constants

that arise from the partial fraction decomposition and

depend on the parameters of the metric and the test parti-
cle. Now we substitute y ¼ }ð	� 	0

in;g
~r
2; g

~r
3Þ ¼: }~rðvÞ

with v ¼ 	� 	0
in:

I~r ¼
Z v

vin

C0 þ
X2
i¼1

Ci

}~rðv0Þ � pi

dv0: (70)

The integral I# can be transformed in the same way
by substituting first � ¼ cos 2#, then � ¼ 1

c3
ð4u� c2

3 Þ,
and finally u ¼ }ð	� 	00

in; g
#
2 ; g

#
3 Þ ¼: }#ð~vÞ with ~v ¼

	� 	00
in:

I# ¼
Z ~v

~vin

~aEþ c3 ~L

4

1

}#ð~v0Þ � q
d~v0; (71)

where q ¼ c3
4 þ c2

12 .

The integrals I~r and I# are of elliptic type and can be
solved in terms of the elliptic }, � and � functions as
shown in Refs. [6,7]. Then the final solution of the ’
equation (36) is

’ð	Þ ¼ C0ðv� vinÞ þ
X2
i¼1

Ci

}0
~rðviÞ

�
2�~rðviÞðv� vinÞ

þ ln
�~rðv� viÞ
�~rðvin � viÞ � ln

�~rðvþ viÞ
�~rðvin þ viÞ

�

� ~aEð~v� ~vinÞ � c3 ~L

4}0
#ð~vqÞ

�
2�#ð~vqÞð~v� ~vinÞ

þ ln
�#ð~v� ~vqÞ
�#ð~vin � vqÞ � ln

�#ð~vþ ~vqÞ
�#ð~vin þ ~vqÞ

�
þ ’in;

(72)

where pi ¼ }~rðviÞ, q ¼ }#ð~vqÞ, v ¼ 	� 	0
in, ~v ¼

	� 	00
in and

}~rðvÞ ¼ }ðv; g~r
2; g

~r
3Þ; }#ð~vÞ ¼ }ð~v; g#2 ; g#3 Þ;

�~rðvÞ ¼ �ðv; g~r2; g~r
3Þ; �#ð~vÞ ¼ �ð~v; g#2 ; g#3 Þ;

�~rðvÞ ¼ �ðv; g~r
2; g

~r
3Þ; �#ð~vÞ ¼ �ð~v; g#2 ; g#3 Þ:

(73)

4. The ~w equation

Using the ~r equation (34) and the # equation (35), we
can write the ~w equation (37) in the following way:

d ~w ¼ J~
2d	 ¼ J~r2
d~rffiffiffiffi
R

p þ J~a2cos 2#
d#ffiffiffiffiffi
�

p : (74)

Like the ’ equation, the ~w equation consists of an
~r-dependent part and a #-dependent part. We integrate
Eq. (74) and use the same substitutions as in Sec. III C 3:
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~w� ~win ¼ J
Z v

vin

�
~r2R � b3~rR

2

1

}ðv0Þ � p
þ b23

16

1

ð}ðv0Þ � pÞ2
�
dv0 þ J~a2

Z ~v

~vin

�
4

c3
}#ð~vÞ � c2

3c3

�
d~v0; (75)

where p ¼ b2
12 . The occurring elliptic integrals of the third kind can be solved as shown in Refs. [6,7]. Furthermore, we use

the relation
R
}ðvÞdv ¼ ��ðvÞ. The final solution of the ~w equation is

~wð	Þ ¼ J~r2Rðv� vinÞ þ
�
� Jb3~rR
2}0

~rðvpÞ �
Jb23}

00
~r ðvpÞ

16ð}0
~rðvpÞÞ3

��
2�~rðvpÞðv� vinÞ þ ln

�~rðv� vpÞ
�~rðvin � vpÞ � ln

�~rðvþ vpÞ
�~rðvin þ vpÞ

�

� Jb23
16

1

ð}0
~rðvpÞÞ2

�
2}~rðvpÞðv� vinÞ þ 2ð�~rðvÞ � �~rðvinÞÞ þ }0

~rðvÞ
}~rðvÞ � }~rðvpÞ �

}0
~rðvinÞ

}~rðvinÞ � }~rðvpÞ
�

� 4J~a2

c3
ð�#ð~vÞ � �#ð~vinÞÞ � J~a2c2

3c3
ð~v� ~vinÞ þ ~win; (76)

where p ¼ }~rðvpÞ.
5. The ~t equation

Using the ~r equation (34) and the # equation (35), we can write the ~t equation (38) in the following way:

d~t ¼ ~r2 þ ~a2

~�r

½ð~r2 þ ~a2ÞE� ~a ~L� d~rffiffiffiffi
R

p � ~að~aEsin 2# � ~LÞ d#ffiffiffiffiffi
�

p : (77)

Like the’ equation and the ~w equation, the ~t equation consists of an ~r-dependent part and a#-dependent part. We integrate
Eq. (77) and use the same substitutions as in Sec. III C 3:

~t� ~tin ¼
Z v

vin

�
C0
0 þ

X2
i¼1

C0
i

}~rðv0Þ � pi

þ C0
3

ð}~rðv0Þ � p3Þ2
�
dv0 �

Z ~v

~vin

�
~a2E� ~a ~Lþ c2

3
� 4~a2E

c3
}#ð~vÞ

�
d~v0; (78)

where p1 ¼ b2ð~rþ�~rRÞ�b3
12ð~rþ�~rRÞ and p2 ¼ b2ð~r��~rRÞ�b3

12ð~r��~rRÞ are first-order poles and p3 ¼ b2
12 is a second-order pole. C0

i are constants

arising from a partial fraction decomposition of the ~r-dependent part. The occurring elliptic integrals of the third kind

FIG. 10 (color online). � ¼ 1, ~a ¼ 0:45, ~L ¼ 0:8, J ¼ 0:2, ~K ¼ ð~aE� ~LÞ2 ¼ 2:1025 and E ¼ 5: Terminating orbit for particles in
the rotating black string spacetime. The ellipsoids or cylinders are the horizons. In the left picture, the position of the ring singularity is
marked by a red circle.
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can be solved as shown in Refs. [6,7]. Furthermore, we use the relation
R
}ðvÞdv ¼ ��ðvÞ. The final solution of the ~t

equation is

~tð	Þ ¼ C0
0ðv� vinÞ þ

X2
i¼1

C0
i

}0
~rðviÞ

�
2�~rðviÞðv� vinÞ þ ln

�~rðv� viÞ
�~rðvin � viÞ � ln

�~rðvþ viÞ
�~rðvin þ viÞ

�

� C0
3

}00
~r ðv3Þ

ð}0
~rðv3ÞÞ2

�
2�~rðv3Þðv� vinÞ þ ln

�~rðv� v3Þ
�~rðvin � v3Þ � ln

�~rðvþ v3Þ
�~rðvin þ v3Þ

�

� C0
3

ð}0
~rðv3ÞÞ2

�
2}~rðv3Þðv� vinÞ þ 2ð�~rðvÞ � �~rðvinÞÞ þ }0

~rðvÞ
}~rðvÞ � }~rðv3Þ �

}0
~rðvinÞ

}~rðvinÞ � }~rðv3Þ
�

�
�
~a2E� ~a ~Lþ c2

3

�
ð~v� ~vinÞ � 4~a2E

c3
ð�#ð~vÞ � �#ð~vinÞÞ þ ~tin; (79)

where pi ¼ }~rðviÞ.

FIG. 11 (color online). � ¼ 1, ~a ¼ 0:4, ~L ¼ 0:6, J ¼ 1:5, ~K ¼ 1 and E ¼ 5: Transit orbit for particles in the rotating black
string spacetime. The ellipsoids or cylinders are the horizons.

FIG. 12 (color online). � ¼ 1, ~a ¼ 0:45, ~L ¼ 1:5, J ¼ 0:6, ~K ¼ 2 and E ¼ 1:251: Escape orbit for particles in the rotating black
string spacetime. The ellipsoids or cylinders are the horizons.
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D. The orbits

With these analytical results we have found the com-
plete set of orbits for light and test particles in the
rotating black string spacetime. Depending on the
parameters �, ~L, J, ~a and E, various orbits are pos-
sible. Note that the horizons in the Kerr spacetime and
in the rotating black string spacetime (x-y-z plots) are
not spheres but ellipsoids. An x-y-w plot of the horizons
in the rotating black string spacetime will show
cylinders.

Figure 10 shows a terminating orbit in the rotating black
string spacetime; in the x-y-z plot this orbit lies entirely in

the equatorial plane. To hit the ring singularity at ~
2 ¼ 0,

the parameters corresponding to the orbit have to fulfill the

condition ~K ¼ ð~aE� ~LÞ2. Otherwise, it is possible for a

geodesic to cross ~r ¼ 0 without touching the singularity.

Like in the Kerr spacetime, the radial coordinate ~r can take
negative values. A transit orbit which starts at positive ~r,
crosses ~r ¼ 0 and then continues at negative ~r can be seen

in Fig. 11. When ~r changes from positive to negative it

looks like the particle is reflected, which can be interpreted

as gravity becoming repulsive for negative ~r values (see

Refs. [28–30]).
An escape orbit is shown in Fig. 12. If the turning point

of an escape orbit lies behind the two horizons, the orbit is
called a two-world escape orbit (see Fig. 13). Since both

FIG. 13 (color online). � ¼ 0, ~a ¼ 0:45, ~L ¼ �0:5, J ¼ 2, ~K ¼ 5 and E ¼ 2:25: Two-world escape orbit for light in the rotating
black string spacetime. The ellipsoids or cylinders are the horizons.

FIG. 14 (color online). � ¼ 1, ~a ¼ 0:45, ~L ¼ 0:8, J ¼ 2, ~K ¼ 2 and E ¼ 5:5: Crossover two-world escape orbit for particles in the
rotating black string spacetime. The ellipsoids or cylinders are the horizons.
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FIG. 15 (color online). � ¼ 0, ~a ¼ 0:4, ~L ¼ 2, J ¼ ffiffiffi
2

p
, ~K ¼ 5 and E ¼ 1:36: Bound orbit for light in the rotating black string

spacetime. The ellipsoids or cylinders are the horizons.

FIG. 16 (color online). � ¼ 1, ~a ¼ 0:49, ~L ¼ 1:4, J ¼ 0:5, ~K ¼ 0:6 and E ¼ 1:63: Bound orbit for particles hidden behind the inner
horizon in the rotating black string spacetime. The ellipsoids or cylinders are the horizons.

FIG. 17 (color online). � ¼ 1, ~a ¼ 0:45, ~L ¼ 0:1, J ¼ 5, ~K ¼ 1:8 and E ¼ 2:4: Many-world bound orbit for particles in the rotating
black string spacetime. The ellipsoids or cylinders are the horizons.
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horizons are traversed twice, the test particle or light
emerges into another universe. It is also possible that the
turning point is at negative ~r (see Fig. 14); then the orbit is
called a crossover two-world escape orbit since it not only
traverses both horizons, but also crosses ~r ¼ 0.

A special feature of the rotating black string spacetime
are stable bound orbits of light (see Fig. 15). Such orbits do
not exist in the ordinary four-dimensional Kerr spacetime.

Like in the Kerr spacetime, there are also bound orbits
hidden behind the inner horizon ~r� if the Carter constant ~K
is rather small (see Fig. 16).

It is also possible that a particle or light on a bound orbit
crosses both horizons several times. Each time both hori-
zons are traversed twice, the orbit continues in another
universe. Such a many-world bound orbit is depicted in
Fig. 17.

Figure 18 shows a so-called ‘‘zoom-whirl’’ bound
orbit (see also Refs. [31–33]). Here the energy of the
test particle is very close to a local maximum of the
effective potential, so that the particle ‘‘whirls’’ around
the black string before reaching the periastron and then
‘‘zooms’’ out to return to its elliptical orbit, where it
moves to the apastron.

IV. CONCLUSION

In this article we presented the complete set of analytical
solutions of the geodesic equations of test particles and
light in the static and the rotating black string spacetimes.
The static and the rotating black string metrics are obtained
by adding a compact dimension to the Schwarzschild and
Kerr metrics.

The geodesic equations can be solved in terms of the
elliptic }, � and � functions. Using effective potential
techniques and parametric diagrams, possible types of
orbits were derived. In the static case BOs, EOs and TOs

are possible, while in the rotating case BOs, MBOs, EOs,
TEOs, CTEOs, TrOs and TOs are possible.
In contrast to the ordinary four-dimensional

Schwarzschild and Kerr spacetime, bound orbits of light
are possible in both the static and the rotating black string
spacetimes.
Hereby the analytic solutions do not only give a proof

of the existence of bound orbits of light in the black
string spacetime. They also present a useful tool to cal-
culate the exact orbits and their properties, including
observables like the periastron shift of bound orbits, the
light deflection of escape orbits, the deflection angle and
the Lense-Thirring effect. For the calculation of the ob-
servables analogous formulas to those given in Ref. [12]
can be used. Observables can later be compared to
observations.
The black strings considered here are so-called uniform

black strings, since there is no dependence of the extra
dimension. However, uniform black strings are subject to
the Gregory-Laflamme instability [34], which is associated
with the emergence of a branch of nonuniform black
strings, whose horizon size is not constant with respect to
the compact direction, but depends on the compact coor-
dinate [35–37]. At the endpoint of this nonuniform black
string branch, a horizon-topology-changing transition
should be encountered [38,39].
To gain a better understanding of this transition, it is

essential to solve the geodesic equations. However, for
the construction of nonuniform black strings no analytic
techniques are available, and numerical techniques have to
be employed. Likewise, the geodesic equations must be
solved numerically. It is therefore of high relevance to have
analytic solutions of the geodesic equations available as a
testbed. Moreover, it will be very interesting to see how the
set of analytic solutions changes as the black strings
become more and more nonuniform.

FIG. 18 (color online). � ¼ 1, ~a ¼ 0:4, ~L ¼ 2, J ¼ ffiffiffi
2

p
, ~K ¼ 5 and E ¼ 1:706: ‘‘Zoom-whirl’’ bound orbit for particles in the

rotating black string spacetime. The ellipsoids or cylinders are the horizons.
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Also, nonuniform rotating and charged black strings
have been considered in Refs. [40,41] whose geodesics
would be very interesting to study.

It is also interesting to consider higher-dimensional
(d > 4) Schwarzschild spacetimes. Here stable bound
orbits are no longer possible [11]. One may wonder
whether bound orbits of light become possible if a compact
dimension is added to the metric. But it can be shown that
unlike in the (rotating) black string spacetime in five
dimensions, stable bound orbits of light are not possible
if a compact dimension is added to higher-dimensional
Schwarzschild spacetimes.

Moreover, the bound orbits of light appear neither in
the spacetime of an Abelian-Higgs string [23] nor in the

spacetime of two interacting Abelian-Higgs strings [24].
There, escape orbits are the only possibility for massless
particles. For cosmic superstrings, bound orbits of light are
possible in Melvin spacetimes but not in asymptotically
conical spacetimes [25].
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