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I. INTRODUCTION

There is growing astrophysical evidence that space-
times with positive cosmological constant should be given
serious consideration. Large families of such noncompact,
vacuum, general-relativistic models can be constructed
using singular solutions of the Yamabe problem (see
[1,2] and references therein). In particular one thus obtains
initial data sets with one or more ends of cylindrical
type, in which the metric becomes periodic when one
recedes to infinity along half-cylinders, approaching the
Schwarzschild–de Sitter metric in the limit, with the ex-
trinsic curvature tensor approaching zero. This construc-
tion can be carried out in any number of space dimensions
n � 3. (See [3–7] for further families of vacuum initial
data sets with various ends of cylindrical type.) This raises
the question of existence of a natural notion of mass in this
context. The object of this work is to show that the nu-
merical value of a natural Hamiltonian H for a class of
such metrics is proportional to the parameter m appearing
in the asymptotic metric. We further prove that the con-
tribution to the Hamiltonian from each asymptotically
Schwarzschild–de Sitter end can be calculated as

H ¼ lim
x0!1

1

2�

Z
x¼x0

ðk�� k0�0Þ�dn�1x: (1.1)

Here we assume that the space metric is asymptotic to the

space part of a Birmingham metric on ½0;1Þ �M
�

as in
(A1) and (A2), for a compact Riemannian (n� 1)-

dimensional Einstein manifold ðM� ; h� Þ; � is the lapse func-
tion as in (2.3); k is the mean curvature of fx ¼ x0g as
defined in (2.11); and � is the (n� 1)-volume element
on fx ¼ x0g. The fields �0 and k0 are the corresponding

quantities for the Birmingham metric with vanishing mass
(the ‘‘de Sitter solution’’); see (3.23) and (3.24). Finally �
is a dimension-dependent coupling constant; see (D2) in
Appendix D below, related to the ‘‘(nþ 1)-dimensional
Newton constant’’ as in (D6).
We note that a Hamiltonian is always defined up to a

constant. Our choice in (1.1) is precisely what is needed for
positivity of H ; compare Theorem III.1 below.
See [8–10] and references therein for alternative ap-

proaches to a definition of mass in the presence of a
positive cosmological constant.

II. THE BASIC VARIATIONAL FORMULA

In order to present our results some notation is needed.
Let S be a smooth spacelike hypersurface in an (nþ 1)-
dimensional space-time ðM; gÞ, n � 2. Consider a space-
time domain � with smooth timelike boundary such that
V :¼ � \ S is compact. Let xn be a coordinate such that xn

is constant on @V, and let ðxaÞ ¼ ðx0; xAÞ be local coordi-
nates on @� such that x0 is constant on S. Let Lab denote
the extrinsic curvature tensor of @�,

Lab ¼ � 1ffiffiffiffiffiffiffi
gnn

p �n
ab; (2.1)

and let Qab be its ‘‘Arnowitt-Deser-Misner (ADM)
counterpart,’’

Qab :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detgcdj

q
ðLĝab � LabÞ; (2.2)

where ĝab is the n-dimensional inverse with respect to the
induced metric gab on the world tube @�. Let � and �A

denote the ‘‘lapse’’ and the ‘‘shift’’ in the n-dimensional
geometry gab of the boundary of the world tube @�,

� :¼ 1ffiffiffiffiffiffiffiffiffiffijĝ00jp ; �A :¼ ~~gABg0B; (2.3)

where ~~gAB is the (n� 1)-dimensional metric on @V,
inverse with respect to the induced metric gAB. We have
the identity
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g00 ¼ ��2 þ �A�
A: (2.4)

One can define the following (n� 1)-dimensional objects
on @V: a scalar density

Q :¼ �Q00; (2.5)

and a covector density

QA :¼ Q0
A: (2.6)

It is further useful to introduce the field

Q
?AB :¼ QCD

~~gCA~~gDB: (2.7)

The n-dimensional Lorentzian metric gab on @� can be
parametrized as

gab ¼ ��2 þ �A�A �A

�A gAB

" #
: (2.8)

The corresponding inverse metric reads

ĝab ¼ � 1
�2

�A

�2

�A

�2
~~gAB � �A�B

�2

2
4

3
5: (2.9)

We also have

L00¼Labĝ
0aĝ0b¼ 1

�4
ðL00�2L0A�

AþLAB�
A�BÞ; (2.10)

with the trace L of Lab being equal to

L ¼ Labĝ
ab ¼ L00ĝ

00 þ 2L0Aĝ
0A þ LABĝ

AB

¼ � 1

�2
L00 þ 2L0A

�A

�2
þ LAB

�
~~gAB � �A�B

�2

�
¼ ��2L00 þ LAB

~~gAB ¼ a� k;

where

k :¼ �LAB
~~gAB

(for the Birmingham metrics of Appendix A 3, k is the
signed length of the extrinsic curvature vector), and where
we use the symbol

a :¼ ��2L00

to denote the curvature (‘‘acceleration’’) of the world lines
which are geodesic within @� and orthogonal to @� \ S.
It holds that

Q ¼ �Q00 ¼ �2�ðLĝ00 � L00Þ
¼ �ð�L� �2L00Þ ¼ �k; (2.11)

Q
?AB

gAB ¼ QCD
~~gCA~~gDBgAB ¼ QCD

~~gCD

¼ ��ðLgAB � LABÞ~~gAB
¼ ��ððn� 1Þa� ðn� 2ÞkÞ: (2.12)

Let Pij be the usual ADM momentum on V. Denote by

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detgAB

p
the (n� 1)-volume element on @V. Let � be the hyper-
bolic angle between @� and V: in the adapted coordinates
above,

� :¼ sinh�1

 
g0nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijg00gnnjp

!
:

In [11] the following variational formula has been proved
for Ricci-flat Lorentzian metrics in dimension 3þ 1:

0 ¼ 1

2�

Z
V
ð _Pkl�gkl � _gkl�P

klÞ þ 1

�

Z
@V
ð _���� _���Þ

þ 1

2�

Z
@V
ð2��Q� 2�A�QA þQ

?AB
�gABÞ; (2.13)

with � ¼ 8�. It can be checked that the formula remains
true for vacuum metrics, possibly with a cosmological
constant, in any space dimension n � 2, with a constant
� which depends upon dimension; see Appendix D for a
discussion. In fact, several terms proportional to (n� 3)
appear when generalizing the calculations in [11], but they
end up giving no contribution to (2.13).
Wewill not dwell upon the Hamiltonian interpretation of

this identity; the reader is referred to [11–13] for details.
In the nonvacuum case (2.13) has to be supplemented

by terms involving variations of the matter fields and
their momenta. Nevertheless, the formula (1.1) for the
Hamiltonian remains valid for a large class of matter
models [11] without any further explicit contributions
from the matter sources. (Obviously, there is an implicit
contribution of the sources via the constraint equations.)

III. THE MASS OFASYMPTOTICALLY
BIRMINGHAM METRICS

We consider (2.13) for metrics which, as x tends to
infinity, asymptote to

g
� ¼ �fðxÞdt2 þ�2ðxÞðdx2 þ h

�
ABdx

AdxBÞ: (3.1)

Similarly we will assume that the derivatives of the metric

g asymptote to those of the metric g
�
. The coordinate xn of

the calculations above will be taken to be equal to x, and

the boundary @V � M
�

in (2.13) will be assumed to be
given by the equation x ¼ x0 for a constant x0. We will
let x0 tend to infinity; this implies

Labdx
adxb ¼ � 1ffiffiffiffiffiffiffi

gxx
p �x

abdx
adxb

! � 1

2
��1@xfdt

2 þ @x�h
�
ABdx

AdxB; (3.2)
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L ¼ gabLab ! @xf

2�f
þ ðn� 1Þ @x�

�2
; (3.3)

a ¼ ��2L00 ! @xf

2�f
; (3.4)

� ! ffiffiffi
f

p
; � ! �n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deth

�
AB

q
; �A ! 0; (3.5)

Q ¼ �Q00 ! �ðn� 1Þ�n�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deth

�
AB

q
@x�; (3.6)

k ¼ ��1Q ! �ðn� 1Þ��2@x�; (3.7)

QA ! 0; (3.8)

Q
?AB ! ffiffiffi

f
p

�n�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deth

�
AB

q �
@xf

2�f
þ ðn� 2Þ @x�

�2

�
h
�
AB

¼ ffiffiffi
f

p
�n�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deth

�
AB

q
@xð

ffiffiffi
f

p
�n�2Þffiffiffi

f
p

�n�2
h
�
AB: (3.9)

Above, and in what follows, we assume that @x is pointing
outwards from the region V of the previous section; some
sign adjustments are needed otherwise. Using these for-
mulas, the last line in (2.13) approaches

ðn� 1Þ
2�

Z
M
�

ffiffiffi
f

p
�n�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deth

�
AB

q �
@xðf�2Þ
�2f

��� 2@x��

�
:

(3.10)

Let us assume that f and @x� take the Birmingham form
(A1) [14],

f ¼ �� 2m

�n�2
��2

‘2
; @x� ¼ �

ffiffiffi
f

p
; (3.11)

where � 2 f0;�1g is related to the scalar curvature, as-

sumed to be constant, of the metric h
�
[see (A5)]. Finally,

‘�2 is related to the cosmological constant as in (C17).

When h
�
is the unit round metric on the sphere, then � ¼ 1

and one recovers the familiar Schwarzschild–de Sitter
metrics. Equation (3.11) allows us to express @x�� ¼
�@x� in terms of �� and �m. Perhaps surprisingly, all
the �� terms cancel out and (3.10) becomes

ðn� 1Þ
�

Z
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det h

�
AB

q
� �m: (3.12)

Setting

H ¼ ðn� 1Þ
�

Z
M
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deth

�
AB

q
�m; (3.13)

we conclude that for any family of metrics which asymp-
tote to Birmingham metrics as the variable x recedes to
infinity it holds that

��H ¼ 1

2�

Z
S
ð _Pkl�gkl � _gkl�P

klÞ: (3.14)

This is the first main result of this work.
We wish, next, to provide a geometric formula for

the Hamiltonian H . The integrand of the boundary term
in (2.13),

2��Q� 2�A�QA þQ
?AB

�gAB; (3.15)

can be rearranged using the identity

2��Q¼ 2��ð�kÞ¼�ð��kÞþ��2�

�
k

�

�
þ�k��: (3.16)

Using

�k�� ¼ 1

2
��k~~gAB�gAB

we can write

2��QþQ
?AB

�gAB ¼ �ð��kÞ þ ��2�

�
k

�

�
þQAB�gAB|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð�Þ

;

(3.17)

where

QAB :¼ Q
?AB þ 1

2
��k~~gAB: (3.18)

As before, we assume that the metric asymptotes to a
Birmingham metric as x tends to infinity, similarly for first
derivatives. We then have

k

�
þ ðn� 1Þ

�
!
x!1 0; (3.19)

Q
?AB � ��n�3

�
a� n� 2

n� 1
k

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deth

�
CD

q
h
�AB!

x!1 0;

QAB � ��n�3

�
a� n� 3

2ðn� 1Þ k
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

deth
�
CD

q
h
�AB!

x!1 0;

a� @�f

2�
!
x!1 0: (3.20)

Inserting those relations into the underbraced terms in
(3.17) one finds

ð�Þ!
x!1 ðn� 1Þ�n�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deth

�
CD

q
½�@�fþ ðn� 2Þf���

¼ ðn� 1Þ�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det h
�
CD

q �
��n�2 � 1

‘2
�n

��
: (3.21)

We thus obtain the following formula for the Hamiltonian:

H ¼ lim
x0!1

1

2�

Z
x¼x0

�
�kþ ðn� 1Þ

�
�

�
� �

‘2

��
�dn�1x:

(3.22)
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Here � should be viewed as a function of �, and hence of
the metric:

� ¼
0
@ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

deth
�
AB

q
1
A 1

n�1

¼
0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det gAB
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det h

�
AB

q
1
A 1

n�1

: (3.23)

Choose a constant m0 2 R and set

f0 ¼ �� 2m0

�n�2
��2

‘2
; �0 ¼

ffiffiffiffiffi
f0

p
;

k0 ¼ �ðn� 1Þ
�

ffiffiffiffiffi
f0

p
:

(3.24)

This leads to the following rewriting of (3.22):

H ¼ lim
x0!1

1

2�

Z
x¼x0

ðk��k0�0Þ�dn�1xþ
ðn�1ÞjM� j

h
�

�
m0;

(3.25)

where jM� j
h
� is the volume of the set fx ¼ x0g in the metric

h
�
. This is the second main result of this work.
Note that the parameter m0 has been introduced only to

define the reference fields k0 and �0, and that the left-hand
side is independent of m0.

See Appendix B for an alternative derivation of (3.25).
One can simply disregard the last term in (3.25), or use

reference fields associated with the solution equal to
m0 ¼ 0 there. Here one should keep in mind that a
Hamiltonian analysis always defines a Hamiltonian up to
a constant, and the choice of this constant is equivalent to
the decision of which field configuration (if any) has zero
energy. As such, the subtraction of the term k0�0 can be
viewed as a comparison term, where one compares the
given field configuration with that time-independent
solution which is determined by the parameter m0.

One could argue that reference fields corresponding to
the solution with m0 ¼ 0 make no sense because, in the

M
� ¼ Sn�1 case, the initial data surface is compact, so
comparing with a solution with asymptotically periodic
ends is unnatural from a Hamiltonian perspective.
However, one can adopt the point of view that energy in
general relativity is not assigned to a volume V but rather to
a surface @V. Given a level set of r in a Schwarzschild–
de Sitter solution, we can find a surface with identical
induced metric in the de Sitter solution [15], m0 ¼ 0, and
use the corresponding values �0 and k0 in (3.25).

In any case, somewhat surprisingly, the choice of the
value of m0 is irrelevant, in that the numerical value ofH
as given by (3.25) does not depend upon that choice. This is
related to the fact that the mass parameterm is the (unique)
‘‘constant of motion’’ for the spherically symmetric
Yamabe equation; cf. (C16).

We note that the time-symmetric Birmingham metrics
lead to the periodic metrics (3.1) with a strictly positive

parameter m; see the discussion in Appendix A. This leads
to the following trivial observation:

Theorem III.1 (‘‘positive energy theorem’’) For all
asymptotically periodic metrics as above, the numerical
value of the Hamiltonian H given by (3.25) is positive.

Now, Theorem III.1 requires neither positivity of matter-
energy nor regularity of initial data (in particular, interior
boundaries are allowed without any geometric restric-
tions), and is based purely on asymptotic properties of
the solutions. As such it does not carry much nontrivial
information: the positivity of the mass has been built into
the hypotheses on the asymptotic behavior of the metric.

A. Several ends, black hole boundaries

So far we have assumed that the initial data manifold is
the union of a compact manifold without boundary and an
asymptotically cylindrical end. The generalization of our
analysis to a finite number of asymptotically flat, asymp-
totically cylindrical and asymptotically hyperboloidal
ends is straightforward: in such a case each end contributes
its respective Hamiltonian mass (as defined here for
asymptotically Birmingham ends, and as defined in e.g.
[13,16–18] and references therein for the remaining ones)
to the total Hamiltonian of the system.
Yet another generalization is of interest, that tomanifolds

with horizon boundaries. For this purpose, suppose that the
boundary of the domain � of Sec. II consists of a timelike
‘‘world tube’’ Sþ and of a null hypersurface S�.
Accordingly, the boundary @V of the intersection V of the
Cauchy surface S with � is composed of two disjoint
manifolds, @Vþ ¼ V \ Sþ, and @V� ¼ V \ S�, assumed
to be compact, each of them contributing to the boundary
terms in variational formula (2.13). Assume that the space-
time metric asymptotes to a Birmingham metric as the
‘‘external’’ boundary @Vþ recedes to infinity. The corre-
sponding contribution to (2.13) is handled as in the previous
section. The contribution to (2.13) from the null component
S� was calculated in [19] in considerable generality.
However, for the sake of simplicity, we restrict attention
to stationary solutions with Killing horizons, as arising in a
thermodynamical analysis of stationary black holes. Then
the volume term in (2.13) vanishes identically (since the
time derivatives vanish) and the entire formula reduces to
[see Eq. (4.2) in [19]]

�H ¼ s

�

Z
@V�

ð	��þ �A�W AÞ; (3.26)

where the right-hand side is the (only remaining) boundary
term [20] corresponding to the cross section @V� of the
horizon S�. HereH is our Hamiltonian (3.25), s ¼ �1 is a
constant which depends upon the time orientation of the
Killing vector so that �s	 is the surface gravity in usual
circumstances [one should also keep in mind further nega-
tive signs in (3.26) which might arise from the orientation
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of the boundary; see Fig. 1]. The fieldW A is defined on the
horizon by the formula

W A ¼ ��dx0ðrAKÞ;
where K is a Killing vector field which is null on a horizon,
assuming that the horizon is located at xn ¼ const, and that
x0 is a coordinate on the horizon satisfying

dx0ðKÞ ¼ 1:

It is conceivable that the only such vacuum black hole
space-times which are asymptotic to the Birmingham met-
rics are the Birmingham metrics themselves, in which case
the ‘‘thermodynamical identity’’ (3.26) can be derived by
the trivial calculation of Appendix A 4. However, this is not
clear, and unlikely in higher dimensions in any case.

As already emphasized, the positive energy
theorem III.1 remains valid in the black hole setting.
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APPENDIX A: BIRMINGHAM METRICS

Consider an (nþ 1)-dimensional metric, n � 3, of
the form

g ¼ �fdt2 þ dr2

f
þ r2h

�
ABðxCÞdxAdxB|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

:¼h
�

; (A1)

where h
�
is a Riemannian metric on a compact manifoldM

�

with constant scalar curvature R
�
; we denote by xA local

coordinates onM
�
. As discussed in [21], for anym 2 R and

‘ 2 R� the function

f ¼ R
�

ðn� 1Þðn� 2Þ �
2m

rn�2
� r2

‘2
(A2)

leads to a vacuum metric,

R
� ¼ n

‘2
g
�; (A3)

thus ‘ is a constant related to the cosmological constant as
in (C17) below. (Clearly, the case n ¼ 2 would require
separate considerations, and we will therefore ignore this
dimension in our work.) The multiplicative factor 2 in front

of m is convenient in dimension 3 when h
�
is a unit round

metric on S2, and we will keep this factor regardless of

topology and dimension of M
�
.

There is a rescaling of the coordinate r ¼ b�r, with
b 2 R�, which leaves (A1) and (A2) unchanged (up to
‘‘adding bars’’) if moreover

�
h
� ¼ b2h

�
; �m ¼ b�nm; �t ¼ bt: (A4)

We can use this to achieve

� :¼ R
�

ðn� 1Þðn� 2Þ 2 f0;�1g; (A5)

which will be assumed from now on. The set fr ¼ 0g
corresponds to a singularity when m � 0. Except in the
case m ¼ 0 and � ¼ �1, by an appropriate choice of the
sign of b we can always achieve r > 0 in the regions of
interest. This will also be assumed from now on.
For reasons which should be clear from the main text,

we will now be seeking functions f which, after a suitable
extension of the space-time manifold and metric, lead to
spatially periodic solutions.

1. Cylindrical solutions

Consider, first, the case where f has no zeros. Since f is
negative for large jrj, f is negative everywhere. It therefore
makes sense to rename r to � > 0, t to x, and�f to F > 0,
leading to the metric

g ¼ � d�2

Fð�Þ þ Fð�Þdx2 þ �2h
�
: (A6)

The level sets of the time coordinate � are infinite cylinders

with topology R�M
�
, with a product metric. Note that the

extrinsic curvature of those level sets is never zero because

of the �2 term in front of h
�
, except possibly for the f� ¼ 0g

slice in the case � ¼ �1 and m ¼ 0.
Assuming that m � 0, the region r 	 � 2 ð0;1Þ is a

‘‘big bang–big freeze’’ space-time with cylindrical spatial
sections. A ð�; xÞ-projection diagram (in the sense of [22])
is an infinite horizontal strip with a singular spacelike
boundary at � ¼ 0, and a smooth conformal spacelike
boundary at � ¼ 1; see Fig. 2.
In the case m ¼ 0 and � ¼ 0 the spatial sections are

again cylindrical, with the boundary f� ¼ 0g being now at
infinite temporal distance: indeed, setting T ¼ ln �, when
m ¼ 0 and � ¼ 0 we can write

FIG. 1. The orientation of @V�.
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g ¼ �‘2
d�2

�2
þ �2

‘2
dx2 þ �2h

� ¼ �‘2dT2 þ e2T
�
dx2

‘2
þ h

��
:

When h
�
is a flat torus, this is one of the forms of the de

Sitter metric ([23], p. 125).
The next case which we consider is f 
 0, with f

vanishing precisely at one positive value r ¼ r0. This
occurs if and only if � ¼ 1 and

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

n

s
‘; m ¼ rn0

ðn� 2Þ‘2 : (A7)

A ðr ¼ �; t ¼ xÞ-projection diagram can be found
in Fig. 3.

No nontrivial, periodic, time-symmetric (Kij ¼ 0)

spacelike hypersurfaces occur in all space-times above.
Periodic spacelike hypersurfaces with Kij 6	0 arise, but a

Hamiltonian analysis of initial data asymptotic to such
hypersurfaces goes beyond the scope of this work.

From now on we assume that f has positive zeros.

2. Spheres and naked singularities

Assuming that m ¼ 0 but � � 0, we must have � ¼ 1
in view of our hypothesis that f has positive zeros. For r �
0 the function f has exactly one zero, r ¼ ‘. The bounda-
ries fr ¼ 0g correspond either to regular centers of sym-
metry, in which case the level sets of t are Sn’s or their
quotients, or to conical singularities. See Fig. 4.

If m< 0 the function f: ð0;1Þ ! R is monotonously
decreasing, tending to minus infinity as r tends to zero,
where a naked singularity occurs, and to minus infinity
when r tends to 1; hence f has then precisely one
zero. The ðt; rÞ-projection diagram can be seen again
in Fig. 4.

No spatially periodic time-symmetric spacelike
hypersurfaces occur in the space-times above.

3. Spatially periodic time-symmetric initial data

We continue with the remaining cases, that is, f having
zeros and m> 0. [When � ¼ 1 this implies 0<m 

1
n ð1� 2

nÞ
n
2�1‘n�2.] The function f: ð0;1Þ ! R is then

concave and thus has precisely two first-order zeros,
except when m attains its maximal allowed value, a
case already discussed [see (A7)]. A projection dia-
gram for a maximal extension of the space-time, for
the cases with two first-order zeros, is provided by
Fig. 5. The level sets of t within each of the diamonds
in that figure can be smoothly continued across the
bifurcation surfaces of the Killing horizons to smooth
spatially periodic Cauchy surfaces.
Observe that for � ¼ 1 and 0< m

‘n�2 <
1
n ð1� 2

nÞ
n
2�1 the

roots rðaÞ0 , a ¼ 1, 2, satisfy

rðaÞ0 2 ð0; ‘Þ: (A8)

To see this, note that the equation fðr0Þ ¼ 1� 2m
rn�2
0

� r2
0

‘2
¼ 0

is equivalent to

WnðxÞ :¼ xn�2ð1� xÞð1þ xÞ ¼ 2m

‘n�2
;

where x ¼ r0=‘. The polynomials Wn are positive pre-
cisely on (0, 1), which implies the result. Compare Fig. 6.

FIG. 2. The ðt; rÞ-projection diagram when m< 0 and f has no
zeros.

FIG. 3. The ðt; rÞ-projection diagram for (suitably extended)
Birmingham metrics with f 
 0, and f vanishing precisely at r0.

FIG. 4. The ðt; rÞ-projection diagram for a maximal extension
of the Birmingham metrics with m< 0, � 2 R, or m ¼ 0 and
�¼1, with r0 defined by the condition fðr0Þ¼0. The set fr¼0g
is a singularity unless the metric is the de Sitter metric (M

� ¼
Sn�1 and m ¼ 0), or a suitable quotient thereof so that fr ¼ 0g
corresponds to a center of (possibly local) rotational symmetry.

FIG. 5. The ðt; rÞ-projection diagram for suitably extended
Birmingham metrics with exactly two first-order zeros of f.

The symbols rðaÞ0 , a ¼ 1, 2, denote zeros of f.
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4. Killing horizons

The locations of Killing horizons of the Birmingham
metrics are defined, in space dimension n, by the
condition

fðr0Þ ¼ �� 2m

rn�2
0

� r20
‘2

¼ 0:

Thus, variations of the metric on the horizons satisfy

0 ¼ �fjr¼r0 ¼
�
ð@rfÞ�r� 2

rn�2
�m

�								r¼r0

; (A9)

equivalently

�m¼ 1

2ðn�1Þ ð@rfÞ�ðr
n�1Þ¼ 1

ðn�1Þ�n�1

ð@rfÞ
2

								r¼r0

�A;

(A10)

where rn�1�n�1 is the h
�
-volume of the cross section of

the horizon.

Let us check that 	 :¼ ð@rfÞ
2 jr¼r0 coincides with the

surface gravity of the horizon, defined through the usual
formula

rKK ¼ �	K; (A11)

where K is the Killing vector field which is null on the
horizon. For this, we rewrite the space-time metric (A1) in
the familiar form

g ¼ �fdu2 � 2dudrþ r2h
�
;

where du ¼ dt� f�1dr. The Killing field K ¼ @u ¼ @t is
indeed tangent to the horizon and null on it. Formula (A11)
implies that

	 ¼ ��u
uu ¼ � 1

2
gu�ð2g�u;u � guu;�Þ: (A12)

The inverse metric equals

g] ¼ �2
@

@u

@

@r
þ f

�
@

@r

�
2 þ r�2h

�
];

whence gu� ¼ ���
r , and

	 ¼ � 1

2
guu;r ¼ ð@rfÞ

2

								r¼r0

;

as claimed. We conclude that on Killing horizons it
holds that

�m ¼ 1

ðn� 1Þ�n�1

	

								r¼r0

�A: (A13)

5. Singularities

Consider a metric of the form

g ¼ �e�2ð�Þd�2 þ e2ð�Þdx2 þ �2h
�
;

with h as before. For A ¼ 1; . . . ; n let �
�A be an orthonormal

(ON)-coframe for h
�
,

h
� ¼ Xn�1

A¼1

�
�A � �

�A;

and let !
�
AB and �

�
AB be the associated connection and

curvature forms, as in the Cartan structure equations:

0 ¼ d�
�A þ!

� A
B ^ �

�B; �
� A

B ¼ d!
� A

B þ!
� A

C ^!
� C

B:

Let �
 be the following g-ON coframe:

�0 ¼ e�d�; �A ¼ ��
�A; �n ¼ edx:

The condition of vanishing of torsion is solved by setting

!n
A ¼ 0; !n

0 ¼ e _�n ¼ 1

2
_ðe2Þdx;

!A
0 ¼ e�

�A; !A
B ¼ !

� A
B:

This gives the following curvature two-forms:

�0
n ¼ 1

2
€ðe2Þ�0

½
g��n�

 ^ ��;

�0
A ¼ 1

2
_ðe2Þ��1�0

½
g��A�

 ^ ��;

�n
A ¼ 1

2
_ðe2Þ��1�n

½
g��A�

 ^ ��;

�A
B ¼ 1

2
��2ð�� A

BCD þ 2e2�A
½C�D�BÞ�C ^ �D:

Suppose that g is a Birmingham metric with m ¼ 0; thus

e2 ¼ ��þ �2

‘2

for a constant �, and then

1

2
€ðe2Þ ¼ 1

2
_ðe2Þ��1 ¼ ��2ðe2 þ �Þ ¼ 1

‘2
:

If h
�
is a space-form, with

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

FIG. 6 (color online). The polynomials Wn for 3 
 n 
 9.
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�
� A

BCD ¼ 2��A
½C�D�B;

consistently with (A5), we obtain

R
��� ¼ 2

‘2
g
½�g���:

If, however, h
�
is not a space-form, we have

�
� A

BCD ¼ 2��A
½C�D�B þ rABCD;

for some nonidentically vanishing tensor rABCD, with all

traces zero. Hence

R
��� ¼ 2

‘2
g
½�g��� þ ��2r
���;

where the functions r
��� are � independent in the current

frame, and vanish whenever one of the indices is 0 or n.
This gives

R
���R
��� ¼ 2nðnþ 1Þ
‘4

þ r
���r
���

¼ 2nðnþ 1Þ
‘4

þ ��4
Xn�1

A;B;C;D¼1

ðrABCDÞ2;

which is singular at � ¼ 0.

APPENDIX B: A CONTROL-RESPONSE
CALCULATION

To give our considerations a precise Hamiltonian mean-
ing we need to define explicitly the family of metrics
considered, as well as the time parameter with respect to
which the Hamiltonian will be determined. The latter is
closely related to a choice of the lapse function.

Here we will consider two distinct settings: (a) a bound-
ary @V at finite distance with prescribed induced metric
there, and (b) a family of metrics which asymptote, along
the asymptotically periodic ends, to Birmingham metrics.

At the boundary, or asymptotically, we make the follow-
ing choice of the lapse function:

k

�

�0

k0

								@V
¼ 1 or

k

�

�0

k0
! 1; (B1)

as already mentioned, this corresponds to a choice of the
boundary time, or asymptotic time. The choice is moti-
vated by the fact that (B1) holds for all metrics in the
Birmingham family; see (B4)–(B7) below.

In the case of a boundary at finite distance, we choose an

(n� 1)-dimensional metric r2h
�
on @V, as in (A1), and

consider the collection of all initial metrics which induce

r2h
�
on @V.

In the asymptotic case, we choose a compact

Riemannian Einstein manifold ðM� ; h� Þ and consider the
collection of all metrics which asymptote to the associated
Birmingham solutions along the cylindrical end.

It should be mentioned that the definition of a phase
space requires describing also the space of canonical mo-
menta. In the finite-boundary case this issue will be ignored
in this work. Concerning asymptotically cylindrical met-
rics, we will only consider asymptotically vanishing ex-
trinsic curvature tensors Kij. We plan to return to

asymptotically periodic tensors Kij in future work.

In view of (B1), when QA ¼ 0 and Q
?AB

is pure trace at
@V, it is useful [using (2.12) and (3.16)] to rewrite the
boundary form (3.15) as

2��Q� 2�A�QA þQ
?AB

�gAB

¼ �ð��kÞ þ ��2�

�
k

�

�
þ �

�
2a� n� 3

n� 1
k

�
��

¼ �½�ð�k� �0k0Þ� þ ��2 k0
�0

�

�
k

�

�0

k0

�
þ c ; (B2)

where

c :¼ �ð��0k0Þ � ��2 k0
�0

k

�
�

�
�0

k0

�
þ �

�
2a� n� 3

n� 1
k

�
��;

(B3)

whereas k0 and �0 are the corresponding quantities calcu-
lated on a ‘‘reference configuration’’ corresponding to
m ¼ m0. For configurations without boundaries with

Q A!
x!10;

the above equalities should be understood in the limit
x ! 1.
For the Birmingham metrics we have

f ¼ �� 2m

�n�2
��2

‘2
; f0 ¼ �� 2m0

�n�2
��2

‘2
; (B4)

� ¼ ffiffiffi
f

p
; �0 ¼

ffiffiffiffiffi
f0

p
; (B5)

k ¼ �n� 1

�

ffiffiffi
f

p
; k0 ¼ � n� 1

�

ffiffiffiffiffi
f0

p
; (B6)

� ¼ �n�1

ffiffiffiffiffiffiffiffiffiffi
det h

�
q

; �a ¼ ðn� 2Þm
�n�1

� �

‘2
: (B7)

This implies that c vanishes identically on @V with the
above boundary conditions, so that the entire boundary
form reduces to

ð2n�Q� 2nA�QA þQ
?AB

�gABÞ
¼ �½�ð�k� �0k0Þ� þ ��2 k0

�0

�

�
k

�

�0

k0

�
: (B8)

The last term vanishes because of the time gauge (B1),
whereas the first term represents the variation of mass:
indeed, for all Birmingham metrics we have
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�ð�k� �0k0Þ ¼ 2ðn� 1Þðm�m0Þ
ffiffiffiffiffiffiffiffiffiffi
deth

�
q

: (B9)

Hence

Z
x¼x0

�ðk�� k0�0Þ þ 2ðn� 1Þj@Vj
h
�m0

¼ 2ðn� 1Þj@Vj
h
�m; (B10)

when the boundary data on @V are as above and where, as

before, j@Vj
h
� denotes the volume of @V in the metric h

�
. In

particular the integrand is independent of x0. Similarly,

lim
x0!1

Z
x¼x0

�ðk�� k0�0Þ þ 2ðn� 1Þj@Vj
h
�m0

¼ 2mðn� 1Þj@Vj
h
� ; (B11)

along each asymptotically periodic end.

APPENDIX C: THE YAMABE EQUATION
ON CYLINDERS

In this section we relate the parameter m appearing in
the Schwarzschild–de Sitter metrics to a Hamiltonian for
the spherically symmetric Yamabe equation. The reader
should note that the Hamiltonian here is a Hamiltonian for
the dynamics in x, not to be confused with that for the
dynamics in time, as used elsewhere in this work.

Let

gij ¼ ’
4

n�2 ~gij: (C1)

Recall the vacuum Lichnerowicz equation with cosmologi-
cal constant �, in space dimension n,

�~g’� n� 2

4ðn� 1Þ
~R’¼ �~�2’ð2�3nÞ=ðn�2Þ þ ~�’

nþ2
n�2; (C2)

where

~�2 :¼ n�2

4ðn�1Þ j
~Lj2~g; ~� :¼ n�2

4n
�2� n�2

2ðn�1Þ�: (C3)

Here ~Lij is ~g-transverse traceless, and � is the trace of the

extrinsic curvature tensor � ¼ gijKij, assumed to be con-

stant, with Kij obtained from ~Lij by the usual formula.

Suppose that

~g ¼ dx2 þ h
�
; (C4)

where h
�
is as in (A1). We then have ~R ¼ R

�
, and when � is a

constant we can seek an xA-independent solution of (C2)
with ~Lij ¼ 0:

d2’

dx2
� n� 2

4ðn� 1ÞR
�
’ ¼ ~�’

nþ2
n�2: (C5)

Equation (C5) has a usual first integral: setting

H ¼ 1

2

�
d’

dx

�
2 � n� 2

8ðn� 1ÞR
�
’2 � ðn� 2Þ ~�

2n
’

2n
n�2; (C6)

we have

dH

dx
¼ 0:

We apply the above to the Birmingham metrics with
f � 0; as discussed in Appendix A, the metrics with f 
 0
do not occur as asymptotic models in our context. We only
consider regions where f > 0; the final formulas remain
valid at f ¼ 0 by continuity.
The field of unit normals N to the static slices t ¼ const,

which we denote by St, is given by

N ¼ 1ffiffiffi
f

p @t: (C7)

For those slices we have � ¼ 0.
The volume form d


M
� on the submanifolds of constant t

and x reads

d

M
� ¼ �d


�
M
� ; with d


�
M
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deth

�
AB

q
dn�1x; (C8)

and where

� ¼ rn�1 ¼ ’
2ðn�1Þ
n�2 ; (C9)

with ’ as in (C1) and (C2):

� :¼ dr2

f
þ r2h

� ¼ ’
4

n�2ðdx2 þ h
� Þ: (C10)

The last equation implies

’ ¼ r
n�2
2 ;

dr

dx
¼ ’

2
n�2

ffiffiffi
f

p ¼ r
ffiffiffi
f

p
; (C11)

ffiffiffiffiffiffiffiffiffiffiffi
det�

p ¼ rn�1

ffiffiffiffiffiffiffiffiffiffi
deth

�
q
ffiffiffi
f

p or ’
2n
n�2

ffiffiffiffiffiffiffiffiffiffi
det h

�
q

: (C12)

Letm denote the field of unit normals to the level sets of
r within St, and let k denote the extrinsic curvature, within
St, of those level sets. We have

m ¼ ffiffiffi
f

p
@r ¼ ’� 2

n�2@x; (C13)

k ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
det�

p @r
� ffiffiffiffiffiffiffiffiffiffiffi

det�
p

mr
�
¼ ðn� 1Þ

r

ffiffiffi
f

p
¼ ’� 2n

n�2@xð’2ðn�1Þ
n�2 Þ ¼ 2ðn� 1Þ

n� 2
’� n

n�2@x’: (C14)

It follows that
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@x’ ¼ ðn� 2Þ’ n
n�2

2r

ffiffiffi
f

p ¼ ðn� 2Þ
2

r
n�2
2

ffiffiffi
f

p
; (C15)

and that the constant of motion H of (C6) equals

H ¼ 1

2

�
d’

dx

�
2 � n� 2

8ðn� 1ÞR
�
’2 � ðn� 2Þ ~�

2n
’

2n
n�2

¼ ðn� 2Þ2
8

rn�2

�
f� R

�

ðn� 2Þðn� 1Þ �
4 ~�

nðn� 2Þ r
2

�

¼ �ðn� 2Þ2
4

m; (C16)

provided that

ðn� 2Þ2
8‘2

¼ �ðn� 2Þ ~�
2n

¼ ðn� 2Þ
2n

� ðn� 2Þ
2ðn� 1Þ�;

which will be the case if

1

‘2
¼ 2�

nðn� 1Þ : (C17)

APPENDIX D: EINSTEIN EQUATIONS
IN n þ 1 DIMENSIONS

Hamiltonian dynamics is usually derived from a
Lagrangian. The latter is determined by the equations of
the theory up to a multiplicative constant. One therefore
needs a prescription which determines this constant. For
this, we decree that for a point particle of rest mass m0

moving on a timelike curve � the Lagrangian is, indepen-
dently of dimension,

Lm0
¼ �m0

Z
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð _�; _�Þ

q
dt: (D1)

Equivalently, the energy-momentum tensor T
� :¼
@Lm0

=@g
� of such a particle is

T
� ¼ m0u
u���;

where �� is the distribution acting on functions as

h��; fi ¼
Z
R
ðf � �ÞðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgð _�; _�Þj

q
dt:

The Einstein equations in nþ 1 dimensions, which we
write in the form

G
� ¼ �T
�; (D2)

where � is a dimension-dependent constant, are compat-
ible with (D2) if

L ¼ 1

2�

Z
R
g �Lm0

: (D3)

We emphasize that the considerations here are not sup-
posed to be rigorous. The aim is to give a heuristic justi-
fication of the choice of the constants involved, and the

questions of convergence of the integrals, or consistency of
the scheme, are completely irrelevant for our purposes.
In order to relate the value of � to physics in nþ 1

dimensions we consider the ‘‘Newtonian’’ limit of (D2):
we assume that the metric is time independent, and takes
the form

g
� ¼ �
� þ h
�;

where �
� is the Minkowski metric. We suppose that all

expressions quadratic in the h
�’s and their derivatives can

be neglected in the calculations that follow. Taking T
� of

the form ��0

�

0
�, and a harmonic gauge

@


�
h
� � 1

2
���h���


�

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:ℏ
�

¼ 0

(with all indices raised and lowered with the Minkowski
metric), a standard calculation in which time derivatives
are also neglected leads to

� 1

2
�eℏ
� ¼ ��0


�
0
�; (D4)

where �e is the Laplace operator of the Euclidean metric.
Recall the identity, in space dimension n � 3,

�e

1

rn�2
¼ �ðn� 2Þ!n�1�0;

where !d denotes the volume of a unit, round
d-dimensional sphere. The solution of (D4) for a point
distribution with total mass M therefore takes the form

ℏ
� ¼ 2�M

ðn� 2Þ!n�1r
n�2

�0

�

0
�: (D5)

Consider an approximate geodesic of the form ðt; ~xðtÞÞ.
Assuming that all terms quadratic in _~x and its derivatives can
be neglected, the coordinate acceleration vector ~a equals

ak ¼ €xk � ��k
00 �

1

2
@kh00 ¼: �@k’;

where ’ is the Newtonian potential. From (D5) we have

h00 ¼ 2�M

ðn� 1Þ!n�1r
n�2

;

leading to

’ ¼ � �M

ðn� 1Þ!n�1r
n�2

:

This makes it clear how � is related to the (nþ 1)-
dimensional Newton constant Gn:

~F 	 m0 ~a ¼ �Gnm0M
~x

rn�1
¼ �m0r’,

� ¼ ðn� 1Þ!n�1

n� 2
Gn:

(D6)
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