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We obtain and analyze an exact solution to Einstein-Maxwell-scalar theory in (2þ 1) dimensions, in

which the scalar field couples to gravity in a nonminimal way, and it also couples to itself with the self-

interacting potential solely determined by the metric ansatz. A negative cosmological constant naturally

emerges as a constant term in the scalar potential. The metric is static and circularly symmetric and

contains a curvature singularity at the origin. The conditions for the metric to contain 0, 1, and 2 horizons

are identified, and the effects of the scalar and electric charges on the size of the black hole radius are

discussed. Under proper choices of parameters, the metric degenerates into some previously known

solutions in (2þ 1)-dimensional gravity.
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I. INTRODUCTION

Gravity in (2þ 1)-dimensional spacetime has been a
fascinating area of theoretical investigations during the
last few decades. Such studies were initiated in the early
1980s [1–4]. It was once believed [4] that there is no black
hole solutions in (2þ 1) dimensions in the absence of a
matter source because there is no propagating degrees
of freedom. However, since the discovery of Bañados-
Teitelboim-Zanelli (BTZ) [5] Martinez-Teitelboim-
Zanelli [6] black holes and the asymptotic conformal
symmetry [7,8], it became increasingly clear that gravity
in (2þ 1) dimensions is much more interesting in its own
right, not only because black hole solutions exist but also
because such theories are ideal theoretical laboratories
for studying AdS/CFT(condensed matter theory) [7–18],
gravity-fluid dual [19], (holographic) phase transitions
[20,21], etc. Moreover, the study of gravity in (2þ 1)
dimensions is also expected to shed some light on the
understanding of more realistic or complicated cases of
four- and higher-dimensional gravities.

Recently, (2þ 1)-dimensional gravity with a matter
source has attracted considerable interest. Besides the
standard Maxwell source [6,22,23], the inclusion of extra
scalar field(s) [8,10,12–15,20,23–46], higher rank tensor
fields [47–52], higher curvature terms [53–60], and/or
gravitational Chern-Simons terms [1,2,61] are also inten-
sively studied. Unlike gravities in four and higher dimen-
sions, it is possible to include a finite number of higher rank
tensor fields in (2þ 1) dimensions [47–52]. The inclusion
of gravitational Chern-Simons terms will bring in propa-
gating degrees of freedom in (2þ 1) dimensions [62,63].
Moreover, it is often much easier to obtain and analyze
black hole solutions in (2þ 1) dimensions than in other
dimensions.

In this paper, we aim to study the black hole solution in
an Einstein-Maxwell-scalar gravity with a nonminimally
coupled scalar field in (2þ 1) dimensions. Gravity
coupled with a scalar field is not a new idea. Black hole
solutions in such theories are known as hairy black
holes, and there is already a huge amount of literature on
this subject [8,10,12–15,20,23–46,64–70], and the space-
time is not only restricted to be (2þ 1)-dimensional
[64–70]. The scalar field � may be coupled either
minimally [8,12–14,23,24,34–40] or nonminimally
[9–11,41–46,65–70] to gravity, and it may or may not
couple to itself through a self-interacting potential Uð�Þ.
In the model with which we shall be dealing, � couples to
gravity in a nonminimal way, and it also couples to itself
via a self-potential Vð�Þ. The action reads

I ¼ 1

2

Z
d3x

ffiffiffiffiffiffiffi�g
p �

R� g��r��r��

� �R�2 � 2Vð�Þ � 1

4
F��F

��

�
; (1)

where � is a constant signifying the coupling strength
between gravity and the scalar field, and we have set the
gravitational constant � equal to unity. A similar action in
four-dimensional spacetime was studied in Ref. [69].
In the absence of the scalar potential Vð�Þ and the

Maxwell field, the constant value � ¼ 1
8 will make the

coupling between gravity and the free scalar field � con-
formally invariant. In the presence of Vð�Þ, however, the
conformal symmetry will, in general, be broken.
Nonetheless, the special value � ¼ 1

8 for the coupling

constant will greatly simplify the solution. So, we will
stick to this particular value of the gravity-scalar coupling.
Notice that we did not include explicitly a cosmological
constant term in the action; however, it will turn out that, as
far as a black hole solution is concerned, a negative cos-
mological constant will automatically emerge.
The rest of the paper is organized as follows. In Sec. II,

we describe the exact solution to the field equations, which
follow from the action (1) as well as the associated scalar
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potential. Some of the basic properties of the scalar
potential are discussed. Meanwhile, the basic geometric
properties of the metric are also outlined. In Sec. III, we
describe some special degenerated cases of the solution,
some of which are already known in the literature.
Section IV is devoted to the analysis of the metric, in
particular, the conditions for the metric to behave as an
asymptotic AdS3 spacetime with a naked singularity, as an
extremal charged hairy black hole and as a nonextremal
charged hairy black hole are identified. In Sec. V, we
discuss the effect of the scalar and electric charges on the
size of the black hole horizons. Finally, in Sec. VI we make
some discussions and outline some of the open problems
that we intend to solve in subsequent investigations.

II. SCALAR POTENTIAL AND THE STATIC,
CIRCULARLY SYMMETRIC SOLUTION

By a straightforward variational process and discarding
all possible boundary terms, we can write down the field
equations associated with the action (1) as follows:

G�� � T½��
�� � T½A�

�� þ Vð�Þg�� ¼ 0; (2)

h�� �R�� V� ¼ 0; (3)

@�ð ffiffiffiffiffiffiffi�g
p

F��Þ ¼ 0; (4)

where

V� ¼ @�Vð�Þ;
h � g��r�r�;

T½��
�� ¼ @��@��� 1

2
g��r��r��

þ �ðg��h�r�r� þG��Þ�2;

T½A�
�� ¼ 1

2

�
F��F�

� � 1

4
g��F��F

��

�
:

As mentioned earlier, we take � ¼ 1
8 throughout this paper.

Note that we did not explicitly specify the scalar potential.
Actually, it will be determined uniquely by the form of the
metric ansatz to be given below. The same phenomenon
also happens in the study of four-dimensional hairy black
holes [65–67].

A. Circularly symmetric solution

We are interested in static, circularly symmetric solu-
tions. To obtain such a solution, we assume that the metric
takes the following form:

d s2 ¼ �fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dc 2; (5)

where the coordinate ranges are given by �1< t <1,
r � 0, and �� � c � �. We also assume that both the
scalar field� and the Maxwell field A� depend only on the

radial coordinate r. Under such assumptions, the Maxwell
equation (4) gives

A�dx
� ¼ �Q ln

�
r

r0

�
dt; (6)

where Q and r0 are integration constants, Q 2 R corre-
sponds to the electric charge, and r0 > 0 corresponds to the
radial position of the zero electric potential surface, which
can (but not necessarily) be set equal to þ1.
Equation (2) has only three nontrivial components, i.e.,

the (tt), (rr), and (c c ) components. The (tt) and (rr)
components together give rise to

3

�
d

dr
�ðrÞ

�
2 ��ðrÞ d

2

dr2
�ðrÞ ¼ 0:

Solving this equation, we get

�ðrÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krþ b

p ; (7)

even without providing a concrete form for the scalar
potential Vð�Þ. For�ðrÞ not to be singular at finite nonzero
r, we require k � 0, b � 0, and k and b cannot be simul-
taneously zero. Note that the special choice b � 0, k ¼ 0
corresponds to constant �.
In this paper, we are interested in solutions with a non-

constant scalar field, so we will be considering only the
k � 0 branch of solutions. Inserting Eq. (7) into the re-
maining field equations, Eqs. (2) and (3), we can obtain
explicit solutions for fðrÞ and Vð�ðrÞÞ as a function of r.
However, the result is much too complicated. In particular,
fðrÞ contains terms that are proportional to the product of
two logarithm functions and terms proportional to the
special function dilogðrÞ defined as

dilog ðxÞ ¼
Z x

1

ln ðtÞ
1� t

dt:

It does not make sense to reproduce the complicated result
here. Significant simplifications arise if we take the choice
k ¼ 1

8B and b ¼ 1
8 . In this case, the scalar field becomes

�ðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
8B

rþ B

s
; (8)

and the metric function reads

fðrÞ ¼
�
3	�Q2

4

�
þ

�
2	�Q2

9

�
B

r

�Q2

�
1

2
þ B

3r

�
ln ðrÞ þ r2

‘2
; (9)

where 	 and ‘ are integration constants. In order that the
above fðrÞ is a solution, Vð�ðrÞÞ as a function of r must
take a very special form.We can invert�ðrÞ for r and insert
the result in Vð�ðrÞÞ to get the scalar potential Vð�Þ:
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Vð�Þ ¼ � 1

‘2
þ 1

512

�
1

‘2
þ 	

B2

�
�6

� 1

18432

�
Q2

B2

�
ð192�2 þ 48�4 þ 5�6Þ þ 1

3

�
Q2

B2

�

�
�

2�2

ð8��2Þ2 �
1

1024
�6 ln

�
Bð8��2Þ

�2

��
: (10)

The set of Eqs. (6)–(10) constitute a full set of exact
solutions to the system defined by the action (1), which has
not been seen in the literature before. The metric contains
four parameters B, 	, ‘, and Q. Among these, B and Q
have already appeared in the solution for the scalar and
Maxwell fields, respectively. � � � 1

‘2
appears in Vð�Þ as

a constant term, which plays the role of a (bare) cosmo-
logical constant. In principle, the constant � can either be
positive, zero, or negative. However, if we wish to interpret
the solution as a black hole solution, � will be necessarily
negative, because in (2þ 1) dimensions, smooth black
hole horizons can exist only in the presence of a negative
cosmological constant [71]. That is why we adopted the
notation � ¼ � 1

‘2
from the very beginning. The last pa-

rameter 	 is related to the black hole mass M via

	 ¼ 1

3

�
Q2

4
�M

�
(11)

as will become clear in the degenerate case of a charged
BTZ black hole [5], which corresponds to the case of
B ¼ 0. At this point, we do not seem to have any principle
to determine the allowed range for 	. However, the forth-
coming physical analysis will make it clear that the	 value
has to be subjected to some constraints; otherwise, the
solution will become physically unacceptable.

B. Scalar potential

Since lim �!0Vð�Þ ¼ � 1
‘2
, we may split Vð�Þ into a

sum

Vð�Þ ¼ � 1

‘2
þUð�Þ;

where Uð�Þ encodes the true self-interaction of the scalar
field �. Apart from the bare cosmological constant term
and the following �6 term, all the other terms are propor-

tional to Q2

B2 , which implies that the scalar self-interaction is

in a subtle balance with the Coulomb charge, although �
does not couple directly with the Maxwell field. The
seemingly complicated form of the potential ensures that
as � ! 0, the leading term in the power series expansion
of Uð�Þ behaves as Oð�6Þ, i.e.,

Uð�Þ ’ 1

512

�
1

‘2
þ 	

B2
þ 1

9

�
Q2

B2

��
1� 3

2
ln

�
8B

�2

���
�6

þ
�
Q2

B2

�
Oð�8Þ; (12)

where only even powers of � are present and the coeffi-
cients of all the Oð�8Þ terms are positive. Some discus-
sions are due here:
(i) IfQ ¼ 0, thenUð�Þ degenerates into a�6 potential,

with the coefficient 1
512 ð 1‘2 þ 	

B2Þ. If, in addition, 	 ¼
� B2

‘2
, then the self-coupling of the scalar field van-

ishes. If 	<� B2

‘2
, the potential has a single extre-

mum at � ¼ 0, which is a maximum, implying that
the scalar potential is unbounded from below and the
system is unstable under small perturbations in �. If

	>� B2

‘2
, the single extremum becomes a mini-

mum, which is stable against small perturbations in
�. Thus, stability against small perturbations in �

requires 	>� B2

‘2
.

(ii) If Q � 0, Uð�Þ will possess more than one extre-
mum. This is more easily seen in the expanded form
(12). It is obvious that � ¼ 0 remains an extremum
when Q � 0. Moreover, the term proportional to
�6 ln ð�2Þ possesses two minima at some small
nonzero �. The inclusion of the power series terms
may change the location of these minima, but the
qualitative behavior of Uð�Þ remains unchanged,
i.e., it has two minima at � ¼ ��min � 0 and one
maximum at � ¼ 0.

(iii) From either the original potential (10) or its ex-
panded form (12), it seems that we cannot take
B ¼ 0. However, this observation is completely
superficial because the scalar field � also depends
on B. If we substitute the value of �ðrÞ into Vð�Þ
and then look at the resulting expression, it will be
clear that the potential is perfectly regular at B ¼ 0.

In order to have more intuitive feelings about the scalar
potential at Q � 0, we present a plot of Uð�Þ as a function
of � as well as a function of r. These are given in Figs. 1
and 2, respectively. If� takes its value at the local maxima,
i.e., � ¼ 0, the scalar field equation is automatically sat-
isfied, and the scalar potential is exactly zero. The corre-
sponding solution is an Einstein-Maxwell-AdS black hole.
One may tends to think that if� takes its value at any of the
minima � ¼ ��min , then the corresponding solution
would correspond to the true vacuum of the system, with
an effective cosmological constant �eff ¼ � 1

‘2
þ

Uð��min Þ that is more negative than � 1
‘2
. However, this

is not the case. If we take � ¼ ��min � 0, then the field
equation (3) will force the Ricci scalar R to be constant,
which in turn requires Q ¼ 0. But when Q ¼ 0, the shape
of the scalar potential Uð�Þ changes drastically, and the
two minima at nonconstant � totally disappear. Despite
this, it is still an important observation that when Q � 0,
the scalar potential Vð�Þ possesses two minima which are
smaller than the cosmological constant � 1

‘2
. The physical

explanation for these minima remains open. Because of the
very complicated form of the potential Uð�Þ, we are un-
able to find the location of the two minima of Uð�Þ
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analytically. Nevertheless, it is easy to find the minima of
Uð�Þ numerically if the parameters B, Q, ‘, and 	 were
given numeric values. For instance, setting B ¼ Q ¼ ‘ ¼
1, 	 ¼ �1, we find that the minima of Uð�Þ are located at

� ¼ ��min ; �min ’ 1:139824;

with the approximate value

Uð��min Þ ’ �0:000405

C. Some geometric properties of the solution

To further characterize the geometry of the solution,
we need to calculate some of the associated geometric

quantities. First of all, the Ricci scalar contains a curvature
singularity at r ¼ 0 if Q � 0,

R ¼ � 36r3 � 3rQ2‘2 þ 2BQ2‘2

6‘2r3
:

Higher-order curvature invariants such as R��R
�� and

R����R
���� are also singular at r ¼ 0, even if Q ¼ 0.

However, the expressions for these invariants are much
more complicated and unillustrative, so we do not repro-
duce them here. The Cotton tensor

Cabc ¼ rcRab �rbRac þ 1

4
ðrbRgac �rcRgabÞ

is nonvanishing if either B> 0 or Q � 0,

Ctrt ¼ �Cttr ¼ � 1

4
fðrÞ d

3

dr3
fðrÞ;

Cc rc ¼ �Cc c r ¼ � 1

4

�
d3

dr3
fðrÞ

�
r2:

In (2þ 1) dimensions, the nonvanishing Cotton tensor
signifies that the metric is nonconformally flat [72].
Thus, the hairy (B> 0) and charged (Q � 0) solutions
are geometrically quite different from the case of the static
uncharged BTZ black hole [5].

III. SPECIAL CASES

Before going into detailed analysis of our solution, we
would like to point out some of the degenerated cases.
Some of the degenerated cases have already been found in
the literature.

A. Charged BTZ black hole

When B ¼ 0, the scalar field� vanishes, and the system
becomes the Einstein-Maxwell-AdS theory. The solution
degenerates into the already known static charged BTZ
black hole [5]:

fðrÞ ¼ �M�Q2

2
ln ðrÞ þ r2

‘2
;

A�dx
� ¼ �Q ln

�
r

r0

�
dt;

Vð�Þ ¼ � 1

‘2
; �ðrÞ ¼ 0;

whereM is the mass of the BTZ black hole. As mentioned
earlier, although this solution may be stable in the Einstein-
Maxwell-AdS theory, it is an unstable solution in the full
theory (1).

B. Uncharged hairy AdS black hole

The Maxwell field can be removed by setting Q ¼ 0. In
this case, we get an uncharged hairy AdS black hole
solution:

FIG. 1 (color online). Plot of Uð�Þ vs �, with B ¼ 1, ‘ ¼ 1,
	 ¼ �1, and Q ¼ 1.

FIG. 2 (color online). Plot of Uð�ðrÞÞ vs r, with B ¼ 1, ‘ ¼ 1,
	 ¼ �1, and Q ¼ 1.

WEI XU AND LIU ZHAO PHYSICAL REVIEW D 87, 124008 (2013)

124008-4



fðrÞ ¼
�
3þ 2B

r

�
	þ r2

‘2
; A�dx

� ¼ 0;

�ðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
8B

rþ B

s
;

Vð�Þ ¼ � 1

‘2
þ 1

512

�
1

‘2
þ 	

B2

�
�6:

Using Eq. (11), we can change	 into�M
3 everywhere in the

solution. In this case, the Ricci scalar becomes constant,

R ¼ � 6

‘2
¼ 6�:

However, higher-curvature invariants are still singular at
r ¼ 0. This solution has already appeared in Sec. 5.1 of

Ref. [28]. As will become clear later, we need	 2 ½� B2

‘2
; 0�

in order for this solution to be physically well behaving.

C. Conformally dressed black hole

In addition to settingQ ¼ 0, we can choose 	 ¼ � B2

‘2
in

the meantime. Under such conditions, we reproduce the
conformally dressed black hole in (2þ 1) dimensions [10]:

fðrÞ ¼ �
�
3þ 2B

r

�
B2

‘2
þ r2

‘2
;

A�dx
� ¼ 0;

�ðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
8B

rþ B

s
;

Vð�Þ ¼ � 1

‘2
:

Note that although the scalar field is still present, the self-
interaction potentialUð�Þ vanishes, thus making the scalar
field a ‘‘free’’ massless field.

D. Special charged hairy AdS black hole
in three dimensions

We may also choose 	 ¼ � B2

‘2
while keeping Q non-

vanishing. Then, we get a special charged hairy AdS black
hole:

fðrÞ ¼ �
�
3B2

‘2
þQ2

4

�
�

�
2B2

‘2
þQ2

9

�
B

r

�Q2

�
1

2
þ B

3r

�
ln ðrÞ þ r2

‘2
;

�ðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
8B

rþ B

s
; A�dx

� ¼ �Q ln

�
r

r0

�
dt;

Vð�Þ ¼ � 1

‘2
� 1

18432

�
Q2

B2

�
ð192�2 þ 48�4 þ 5�6Þ

þ 1

3

�
Q2

B2

��
2�2

ð8��2Þ2 �
1

1024
�6 ln

�
Bð8��2Þ

�2

��
:

The merit of this special case is that the scalar potential
Uð�Þ is not fine-tuned with the cosmological constant.

IV. HORIZON STRUCTURES

Among the three fields g��, A�, and�, the latter two are

easily understandable. A� is just the standard Coulomb

potential in (2þ 1) dimensions, � is a radially distributed

scalar, which takes its maximum �max ¼ ffiffiffi
8

p
at r ¼ 0 and

decreases gradually to zero as r ! þ1 when B> 0.
The metric g�� is more involved to be able to under-

stand. This is because of the complicated form (9) of the
metric function fðrÞ. As usual, the zeros of fðrÞ (if any)
will correspond to horizons in the metric. So, we need to
find (at least the condition for the existence of) the zeros
of fðrÞ.

A. Q ¼ 0

When Q ¼ 0, the functions fðrÞ and f0ðrÞ are simplified
drastically:

fðrÞ ¼ 	

�
3þ 2B

r

�
þ r2

‘2
; f0ðrÞ ¼ � 2B	

r2
þ 2r

‘2
:

We may divide the solution in three subcases:
(i) If 	> 0, fðrÞ will always be positive, implying that

the metric corresponds to an asymptotically AdS3
spacetime containing a naked singularity. This is a
physically uninteresting case.

(ii) If 	 ¼ 0, then the metric degenerates into the
(2þ 1)-dimensional empty topological AdS
spacetime.

(iii) If, instead, 	< 0, then f0ðrÞ will remain positive
for r 2 ½0;þ1Þ. Meanwhile, fðrÞ ! �1 as
r ! 0, fðrÞ ! þ1 as r ! þ1. This implies fðrÞ
increases monotonically and, hence, contains ex-
actly one zero. The zero of fðrÞ corresponds to the
event horizon of a neutral AdS black hole with a
scalar hair.

Combining with the analysis made in Sec. II B, we see
that the physically acceptable range for the parameter 	 is

	 2 ½� B2

‘2
; 0� at Q ¼ 0.

B. Q � 0

The form of fðrÞ with nonvanishing Q is much more
complicated than the Q ¼ 0 case. To find whether fðrÞ has
some zeros, we need to know the asymptotic behavior and
the number of the extrema of fðrÞ.
From Eq. (9), it can be seen that fðrÞ is dominated by the

term r2

‘2
in the far region, so fðrÞ ! þ1 as r ! þ1. On the

other hand, as r ! 0, fðrÞ is dominated by the term

� Q2B
3

ln ðrÞ
r if B> 0 or by the term � Q2

2 ln ðrÞ if B ¼ 0.

So, fðrÞ always approaches þ1 as r ! 0. Remember that
we have excluded the possibility of choosing B< 0 in
order that �ðrÞ is not singular at finite nonzero r.
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Combining the asymptotic behaviors at both ends, we see
that for Q � 0, fðrÞ will approach þ1 at both ends.
Therefore, fðrÞ has to have some extrema, and the total
number of extrema must be odd. Let us denote the location
of the extrema of fðrÞ by rX. If fðrÞ has more than one
extremum, an extra index may be adopted to distinguish
these different extrema if necessary. Clearly, the position
rX of every extremum of fðrÞ obeys f0ðrXÞ ¼ 0, or, more
conveniently,

ðrXÞ2f0ðrXÞ ¼ 0; (13)

where r2f0ðrÞ is given by the following expression:

r2f0ðrÞ ¼ 2B

�
B2

9
þ 	

�
þ 1

3
Q2B ln ðrÞ � 1

2
Q2rþ 2r3

‘2
:

(14)

However, the converse needs not to be true: If r2f0ðrÞ
happens to be zero at some of its extrema ri (not to be
confused with rX), then ri will correspond to an inflection
point of fðrÞ, rather than an extremum.

In order to determine the number of roots for fðrÞ, we
need to consider two distinct cases, i.e., B ¼ 0 and B> 0.
For B ¼ 0, it is easy to get the location of the extremum of
fðrÞ using Eqs. (13) and (14). The only real positive
extremum of fðrÞ in this case is located at r ¼ rX ¼
1
2 jQj‘. Inserting the value of rX and B ¼ 0 into the solution

(9), we get the following:

(i) If 	< Q2

6 ln ðrXÞ, we have fðrXÞ< 0. So, fðrÞ will
have two zeros, each corresponding to a black hole
horizon. Among these, the outer horizon is the event
horizon. This case corresponds to a charged nonex-
tremal AdS black hole without the scalar hair.

(ii) If 	 ¼ Q2

6 ln ðrXÞ, we have fðrXÞ ¼ 0. It is evident

that rX is the only root of fðrÞ, which corresponds to
the horizon of a charged extremal AdS black hole
without the scalar hair. In this particular case, it may
be better to replace rX with rex, which stands for the
radius of the extremal black hole.

(iii) If 	> Q2

6 ln ðrXÞ, then fðrXÞ> 0; there will be no

zeros for the function fðrÞ, so the metric becomes
an asymptotically AdS spacetime with a naked
singularity at the origin, which is a physically un-
interesting case.

The case with B> 0 is much more complicated com-
pared to the B ¼ 0 case. It is impossible to solve Eq. (13)
analytically to get rX, so we turn to look at the extrema of
r2f0ðrÞ. We introduce the following polynomial function:

gðrÞ � 6‘2r
d

dr
½r2f0ðrÞ� ¼ 36r3 � 3Q2‘2rþ 2BQ2‘2:

(15)

Every real positive root of gðrÞ will correspond to an
extremum or an inflection point of r2f0ðrÞ, and the collec-
tion of signs of r2f0ðrÞ at its extrema will determine the

number of roots thereof. Fortunately, the function gðrÞ is
simple enough so that its roots can be found analytically.
In the appendix, we shall present the details about the roots
of gðrÞ.
According to the appendix, the number of real positive

roots of gðrÞwill change when the value of the parameter B

crosses jQj‘
6 . The significance of this change in the number

of real positive roots will be best illustrated if we look at
the extremum of gðrÞ. Taking the first derivative of gðrÞ
with respect to r and finding the root of the resulting
expression, we find that gðrÞ has only one real positive

extremum located at r ¼ jQj‘
6 . Clearly this is a minimum.

Substituting this value of r into gðrÞ itself, we find the
minimum value of gðrÞ, which reads

gmin ¼ 2BQ2‘2 � 1

3
Q3‘3: (16)

If B> jQj‘
6 , then gmin is positive, which implies that gðrÞ

has no real positive root, which in turn implies that r2f0ðrÞ
has no extrema for r > 0, so that f0ðrÞ has only one root,

i.e., fðrÞ has only one extremum. If B ¼ jQj‘
6 , then gðrÞ is

zero at its extremum. This means that gðrÞ has only one
root that is located at its minimum. This implies that the
minimum of gðrÞ corresponds to an inflection point rather
than an extremum of r2f0ðrÞ. So, in the end, r2f0ðrÞ still has
no extremum for r > 0, resulting in the conclusion that
fðrÞ has only a single extremum for r > 0.

The problem becomes more complicated when 0<B<
jQj‘
6 . In this case, gðrÞ has three roots, two of which are

positive. Therefore, r2f0ðrÞ will also have two extrema for
r > 0. Among these, the extremum at r1 is a minimum, and
that at r2 is a maximum, and we have r2 < r1.

Now, let us assume 0<B< jQj‘
6 . Since r1 and r2 are

both real positive roots of gðrÞ, we have

r3i ¼
Q2‘2ri
12

� BQ2‘2

18
; i ¼ 1; 2:

Inserting this into Eq. (14), we get

r2i f
0ðriÞ ¼ 2BðwðriÞ � 	Þ; (17)

where

wðriÞ � Q2

6B
ðB ln ðriÞ � ri � BÞ:

Equation (17) gives the value that r2f0ðrÞ must take at any
of its extrema. In particular, the analysis made in the
appendix implies wðr1Þ<wðr2Þ.
Depending on the value of the parameter 	, r2i f

0ðriÞ will
take different signs:
(i) If 	 ¼ wðr1Þ or 	 ¼ wðr2Þ, we have r21f0ðr1Þ ¼ 0 or

r22f
0ðr2Þ ¼ 0, i.e., r2f0ðrÞ is zero at one of its ex-

trema. Besides this accidental root, r2f0ðrÞ has an-
other root that is not at its extrema. So, totally,
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r2f0ðrÞ will have two roots; one of these (the normal
root) corresponds to the extremum of fðrÞ, and the
other (the accidental root at the extremum) corre-
sponds to an inflection point of fðrÞ. So, in the end,
fðrÞ will have only one extremum in this case.

(ii) If 	<wðr1Þ or 	>wðr2Þ, we have either
r22f

0ðr2Þ> r21f
0ðr1Þ> 0 or 0> r22f

0ðr2Þ> r21f
0ðr1Þ.

In both cases, all the extrema of r2f0ðrÞ have the
same signs, so there is only one positive root of
r2f0ðrÞ. Consequently, fðrÞ will have only a single
extremum for r > 0.

(iii) If wðr1Þ<	<wðr2Þ, we find r22f
0ðr2Þ> 0>

r21f
0ðr1Þ. The two positive extrema of r2f0ðrÞ have

different signs, indicating that the curve for r2f0ðrÞ
will cross the horizontal axes three times.
Therefore, there are three positive roots for
r2f0ðrÞ, each corresponding to an extremum of fðrÞ.

Summarizing the above discussions, we make the fol-
lowing conclusion on the number of extrema for the metric
function fðrÞ:

(i) If B ¼ 0 or B � jQj‘
6 , fðrÞ has only a single

extremum.

(ii) If 0<B< jQj‘
6 , the number of extrema for fðrÞ

depends on the value of the parameter 	. Explicitly,
(1) if 	 � wðr1Þ or 	 � wðr2Þ, fðrÞ still has only a

single extremum;
(2) if wðr1Þ<	<wðr2Þ will have three extrema.

Therefore, the horizon structure of our solution at Q � 0
will depend crucially on the range of parameters.

Since at any extremum rX of fðrÞ we have f0ðrXÞ ¼ 0,
an arbitrary multiple of f0ðrXÞ can be added to fðrXÞ to
yield a simplified expression for fðrXÞ. Specifically, we
take the following combination:

pðrXÞ � B

rX þ B

�
fðrXÞ þ f0ðrXÞ rXð9rX þ 6BÞ

6B

�

¼ B

rX þ B
fðrXÞ ¼ 36ðrXÞ3 � 9Q2‘2rX � 4BQ2‘2:

(18)

Clearly, pðrXÞ and fðrXÞ always have the same sign, so the
collection of signs of pðrXÞ at all the extrema rX of fðrÞ
will determine the number of roots of fðrÞ.

Let us consider the ‘‘extremal case’’ defined via
fðrexÞ ¼ pðrexÞ ¼ 0 and f0ðrexÞ ¼ 0. In this case, fðrÞ
happens to be zero at one of its extrema. Since the zeros
of fðrexÞ and pðrexÞ always coincide, we can try to find the
zeros of pðrexÞ to get the value of rex.

Since we have B � 0, we may assume

B ¼ a

4
jQj‘; rex ¼ �jQj‘; (19)

so that the equation pðrexÞ ¼ 0 becomes

36�3 � 9�� a ¼ 0: (20)

The condition a � 0 implies � � 1
2 , where the lower

bound for � corresponds to a ¼ 0, i.e., B ¼ 0, as discussed
previously. Generically, Eq. (20) can have three zeros.
However, only one of these is real positive and lies in the
range � 2 ½12 ;þ1Þ, which is given in terms of a as

� ¼ z

6
þ 1

2z
; z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3aþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 3

p3

q
; a � 0:

(21)

The detailed analysis on the solution to Eq. (20) can be
carried out in exactly the same way as is done in the
appendix for the similar Eq. (A1).
Now, substituting Eqs. (11) and (19) into the equation

f0ðrexÞ ¼ 0, we get

	 ¼ Q2

6
ln ðrexÞ ¼ Q2

6
ln ð�jQj‘Þ:

This is the same condition that appeared in the B ¼ 0 case.
The only difference lies in the fact that � is fixed at the
value 1

2 when B ¼ 0, while for B � 0, its value is given by

Eq. (21).

We have already made it clear that when B ¼ 0 or B �
jQj‘
6 , or when 0<B< jQj‘

6 with 	 � wðr1Þ or 	 � wðr2Þ,
fðrÞ always has only a single minimum. So, for these
parameter ranges, the zero rex of fðrÞ as described in
Eqs. (19) and (21) is the only zero and minimum of fðrÞ.
So, these cases correspond to extremal black holes with
horizon radius

rex ¼ exp

�
6	

Q2

�
:

If at the extremum rX of fðrÞ, pðrXÞ fails to be zero, then
the corresponding solution will not correspond to an ex-
tremal black hole. Let us now consider such cases in more
detail.
For all rX � rex ¼ �jQj‘, we have

p0ðrXÞ ¼ 9ð12r2X �Q2‘2Þ � p0ðrexÞ ¼ 9ð3Q2‘2 �Q2‘2Þ
¼ 18Q2‘2 > 0;

i.e., pðrXÞ increases monotonically for rX � rex. So, if
pðrXÞ< 0, then rX must be located to the left of rex, i.e.,
rX < rex. However, if pðrXÞ> 0, we cannot deduce from
above that rX > rex.
Consider the following identity:�

1� B

rX þ B

�
fðrXÞ ¼ 3	�Q2

2
ln ðrXÞ:

This is equivalent to

	 ¼ Q2

6
ln ðrXÞ þ rX

3ðrX þ BÞ fðrXÞ: (22)

If fðrXÞ< 0, then
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	<
Q2

6
ln ðrXÞ<Q2

6
ln ðrexÞ: (23)

In Eq. (23), rX may be extremely close to rex, while still
keeping rX < rex. So, we may think of

	<
Q2

6
ln ðrexÞ (24)

to be the condition that must be imposed on the parameter
	 in order for the metric to have two disjoint horizons, to
behave as a nonextremal black hole. If fðrXÞ> 0, then

	>
Q2

6
ln ðrXÞ: (25)

Under this condition, the metric contains no horizons and
corresponds to an asymptotically AdS3 spacetime with a
naked singularity.

What remains untouched is the real troublesome case

with 0<B< jQj‘
6 and wðr1Þ<	<wðr2Þ. In this parame-

ter range, we have to be careful about how many zeros
there are for fðrÞ because fðrÞ has three extrema. Let us
denote the location of the three extrema by rX1, rX2, and
rX3, respectively. Let rX1, rX2, and rX3 be ordered such that
rX1 < rX2 < rX3. At these points, r

2f0ðrÞ vanishes, and its
two positive extrema locate between these zeros, i.e.,

rX1 < r2 < rX2 < r1 < rX3:

From the appendix, we have jQj‘
6 < r1 <

ffiffi
3

p jQj‘
6 < jQj‘

2 , so

rX2 <
jQj‘
2

:

Therefore, according to Eq. (18), we have

pðrX2Þ ¼ B

rX2 þ B
fðrX2Þ

¼ 36ðrX2Þ3 � 9Q2‘2rX2 � 4BQ2‘2

¼ 36rX2

�
r2X2 �

Q2‘2

4

�
� 4BQ2‘2 < 0;

i.e., fðrX2Þ< 0. Since rX2 lies in between rX1 and rX3, it
corresponds to the local maximum of fðrÞ, so the above
result implies that fðrÞ is negative at all its three extrema.
Combining with the asymptotic behavior, we deduce that
fðrÞ have precisely two zeros in this case, so whenever fðrÞ
has three extrema, the solution corresponds to a nonextre-
mal charged hairy black hole with AdS asymptotics. Please
note that, for this case, we have

	<wðr2Þ ¼ Q2

6B
ðB ln ðr2Þ � r2 � BÞ<Q2

6
ln ðr2Þ

<
Q2

6
ln

�jQj‘
6

�
<

Q2

6
ln

�jQj‘
2

�

� Q2

6
ln ð�jQj‘Þ

¼ Q2

6
ln ðrexÞ:

Putting all the cases together, we see that the physically
acceptable upper bound for 	 at Q � 0 is

	 � Q2

6
ln ðrexÞ:

Depending on the value of rex determined by Eqs. (19) and
(21), this upper bound can be either positive or negative.
Meanwhile, for Q � 0, the scalar potential Uð�Þ is domi-
nated by the Oð�8Þ terms when � is big enough, so we do
not need to worry about the existence of lower bound for
the scalar potential. Accordingly, there is no lower bound
for the parameter 	.

V. EFFECTS OF SCALAR AND ELECTRIC
CHARGES ON THE SIZE OF THE BLACK HOLE

In this section, we shall restrict ourselves to the cases in
which (a) black hole horizon(s) exist(s). The primitive goal
of this section is to understand the effects of the scalar and
electric charges on the size of the black hole. Of course, the
best way to do this is to consider the effect of each charge
independently.

A. Effect of the scalar charge

The parameter B originates solely from the scalar field
�, but it is also carried by the black hole solution, so this
parameter may be regarded as a scalar charge of the hole.
In order to understand the effect of the scalar charge B on
the size of the black hole, we need to separate the metric
function fðrÞ into B-independent and B-dependent parts.
According to Eq. (9), fðrÞ depends on B only linearly, so

fðrÞ ¼ fðrÞjB¼0 þ fBðrÞ;
where

fBðrÞ ¼ B
dfðrÞ
dB

¼ B

��
2	�Q2

9

�
1

r
�Q2

3r
ln ðrÞ

�
: (26)

Notice that the dominant term r2

‘2
as r ! þ1 is contained

in the fðrÞjB¼0. Solving ln ðrÞ out of the horizon condition
fðrÞ ¼ 0 and substituting in Eq. (26), we get

fBðrÞ ¼ BðQ2‘2 � 6r2Þ
‘2ð6Bþ 9rÞ ;

where rmust be understood as the horizon radius. It is clear

that fBðrÞ< 0, provided B> 0 and r > jQj‘ffiffi
6

p . We already
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know from the previous section that the horizon radius for
the extremal black hole is rex ¼ �jQj‘ with � � 1

2 >
1ffiffi
6

p ,

and, in general, the radius rþ for the outer horizon non-
extremal black hole is bigger yet than rex; we see that the
effect of inclusion of the fBðrÞ term in fðrÞ is to make fðrÞ
more negative. Therefore, to compensate for this extra
negative contribution, the fðrÞjB¼0 term must become
more positive in order to make a zero for fðrÞ. In other
words, the size of the black hole must increase as B
increases.

B. Effect of the electric charge

We can also separate fðrÞ into its Q2-independent and
Q2-dependent parts, i.e.,

fðrÞ ¼ fðrÞjQ¼0 þ fQ2ðrÞ; (27)

where

fQ2ðrÞ ¼ Q2 dfðrÞ
dðQ2Þ ¼ Q2

�
� 1

4
� B

9r
�

�
1

2
þ B

3r

�
ln ðrÞ

�
:

(28)

The horizon condition is a proper balance between the
fðrÞjQ¼0 and the fQ2ðrÞ terms. In Sec. IVA, it was shown

that fðrÞjQ¼0 ! �1 as r ! 0 and increases monotoni-

cally with r. On the other hand, from the above expression,
we see that fQ2ðrÞ ! þ1 as r ! 0 and decreases mono-

tonically with r. Moreover, in the ‘‘near end’’ (r ! 0), the
term � 1

r ln ðrÞ in fQ2ðrÞ takes over the term � 1
r in

fðrÞjQ¼0, and in the far region (r ! þ1), the term r2

‘2
in

fðrÞjQ¼0 dominates, while fQ2ðrÞ becomes increasingly

negative. In effect, the inclusion of the fQ2ðrÞ term in

fðrÞ results in two different consequences: In the near
region, fðrÞ develops a novel zero, which is the inner
horizon for the charged black hole; in the far region, the
original zero of fðrÞjQ¼0 (now being the outer horizon of

the charged black hole) gets increased with the inclusion of
the fQ2ðrÞ term, and asQ2 increases, the radius of the outer

horizon also increases monotonically.

VI. DISCUSSIONS

In this paper, we obtained an exact solution for the
Einstein-Maxwell-scalar theory in (2þ 1) dimensions, in
which the scalar field couples to gravity nonminimally and
also couples to itself in a peculiar way. The solution is
static circularly symmetric, and the scalar self-potential is
completely determined by staticness and the circular
symmetry of the solution. In particular, a negative
cosmological constant naturally emerges as a constant
term in the scalar potential if we require that, for certain
ranges of parameters, the solution represents a charged
hairy black hole. Under the proper choices of parameter
values, our solution degenerates into some already known
(2þ 1)-dimensional black hole solutions.

When the electric charge Q is nonzero, the scalar po-
tential possesses three extrema, one maximum at � ¼ 0
and two minima at� � 0. The scalar field� cannot stay at
the constant value � ¼ ��min � 0; otherwise, the field
equations will not be satisfied.
We also identified the conditions for the metric to be-

have as a charged extremal black hole, as an asymptotically
AdS3 spacetime with a naked singularity at the origin, and
as a charged nonextremal black hole. When black hole
horizons exist, it is shown that the size of the (outer)
horizon increases monotonically with both the scalar
charge and the electric charge.
Some of the related properties and duality relations will

become instantly interesting further tasks to be worked out.
These are:
(i) the thermodynamic quantities and the associated

laws of thermodynamics;
(ii) the properties of the boundary CFT, if any;
(iii) that these days, the fluid dual of AdS gravity is an

active area of study and it will be interesting to ask
whether there is fluid dual of the black hole solution
given in this paper;

(iv) that the solution considered in this paper is only
static and circularly symmetric, and it would be
interesting to ask whether one can find more com-
plicated solutions to the same for instance, it is
interesting to ask whether one can find rotationally
symmetric solutions and determine the scalar self-
interaction solely by the form of the metric ansatz);

(v) that the scalar field in model of this paper is neutral
and does not couple to the electromagnetic field, and
it would also be interesting to allow the scalar field
to become complex and thus couple directly to the
electromagnetic field.

We leave the answer to all these problems for future work.

APPENDIX: ROOTS OF THE FUNCTION gðrÞ
In this appendix, we shall solve the root of the function

gðrÞ given by Eq. (15), i.e., the root of the equation

36r3 � 3Q2‘2rþ 2BQ2‘2 ¼ 0: (A1)

With the aid of a computer algebra system like Maple,
it is easy to find that the roots of the above equation are
given by

r1 ¼ 1

6

�
zþQ2‘2

z

�
;

r2 ¼ 1

12

�
�z�Q2‘2

z
þ i

ffiffiffi
3

p �
z�Q2‘2

z

��
;

r3 ¼ 1

12

�
�z�Q2‘2

z
� i

ffiffiffi
3

p �
z�Q2‘2

z

��
;

where
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z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�6BQ2‘2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36BQ4‘4 �Q6‘6

q
3

r
: (A2)

Among the three roots of gðrÞ, only the real positive roots
are relevant to our problem. So we need to identify which
and how many of the roots are real positive.

It is evident that if B � jQj‘
6 , then z is real. It follows that

if B> jQj‘
6 , then r1 is real but negative, while both r2 and r3

are complex. If B ¼ jQj‘
6 , then r1 and r2 will become

degenerate, and both are real positive. In this case, r3 is

negative. If B< jQj‘
6 , z becomes complex. In this case, it is

not too difficult to see that the modulus of z is equal to
jQj‘, so we can denote z as

z ¼ jQj‘ðcos
þ i sin 
Þ:
Comparing this expression with the original definition
(A2), we see that 
 must take value in the range

�

6
< 
<

�

3

and the three roots of gðrÞ can be reparametrized as

r1 ¼ jQj‘
3

cos ð
Þ; (A3)

r2 ¼ �jQj‘
3

cos

�

þ �

3

�
; (A4)

r3 ¼ �jQj‘
3

cos

�

� �

3

�
: (A5)

It is easy to see that

r1 2
�jQj‘

6
;

ffiffiffi
3

p
6

jQj‘
�
; (A6)

r2 2
�
0;
jQj‘
6

�
; (A7)

r3 2
�
�

ffiffiffi
3

p
6

jQj‘;�jQj‘
6

�
: (A8)

All three roots are real; however, only r1 and r2 are
positive. Clearly, r1 is the bigger root of gðrÞ.

[1] S. Deser, R. Jackiw, and S. Templeton, Ann. Phys. (N.Y.)
140, 372 (1982).

[2] S. Deser, R. Jackiw, and S. Templeton, Phys. Rev. Lett. 48,
975 (1982).

[3] S. Deser and R. Jackiw, Ann. Phys. (N.Y.) 153, 405
(1984).

[4] S. Giddings, J. Abbott, and K. Kuchar, Gen. Relativ.
Gravit. 16, 751 (1984).
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