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We explore the possibility of testing modified gravity exhibiting the Vainshtein mechanism against

observations of cluster lensing. We work in the most general scalar-tensor theory with second-order field

equations (Horndeski’s theory), and derive static and spherically symmetric solutions, for which the scalar

field is screened below a certain radius. It is found that the essential structure of the problem in the most

general case can be captured by the program of classifying Vainshtein solutions out of different solutions

to a quintic equation, as has been performed in the context of massive gravity. The key effect on

gravitational lensing is that the second derivative of the scalar field can substantially be large at the

transition from screened to unscreened regions, leaving a dip in the convergence. This allows us to put

observational constraints on parameters characterizing the general scalar-tensor modification of gravity.

We demonstrate how this occurs in massive gravity as an example, and discuss its observational signatures

in cluster lensing.
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I. INTRODUCTION

The discovery of the accelerated expansion of the
Universe [1,2] has generated high interest in consistent
long-distance modification of gravity. Although gravity
might be modified so as to account for cosmic acceleration,
modification must be suppressed at short distances because
general relativity is confirmed to very high accuracy in the
solar system. Thus, for a modified theory of gravity to be
consistent, it is important to equip a mechanism to screen
the effect of modification that could otherwise persist down
to small scales. A wide class of modified gravity theories
can be (at least effectively) described in terms of a scalar-
tensor theory, and the screening mechanisms can be under-
stood by inspecting the structure of the scalar-tensor
Lagrangian. Mainly two mechanisms have been proposed
so far. One is the chameleon mechanism [3], in which a
density-dependent effective potential is introduced to make
the scalar field sufficiently massive in a high-density envi-
ronment. This mechanism is utilized for example in fðRÞ
gravity [4]. Another mechanism is known as the Vainshtein
effect [5], which operates in models with nonlinear deriva-
tive interactions. In such models, nonlinearity becomes
large in the vicinity of a matter source to suppress the
scalar-mediated force. This mechanism is incorporated
for example into the Dvali-Gabadadze-Porrati model
[6,7], the Galileon model [8], and massive gravity [9,10].

In this paper, we discuss how the Vainshtein effect works
in Horndeski’s scalar-tensor theory [11–13]. Horndeski’s

theory is the most general theory composed of a single
scalar field and a metric that gives rise to second-order field
equations, and therefore includes a large number of
concrete models of modified gravity as specific cases. We
present an algebraic master equation that determines a
gravitational field around any static and spherically sym-
metric distribution of nonrelativistic matter. The similar
problem of deriving the Vainshtein solution in the cosmo-
logical background was addressed in Ref. [14]. There,
however, complete analysis was hindered by the complex-
ity of the governing equations. In the case where the effect
of the cosmic expansion may be ignored, the relevant
equations are simplified so that the problem actually re-
duces to what has been done in the context of the Galileon
model [8] and massive gravity [15–18]. It is therefore
possible to determine completely the conditions under
which the Vainshtein solutions are available. Our solution
thus obtained is useful in testing modified gravity.
Among various cosmological observations, we are par-

ticularly interested in cluster lensing, which can provide
the convergence over a wide range of radii by combin-
ing strong- and weak-lensing measurements (see
Refs. [19–21], and references therein). The precise mea-
surement of the structure of galaxy clusters offers us an
important clue to test modified theories of gravity [22,23].
The first paper on gravitational lensing in the context of
massive gravity is Ref. [15]. The gravitational sector con-
sidered there is given by a subclass of Horndeski’s theory.
However, Ref. [15] considered nonminimal and disformal
coupling to matter, while we assume that matter is mini-
mally coupled to gravity. Working in Horndeski’s theory,
one can examine modified gravity endowed with the
Vainshtein screening mechanism in a generic manner.

*narikawa@resceu.s.u-tokyo.ac.jp
†tsutomu@rikkyo.ac.jp
‡yamauchi@icrr.u-tokyo.ac.jp
§rsaito@yukawa.kyoto-u.ac.jp

PHYSICAL REVIEW D 87, 124006 (2013)

1550-7998=2013=87(12)=124006(10) 124006-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.124006


In this paper, we compute the lensing convergence of
galaxy clusters in Horndeski’s theory based on the general
spherically symmetric solution. As a specific example, we
demonstrate how nonlinear massive gravity proposed re-
cently in Ref. [24] is included in our analysis, and explore
the possibility of detecting the signatures of modified
gravity in the context of massive gravity.

This paper is organized as follows. In the next section,
we define Horndeski’s Lagrangian and explain our proce-
dure to obtain static and spherically symmetric solutions.
Then, in Sec. III, we derive the Vainshtein solution and
present the conditions for the existence of the solution. We
show the relation between Horndeski’s theory and the
decoupling limit of massive gravity in Sec. IV. In Sec. V
we study the effect of modification of gravity on gravita-
tional lensing and explore its implications for cluster
lensing observations. Section VI is devoted to conclusions.

II. STATIC AND SPHERICALLY SYMMETRIC
CONFIGURATIONS IN HORNDESKI’S THEORY

We consider the most general scalar-tensor theory con-
structed by Horndeski. The action we study is given by

S ¼ SGG½g��;�� þ Sm½g��; c m�; (1)

where Sm is the action for matter c m, which is assumed to
be minimally coupled to gravity. The first term is com-
posed of the four Lagrangians,

SGG ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ðL2 þL3 þL4 þL5Þ; (2)

where

L2 ¼ Kð�;XÞ; (3)

L3 ¼ �G3ð�;XÞh�; (4)

L4 ¼ G4ð�;XÞRþG4X½ðh�Þ2 � ðr�r��Þ2�; (5)

L5 ¼ G5ð�;XÞG��r�r��� 1

6
G5X½ðh�Þ3

� 3h�ðr�r��Þ2 þ 2ðr�r��Þ3�; (6)

with X :¼ �g��@��@��=2. The second term is the action

for matter fields. Here, R is the Ricci scalar, G�� is the

Einstein tensor, and K and Gi are arbitrary functions of �
and X. Here we have written the Lagrangians in the
equivalent form called the generalized Galileon rather
than the original one. In this paper, we use notation such
as G4X :¼ @G4=@X and G3� :¼ @G3=@�.

We are interested in spherical overdensities on subhor-
izon scales, so that we will neglect the effect of cosmic
expansion. In Ref. [14], the Vainshtein mechanism in
Horndeski’s theory has been investigated taking into ac-
count the background evolution of the scalar field,

� ¼ �0ðtÞ, and it was shown that Newton’s ‘‘constant’’
evolves in time through its dependence on �0ðtÞ and

X0ðtÞ :¼ _�2
0=2 (see also Ref. [25] for a similar argument).

However, the time variation of Newton’s ‘‘constant’’ is
strongly constrained from experiments [26]. This leads
us to assume that the scalar field has a negligible time
dependence at least during the relevant period, �0 ’ const
and X0 ’ 0.
Our background solution is thus taken to be

ds2 ¼���dx
�dx�; �¼�0 ¼ const; X¼ 0: (7)

In order for the theory to admit this solution, we require
that Kð�0; 0Þ ¼ 0 and K�ð�0; 0Þ ¼ 0.

Spherically symmetric perturbations produced by a non-
relativistic matter lump on top of the background (7) can be
written as

ds2 ¼ �½1þ 2�ðrÞ�dt2 þ ½1� 2�ðrÞ��ijdx
idxj; (8)

� ¼ �0 þ ’ðrÞ; (9)

where r is the usual radial coordinate, r2 ¼ x2 þ y2 þ z2.
The time-time component of the gravitational field
equations is

G4

ðr2�0Þ0
r2

�G4�

ðr2’0Þ0
2r2

� ðG4X �G5�Þ ½rð’
0Þ2�0

2r2

þG5X

½ð’0Þ3�0
6r2

¼ � 1

4
Tt

t; (10)

while the space-space component reduces to

2G4ð�0 ��0Þ� 2G4�’
0 � ðG4X �G5�Þ ð’

0Þ2
r

¼ 0; (11)

where a prime stands for differentiation with respect
to r. Finally, from the scalar-field equation of motion we
obtain

ðKX�2G3�Þ ðr
2’0Þ0
r2

�2ðG3X�3G4�XÞ½rð’
0Þ2�0

r2

þ2G4�

½r2ð2���Þ0�0
r2

þ4ðG4X�G5�Þ ½r’
0ð�0 ��0Þ�0

r2

þ2

�
G4XX�2

3
G5�X

� ½ð’0Þ3�0
r2

þ2G5X

½ð’0Þ2�0�0
r2

¼�K��’: (12)

Here, all the functions in the coefficients are evaluated at
� ¼ �0 and X ¼ 0. From now on, we will ignore the mass
term K��, because we focus only on modified gravity

endowed with the Vainshtein mechanism.
One sees that Eqs. (10) and (12) can be integrated once

to give algebraic equations for ’0, �0, �0. In doing so it is
convenient to use the enclosed mass defined as

MðrÞ :¼ 4�
Z r

0
ð�Tt

tÞr2dr: (13)
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The resultant equations coincide with those derived from
taking the limit� ¼ �0 ¼ const and X ¼ 0 in the result of
Ref. [14].

Let us introduce six dimensionless parameters, �, �, �,
�,�, and	, as well as the Planck massMPl and a new mass
scale �, to rearrange and simplify the expressions. Those
dimensionless quantities are related to the coefficients in
the above equations as

G4 ¼ M2
Pl

2
; G4� ¼ MPl�; (14)

and

KX � 2G3� ¼ �; (15)

�G3X þ 3G4�X ¼ �

�3
; (16)

G4X �G5� ¼ MPl

�3
�; (17)

G4XX � 2

3
G5�X ¼ �

�6
; (18)

G5X ¼ � 3MPl

�6
	: (19)

We also define

xðrÞ ¼ 1

�3

’0

r
; AðrÞ ¼ 1

MPl�
3

MðrÞ
8�r3

; (20)

both of which are dimensionless.
Now the gravitational field equations (10) and (11)

reduce to

MPl

�3

�0

r
¼ ��xþ 	x3 þ AðrÞ; (21)

MPl

�3

�0

r
¼ �xþ �x2 þ 	x3 þ AðrÞ: (22)

Substituting Eqs. (21) and (22) to the scalar-field equation
of motion (12), we arrive at

Pðx;AÞ :¼ �AðrÞ þ
�
�

2
þ 3�2

�
xþ ½�þ 6��� 3	AðrÞ�x2

þ ð�þ 2�2 þ 4	�Þx3 � 3	2x5 ¼ 0: (23)

Solving the algebraic equation Pðx; AÞ ¼ 0 for x, one
obtains the radial profile of x in terms of A ¼ AðrÞ. It is
then straightforward to determine the two metric potentials
by using Eqs. (21) and (22). Note in passing that if � ¼ 0
then we have a trivial solution xðrÞ ¼ 0 which is not
interesting. In the rest of the paper we therefore assume
that � � 0.

Since there is a sufficient number of parameters, at this
stage the coefficients of the polynomial Pðx; AÞ are free in
principle. However, it is important to note that the structure

of Pðx; AÞ in the most general case is still essentially the
same as the corresponding equation in massive gravity: it is
quintic and the matter source term A appears only in the
zeroth-order and quadratic terms. This structure allows us
to proceed following closely the previous analysis in
massive gravity [17,18].

III. THE QUINTIC AND CUBIC EQUATIONS

In this section, we solve the equation Pðx; AÞ ¼ 0 for
A � 1 and A � 1, and single out a solution appropriate
for our current purpose in each domain. We then derive the
conditions under which the two solutions are matched
smoothly in an intermediate region. The procedure here
is basically the same as that of Ref. [18]. The region far
from the source corresponds to A � 1, while it is assumed
that A � 1 in the vicinity of the source, where the
Vainshtein mechanism is expected to operate. It is there-
fore appropriate to define the Vainshtein radius rV by

AðrVÞ ¼ 1: (24)

In the outer region (A � 1), there is always a decaying
solution,

x � xf :¼ � 2�AðrÞ
�þ 6�2

; (25)

which is obtained by neglecting the nonlinear terms in
Pðx; AÞ. We are interested only in this solution, because
the other solutions, if they exist, do not correspond to an
asymptotically flat spacetime.
The stability of the solution in the linear regime can be

studied by using the truncated action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

Pl

2

�
1þ 2�

���0

MPl

�
Rþ �X

�
: (26)

Working in this action, one can derive the stability condi-
tion easily in the same way as in the Brans-Dicke theory: in
the Einstein frame, the kinetic term for small fluctuations
has the right sign provided that

�þ 6�2 > 0: (27)

We require the condition (27) for the stability of the
solution x � xf . The same condition can also be derived
from @Pðxf ; AÞ=@x > 0. (See Appendix A for further
details.)
Let us turn to identifying the desired inner solution. The

inner solution is different depending on whether 	 � 0 or
	 ¼ 0, because the structure of Pðx; AÞ for A � 1 is
crucially different.

A. �� 0

In the inner region (A � 1), Eq. (23) reduces to

Pðx; AÞ � �A� 3	Ax2 � 3	2x5 � 0: (28)
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The behavior of the solution to this equation depends on
the sign of �	.

(i) �	 < 0. In this case, the second and the third terms
in Eq. (28) balance, so that the solution is

x3 � � A

	
: (29)

For this inner solution we find �0=r / A2=3 and

�0=r / A1=3, which is not at all standard gravity.
We therefore discard this possibility.

(ii) �	 > 0. In this case, we have the same solution as
above, x3 � �A=	, which is to be discarded for the
same reason. We have another solution,

x � x� :¼ �
ffiffiffiffiffiffiffi
�

3	

s
¼ const; (30)

for which the first and the second terms in Eq. (28)
balance. For this latter solution we have the correct
Newtonian behavior: �0=r ’ �0=r / A. This is
therefore the Vainshtein solution we are looking for.

Having thus identified the desired solutions in the inner
and outer regions, we consider the matching of the two. For
simplicity we focus on the case of � > 0. The solution
matching in the case of � < 0 can also be done essentially
in the same way as follows.

For � > 0 (and hence 	> 0), the outer solution x ¼
xf < 0 can be matched only to the inner solution x ¼ x� <
0 smoothly.1 The smooth matching of the two solution is
possible if and only if Pðx; AÞ ¼ 0 has a single root in
ðx�; 0Þ for any A > 0. Since Pð0; AÞ ¼ �A > 0, if

Pðx�; AÞ< 0; (31)

the intermediate value theorem guarantees the existence of
at least one root in ðx�; 0Þ. Note that Pðx�; AÞ does not in
fact depend on A. Using the intermediate value theorem
again in ð� 1; x�Þ and ð0;1Þ, it can be shown that one or
three roots exist in general in ðx�; 0Þ.

Let x� and A� be the solution to

@Pðx�; A�Þ
@x

¼ 0;
@2Pðx�; A�Þ

@x2
¼ 0: (32)

If such x� 2 ðx�; 0Þ and A� > 0 do not exist, it is obvious
that there is only a single root in ðx�; 0Þ. In this case, the
smooth matching is possible. If such x� and A� exist,
Pðx; AÞ ¼ 0 would in general have three roots in ðx�; 0Þ
for some interval of A. Since Pðx; AÞ ¼ 0 for A � 1
[Eq. (28)] has a single root in ðx�; 0Þ, two of the three
roots in ðx�; 0Þ disappear as A increases. For parameters
satisfying Pðx�; A�Þ> 0, the solution corresponding to xf
disappears as A increases, implying that the smooth match-
ing is impossible in this case. However, if

Pðx�; A�Þ< 0; (33)

the solution corresponding to xf remains and hence the
smooth matching is still possible. Indeed, there is a single
root for any A > 0 in this case because a simple manipu-
lation shows that PðxeðAÞ; AÞ increases with increasing A,
where xeðAÞ is the locus of extrema in ðx�; 0Þ.
Summarizing, the outer and inner solutions can be

matched smoothly provided that Eq. (31) and either of the
following two conditions are satisfied: (i) x� 2 ðx�; 0Þ and
A� > 0 do not exist satisfying Eq. (32); (ii) such x� 2
ðx�; 0Þ and A� > 0 exist, but they satisfy Eq. (33).

B. �¼ 0

Here again we focus on the case of � > 0 for simplicity.
The problem reduces to solving the cubic equation,
Pðx; AÞ ¼ 0, where now

Pðx; AÞ ! �Aþ
�
�

2
þ 3�2

�
xþ ð�þ 6��Þx2

þ ð�þ 2�2Þx3: (34)

The inner solution is

x3 � x3i :¼ � �A

�þ 2�2
: (35)

(We assume that �þ 2�2 � 0.) This solution shows the
correct Newtonian behavior: �0=r ’ �0=r / A.
The inner and outer solutions can be matched smoothly

only for �þ 2�2 > 0, which is also required from stability
of the inner solution. Smooth matching also requires that
there is a single root in x < 0 for any A > 0, or, equiva-
lently, that Pðx; AÞ has no local extrema in x < 0. The two
local extrema are in x > 0 provided that

�þ 6�� < 0; (36)

where we used the condition (27). Otherwise, one
must require that the discriminant of @Pðx; AÞ=@x is
negative, i.e.,

ð�þ 2�2Þð�þ 6�2Þ � 2

3
ð�þ 6��Þ2;

�þ 6�� � 0:
(37)

Summarizing, smooth matching is possible if Eq. (36) or
Eq. (37) is satisfied.

IV. DECOUPLING LIMIT OF MASSIVE GRAVITY

Let us confirm that the conditions for smooth matching
indeed reproduce the previous result obtained in the con-
text of massive gravity [17,18]. To do so, we start with
finding out the concrete form of K,G3,G4,G5 correspond-
ing to the decoupling limit of massive gravity. The corre-
spondence can be seen more clearly if we move to the
covariantized version of the decoupling limit Lagrangian,
i.e., the ‘‘proxy theory’’ proposed in Ref. [27].

1Since @Pðx�; AÞ=@x ¼ �6	x�, the solution x ¼ x� is sta-
ble, but the other one, x ¼ xþ, is not.
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It turns out that the proxy theory corresponds to

K ¼ 0 ¼ G3; G4 ¼ M2
Pl

2
þMPl�þMPl

�3
�X;

G5 ¼ �3
MPl

�6
	X:

(38)

In massive gravity, the strong coupling scale � is given by

� ¼ ðm2MPlÞ1=3, where m is the graviton mass.
Since the proxy theory contains the Riemann dual tensor

while the Lagrangian of the generalized Galileon not,
one may wonder how the former is included in the latter.
Actually, G5 / X corresponds to the term containing
the Riemann dual tensor in the proxy theory. The easiest
way to verify this is to compare the field equations of the
two theories.

From Eq. (38) one finds

�¼�¼�¼ 0; �¼ 1; �� 0; 	� 0; (39)

so that the parameter space collapses to a two-dimensional
space. The inner solution x� exists only for 	> 0 and is
given by x� ¼ �1=

ffiffiffiffiffiffiffi
3	

p
. Let us define 
 :¼ ffiffiffiffi

	
p

=�. Then,
the condition (31) reads

Pðx�; AÞ ¼ 2

3

x�

2

ð1� 3
ffiffiffi
3

p

 þ 6
2Þ< 0: (40)

Solving the equation @xPðx�; A�Þ � x�@2xPðx�; A�Þ ¼ 0,
which does not in fact depend on A�, one finds

x� ¼ 1ffiffiffi
5

p x�
j
j ½1þ 2
2 � ð1þ 4
2 � 11
4Þ1=2�1=2: (41)

This exists if

j
j 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffiffiffiffi

15
p

11

s
’ 0:73: (42)

The equation Pðx; AÞ ¼ 0 has three roots in ðx�; 0Þ for
some interval of A if

Pðx�; A�Þ> 0 , 0< 
 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ ffiffiffiffiffiffi

13
p

24

s
’ 0:6: (43)

Therefore, smooth matching of the asymptotically
flat solution and the Vainshtein solution is possible
provided that

�< 0 or

ffiffiffiffi
	

p
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ ffiffiffiffiffiffi

13
p

24

s
: (44)

Thus, we have confirmed that the previous result [17,18] is
reproduced.2

V. GRAVITATIONAL LENSING IN
MODIFIED GRAVITY

In this section, we are going to relate our spherically
symmetric solution to gravitational lensing observations.
To do so, it is instructive to begin with seeing the typical
behavior of the Vainshtein solution in massive gravity,
adopting the Navarro-Frenk-White (NFW) halo density
profile [28,29] for the source �ðrÞ :¼ �Tt

t. (See
Appendix B for the detailed description of halo density
profiles.) Figures 1 and 2 show the profile of x and its
derivative, respectively, as a function of the radial coordi-
nate r for different values of � and 	. The fiducial parame-
ters of the NFW model we use areMvir¼1:34
1015M�=h
and cvir ¼ 13:8, which correspond to �s ¼ 7:16
 104�cr;0

and rs ¼ 145 kpc=h, respectively. The strong coupling
scale is taken to be �3 ¼ ð100H0Þ2MPl ¼ ð46:4 kmÞ�3.
Then, the Vainshtein radius determined from Eq. (24) is
rV ¼ 209 kpc=h. (As the parameters characterizing the
profile we choose to use the virial cluster mass Mvir and
the concentration parameter cvir rather than �s and rs.) One
can see that xðrÞ can have a sharp transition from outer to
inner solutions, depending on the parameters of the theory,
which leads to a peak in x0ðrÞ. This occurs at around the
Vainshtein radius.
Having seen the typical behavior of the radial profile

xðrÞ, we now move to investigate how the lensing signal is
modified in massive gravity. We assume that the back-
ground evolution of the Universe does not deviate much
from conventional cosmology and use the �CDM
background with �m ¼ 0:3, �� ¼ 0:7, and h ¼ 0:7.

FIG. 1 (color online). The profile of x as a function of the
radial coordinate r. The curves are plotted for ð�;	Þ ¼ ð0:5; 0:3Þ
(dashed red line), (0.8, 0.34) (dot-dashed green line), and (0.985,
0.375) (long-dashed blue line), respectively. As a halo density
profile we adopt the NFW model with Mvir ¼ 1:34
 1015M�=h
and cvir ¼ 13:8.

2Note that our notation is different from those in [17,18]. In
particular, �ours ¼ ��Sbisa et al:.
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The background metric (7) is understood to define the
physical coordinates at the location of the lens object.

The basic quantity in gravitational lensing is the con-
vergence, �, which is expressed in terms of the sum of
the two metric potentials �þ :¼ ð�þ�Þ=2 as

� ¼
Z 
S

0
d


ð
S � 
Þ


S

�?�þ; (45)

with 
, 
S, and �? being the comoving angular diameter
distance, the comoving distance between the observer and
the source, and the comoving transverse Laplacian, respec-
tively. Using the thin lens approximation, we can rewrite
the convergence as

� ’ ð
S � 
LÞ
L


S

Z 
S

0
d
��þ; (46)

where 
L is the comoving distance between the observer
and the lens object and � is the comoving three dimen-
sional Laplacian. Let us now introduce a new spatial
coordinate as Z ¼ aLð
� 
LÞ, whose origin is located at
the center of the lens object. The projected radius is written
as r? ¼ aL
L�, where � is the polar angle from the axis
connecting the observer and the lens object, and aL is the
scale factor at the lens object. In terms of these, the con-
vergence (46) can be written as

�ð�Þ ¼ 2ð
S � 
LÞ
LaL

S

Z 1

0
dZ

�

a2L
�þðrÞ; (47)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2? þ Z2

q
. Using Eqs. (21) and (22), we find

that in Horndeski’s theory

�

a2L
�þðrÞ ¼ 1

r2
d

dr
½r2�0þðrÞ�

¼ �3

MPl

½ð�x2 þ 2	x3 þ 2AÞr3�0
2r2

: (48)

Figure 3 shows the lensing convergence for the NFW
profile with different choices of the parameters of the
theory. The points with the error bars indicate the obser-
vational data for the high-mass cluster A1689 provided by
Umetsu et al. [21,30–33]. An interesting feature observed
in Fig. 3 is that a dip appears at a particular polar angle
corresponding to the Vainshtein radius. The dip is most
enhanced for the parameters near the boundary of the
region in which the smooth matching is possible. Clearly,
this is caused by the sharp peak in x0ðrÞ at the Vainshtein
radius, as seen in Fig. 2. We see from Fig. 4 that the peak
location is certainly determined by the Vainshtein scale.
From Fig. 4 we also find that the depth of the dip increases
as � decreases.
In Figs. 5 and 6 we compare different assumptions on

the halo density profile. Two representative profiles are
considered here: the generalized NFW (gNFW) [34–36]
and the Einasto [37–40] profiles. We see that a dip appears
at a characteristic polar angle in the gNFWand the Einasto
profiles as well. The depth of the dip is enhanced for larger
�s and larger �.
The appearance of a dip is expected to be a generic

feature of scalar-tensor theories exhibiting the Vainshtein
mechanism, because the essential structure of the master
algebraic equation (23) in general cases are the same as in
massive gravity. This helps us put constraints on scalar-
tensor modification of gravity through the observations of
cluster lensing.
The decoupling limit of massive gravity constitutes a

subclass with two free parameters in Horndeski’s theory,

FIG. 3 (color online). The lensing convergence � as a function
of � for different values of the parameters of the theory. In these
plots, the NFW profile is used with Mvir ¼ 1:34
 1015M�=h
and cvir ¼ 13:8. Parameters and definitions of the curves are the
same as in Fig. 1. The points with the error bars represent the
observational data for the high-mass cluster A1689 provided by
Umetsu et al. [21,30–33].

FIG. 2 (color online). The radial derivative of x as a function of
r. Parameters and definitions of curves are the same as in Fig. 1.
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which motivated us to use it for an illustrative purpose. We
would like to point out here that there are several caveats to
be aware of when putting observational constraints on
massive gravity based on our analysis. First, there will be

some corrections to the decoupling limit because m and
1=MPl are not exactly zero in reality. However, the correc-
tions are small enough in the region outside the
Schwarzschild radius rg of a lens object and inside the

Compton length of the graviton [17]. Thus, the decoupling
limit can be used safely at around the Vainshtein radius,
which is relevant to our purpose, unless the graviton mass
is so large that the Schwarzschild radius coincides with the
Compton length. In addition, there will be other corrections
since we need in fact to consider the decoupling limit in
the cosmological background [41]. The corrections to the
background solution (7) are expected to be �g�� ¼
OðH2r2Þ��� and �� ¼ OðMPlH

2r2Þ, where H is the

Hubble expansion rate at the location of the lens object.3

This correction can be neglected relative to the perturba-

tions provided that r < ðrgH�2Þ1=3. This implies that our

analysis can be applied to massive gravity at least within

the Vainshtein radius �ðrgm�2Þ1=3 if m * H. Finally, and

most importantly, no sensible cosmological solutions
have been found so far in massive gravity [44,45]. See
Refs. [46,47] for recent attempts to address this issue.

VI. CONCLUSION

In this paper, we have considered static and spherically
symmetric solutions in Horndeski’s theory, which is the

FIG. 4 (color online). The convergence � as a function of � for
different strong coupling scales. The curves correspond to �3 ¼
ð150H0Þ2MPl (dashed red line),�

3 ¼ ð100H0Þ2MPl (long-dashed
blue line), �3 ¼ ð50H0Þ2MPl (dot-dashed green line), and
�CDM (black solid line), respectively. We take � ¼ 0:985
and 	 ¼ 0:375.

FIG. 5 (color online). The convergence � as a function of � for
the gNFW profile with Mvir ¼ 1:34
 1015M�=h, cvir ¼ 13:8
and �l ¼ 3. The curves correspond to �s ¼ 0:5 (dotted red
line) and �s ¼ 1:5 (dot-dashed green line), respectively. For
comparison, the convergence for the NFW profile (�s ¼ 1)
(with the same theory parameters) is shown by the blue dashed
line. We take � ¼ 0:985 and 	 ¼ 0:375.

FIG. 6 (color online). The convergence � as a function of � for
the Einasto profile with Mvir ¼ 1:34
 1015M�=h and r�2 ¼
145 kpc=h. The curves correspond to � ¼ 0:1 (dotted red line)
and � ¼ 0:3 (dot-dashed green line), respectively. We take � ¼
0:985 and 	 ¼ 0:375.

3In the accelerating branch, the correction to the helicity-0
mode is of order �3r2 [42,43]. We do not consider this case here
because the graviton mass should be small m<H0 so that the
expansion rate does not exceed the observed one.
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most general scalar-tensor theory having second-order
field equations. Under the assumption of weak gravita-
tional fields, we have shown that the problem reduces to
solving an algebraic equation which is at most quintic.
Interestingly, the structure of the quintic equation is essen-
tially the same as the corresponding equation derived in the
context of massive gravity. By inspecting the algebraic
equation, we have presented the conditions under which
the screened solution is obtained inside a certain radius in
the most general scalar-tensor theory.

Using our static and spherically symmetric solutions, we
have explored the possibility of testing modified theories of
gravity endowed with the Vainshtein mechanism, focusing
on cluster lensing observations. For an illustrative purpose
and for simplicity, we have considered a specific case of
Horndeski’s theory corresponding to the decoupling limit
of massive gravity, and discussed its observational conse-
quences. The key effect on gravitational lensing is that the
second radial derivative of the scalar field can be substan-
tially large at the transition radius from screened to
unscreened regions. This results in a dip in the conver-
gence, which will be a marker of the Vainshtein scale.
We have found that this dip is enhanced near the boundary
of the parameter region that allows for the screened solu-
tion. Such a feature enables us to put constraints on modi-
fied gravity.

The following simplifications have been made in this
paper: the effect of the cosmic expansion is neglected and
the density profile is well described by the conventional
NFW, gNFW, and Einasto profiles even in modified grav-
ity. However, we would like to emphasize that the appear-
ance of the dip in the convergence is not dependent on the
particular density profile and hence our result is robust
against the different choices of the profile.
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APPENDIX A: STABILITY OF RADIAL
PERTURBATIONS

Let us study fluctuations propagating around a spheri-
cally symmetric background. For simplicity, we restrict the
analysis to radial modes and abandon the matter perturba-
tions: ’ðrÞ ! ’ðrÞ þ �’ðt; rÞ, �ðrÞ ! �ðrÞ þ ��ðt; rÞ,
�ðrÞ ! �ðrÞ þ ��ðt; rÞ, and �T�

� ¼ 0.

Expanding the action to second order in perturba-
tions and eliminating the metric potentials by using the
gravitational field equations, we obtain the quadratic action
for �’:

S�’ ¼ 4�
Z

dtdr

�ðr3KÞ0
2

ð@t�’Þ2� r2
@P

@x
ð�’0Þ2

�
: (A1)

Here we neglected the mass term. Instead, the above
action may be deduced from the linear equation of
motion, which takes the form ½ðr3KÞ0=r2�@2t �’�
ð1=2Þð@P=@xÞ�’00 þ


¼0. The coefficient K is defined
as

KðrÞ ¼ 1

3
ð�þ 6�2Þ þ 4�Aþ 2ð�þ 6��þ 6	AÞx

þ 6ð�þ 2�2 þ 4	�Þx2 þ 4ð10�	þ$Þx3
þ 30	2x4; (A2)

where we introduced yet another dimensionless quantity$
through G5XXð�0; 0Þ ¼ �3$=�9.
In order to avoid the gradient instability of the radial

mode, one must require that

@P

@x
> 0: (A3)

To avoid the ghost instability one must require that
ðr3KÞ0 > 0. This condition involves the new quantity $,
which does not appear in characterizing the static and
spherically symmetric solution. Therefore, the properties
of the solutions discussed in the main text are not directly
affected by this requirement.

APPENDIX B: HALO PROFILES

In this appendix we summarize the halo profile models
adopted in the main text. We briefly explain the three
representative profiles: NFW [28,29], gNFW [34–36],
and Einasto [37–40] profiles. To characterize these density
profiles, we introduce the radius r�2, at which the loga-
rithmic slope of the density is �2, and the virial cluster
mass Mvir ¼ 4�

Rrvir
0 �ðrÞr2dr, which can be described by

Mvir ¼ 4�

3
r3vir�vir�crðzLÞ; (B1)

where rvir is the virial radius, �vir is the virial overdensity,
and �crðzLÞ is the critical density at zL, where zL denotes
the redshift of the lens object. We take �vir ¼ 120 and
zL ¼ 0:183 for A1689.

1. NFW profile

The Navarro-Frenk-White profile is given by [28,29]

�ðrÞ ¼ �s

ðr=rsÞð1þ r=rsÞ2
; (B2)

where �s is the characteristic density, and rs is the charac-
teristic radius at which the slope of the density profile
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changes. For the NFW profile, r�2 ¼ rs. It is useful to
introduce the index of degree of concentration, so-called
concentration parameter, cvir � rvir=rs. The virial cluster
massMvir and the concentration parameter cvir can be used
as the parameters of the NFW profile instead of �s and rs.

2. gNFW profile

The generalization of the NFW model may be written in
the form [34–36]

�ðrÞ ¼ �s

ðr=rsÞ�sð1þ r=rsÞ�l��s
: (B3)

The NFW profile is recovered for �s ¼ 1 and �l ¼ 3. We
refer to the profile given by Eq. (B3) to the generalized
NFW (gNFW) profile. For the gNFW profile, r�2 ¼
rsð2� �sÞ=ð�l � 2Þ and the corresponding concentration
parameter is given by c�2 � rvir=r�2 ¼ cvirð�l � 2Þ=
ð2� �sÞ. We can specify the gNFW profile with the virial

cluster massMvir, the concentration parameter c�2, and the
slope indices ð�s; �lÞ.

3. Einasto profile

The Einasto profile is given by [37–40]

�ðrÞ ¼ ��2 exp

�
� 2

�

��
r

r�2

�
� � 1

��
: (B4)

We can specify the Einasto profile with the virial cluster
mass Mvir, the special radius r�2, and the slope index �.
Based on the Millennium simulation [48], the authors
of Ref. [39] claimed that cold dark matter halos can be
more properly described by the Einasto profile than by the
NFW profile. They also argued that the best-fit value of �
increases gradually with the increase of the virial mass,
from �� 0:16 for galaxy halos to �� 0:3 for the most
massive clusters.
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