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Gravitational-wave searches for signals from inspiraling compact binaries have relied on matched

filtering banks of waveforms (called template banks) to try to extract the signal waveforms from the

detector data. These template banks have been constructed using four main considerations, the region of

parameter space of interest, the sensitivity of the detector, the matched filtering bandwidth, and the

sensitivity one is willing to lose due to the granularity of template placement, the latter of which is

governed by the minimal match. In this work we describe how the choice of the lower frequency cutoff,

the lower end of the matched filter frequency band, can be optimized for detection. We also show how the

minimal match can be optimally chosen in the case of limited computational resources. These techniques

are applied to searches for binary neutron star signals that have been previously performed when

analyzing Initial LIGO and Virgo data and will be performed analyzing Advanced LIGO and

Advanced Virgo data using the expected detector sensitivity. By following the algorithms put forward

here, the volume sensitivity of these searches is predicted to improve without increasing the computational

cost of performing the search.
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I. INTRODUCTION

For the past decade, large scale interferometric
gravitational-wave (GW) detectors have operated, allow-
ing searches for signals from inspiraling compact binaries
to be performed [1–18]. These searches have thus far
detected no GW signals, however once the detectors are
upgraded to their advanced configurations, multiple events
are expected to be detected each year [19].

Searches for inspiral signals in detector data depend on
matched filtering the data with template waveforms to
produce signal-to-noise ratio (SNR) time series, the max-
ima of which are used to produce GW ‘‘triggers.’’
Important criteria in constructing banks of template wave-
forms (i.e., template banks) for these searches are the
region of parameter space to be searched, the sensitivity
of the detector, the lower and upper frequency cutoffs
associated with matched filtering the data, and the maxi-
mum fractional loss of SNR (the complement of which is
more commonly know as the minimal match) that one is
willing to tolerate due to granularity of the template place-
ment. Of these criteria, one is free to tune the lower
frequency cutoff and the minimal match due to sensitivity
and computational cost considerations.

In [20], the authors discuss the issue of balancing com-
putational cost versus SNR gain while decreasing the lower
frequency cutoff. However, they do not venture so far as to
derive the optimal choices. Instead, they choose to set the
lower frequency cutoff at a level such that one would
lose less than 1% of the SNR by the cutoff being different

from 0. In addition, they choose the minimal match of the
template bank to be MM ¼ 95%; large enough that the
metric estimate of the fractional SNR loss is still valid but
small enough for computational cost considerations.
Recent searches for GW from inspiraling compact binaries
have chosen a larger value for the minimal match,
MM ¼ 97%, so that less than 10% of the signals at the
worst mismatch locations of the template bank would
be lost.
In this paper, we further investigate the effects of differ-

ent lower frequency cutoff and minimal match choices. In
Sec. III we look at how decreasing the lower frequency
cutoff both increases the amount of raw SNR one is able to
extract from a signal and increases the trials factor by
increasing the number of templates required to search for
the waveforms. Section IV goes on to describe how to
choose the optimal combination of lower frequency cutoff
and minimal match for a fixed computational cost.
Examples of both these choices are given in Sec. V where
the methods are applied to previous and future searches of
GW detector data.

II. PRELIMINARIES

In searching for signals from inspiraling compact ob-
jects in GW data, a commonly used event identification
algorithm relies on matched filtering, where the data is
‘‘whitened’’ and filtered with the template waveform being
searched for. Specifically, the square SNR is given by

�2 ¼ ðsjhcÞ2 þ ðsjhsÞ2
�2

; (1)
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where s is the data from a detector that may contain a GW
signal of unknown strength, hc and hs are the target wave-
forms associated with the same source and differ in phase
by �=4, �2 :¼ ðhcjhcÞ is the sensitivity of our detector to a
waveform at a reference distance, typically chosen to be
1 Mpc, and the inner product ðxjyÞ is defined as

ðxjyÞ :¼ 4<
Z fhigh

flow

~x~y�

SnðfÞ df: (2)

Here ~x is the Fourier transform of x, ðÞ� denotes the com-
plex conjugate operator, and SnðfÞ is the one-sided power
spectral density (PSD) of the detector’s noise.

As can be seen from (2), the SNR recovered when there
is a signal present in the data will depend on the limits of
the integration. The upper frequency cutoff fhigh is set by

the lower of either the Nyquist frequency of the data or the
maximum frequency of the template waveform. In con-
trast, the lower frequency cutoff flow is a parameter that
can be tuned in optimizing the search algorithm.

To search a region of parameter space, many template
waveforms from points spread throughout the region need
to be matched filtered. The locations of these points are
chosen by constructing a metric on the parameter space gij
[21–24]. This metric describes the distance between points
based on the fractional loss of SNR associated with
matched filtering a signal waveform from one point in
parameter space with a template waveform from another
point. To second order in the parameter differences ��i,
the fractional loss of SNR, or mismatch m, is given by

m ¼ 1

2
gij��

i��j; (3)

where the metric is given by projecting out dimensions of
the parameter space from normalized Fisher matrix,

g�� :¼ ð@�hj@�hÞ
ðhjhÞ ; (4)

that are associated with extrinsic parameters, which can be
maximized either analytically or efficiently. Here @� is the

partial derivative with respect to parameter ��. The density
of templates is then governed by the maximum amount of
mismatch one is willing to tolerate, or the complement of
this, referred to as the minimal match MM ¼ 1�m.

III. SIGNAL POWER VERSUS TRIALS FACTOR:
OPTIMIZING THE LOWER FREQUENCY
CUTOFF FOR MAXIMUM SENSITIVITY

The goal of designing a search is to maximize the
volume at which we are sensitive to signals for a fixed
false alarm probability (FAP). The first parameter we tune
with this in mind is the lower frequency cutoff. We start
with the distance out to which we can see an inspiral
signal with a fixed SNR �,

D ¼ �

�
: (5)

Changing the lower frequency cutoff changes the power of
the signal that we could possibly recover. If one were to
recover a signal with the same SNR, the distance to which
one could see a signal would vary when the lower fre-
quency cutoff was changed from fref to flow,

DðflowÞ
DðfrefÞ ¼

�ðflowÞ
�ðfrefÞ : (6)

Let us now look at how the observable distance of a
signal is affected when the signal is recovered with a
mismatched template. The observed SNR � will be re-
duced from the SNR obtained by a template that matches
the signal �ref by

� ¼ �refð1�mÞ; (7)

where m is the mismatch between the template that recov-
ers the signal and the actual signal. Equation (5) implies
that the distance to which such a signal will be observable
is reduced by the same factor

Dðfref ; mÞ
Dðfref ; 0Þ ¼ ð1�mÞ: (8)

So far we have focused on the obserable distance of a
signal at fixed SNR. However it is actually the obserable
distance of a signal at fixed FAP that we are interested in.
The FAP associated with a single observation of SNR � is
given by

FAP / exp ½��2�: (9)

The recovered FAP is subject to a trials factor related to the
number of independent trials N we use in looking for a
signal,

FAP0 ¼ 1� ð1� FAPÞN � NFAP: (10)

We can translate a single observation of �observed among N
independent trials to a reference SNR �ref among a differ-
ent number of trials Nref at the same FAP by combining (9)
and (10).

�2
observed ¼ �2

ref þ ln
N

Nref

: (11)

When searching a nonzero measure region of parameter
space, additional trials are accrued proportional to the
volume of the parameter space. The volume of parameter
space is in turn given by the number of templates needed to
cover the parameter space Mtemplates [25],

Ntrials /
Z ffiffiffiffiffiffi

jgj
q

d�d ¼ Mtemplatesm
d=2

�
; (12)

where
ffiffiffiffiffiffijgjp

is the square root of the determinant of the
metric on the space, � is a geometrical quantity associated
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with how the template bank tiles the parameter space,m ¼
1�MM is maximum mismatch allowed in the template
bank covering the parameter space, and d is the dimen-
sionality of the parameter space being tiled (i.e., two for
templates associated with waveforms from nonspinning
objects that are laid out in the two-dimensional mass
space).

Since the metric (4) is defined in terms of the inner
products from (2), the full metric itself is a function of
the lower frequency cutoff, which in turn implies that
the metric density of the mass subspace is also a function
of flow, ffiffiffiffiffiffi

jgj
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgðflowÞj

q
: (13)

The total volume we can observe is proportional to the
cube of the distance, thus the ratio of the volume we can
observe for a mismatched signal at a given value of flow to
the volume we could observe a matched signal with a
reference lower frequency cutoff fref is found by combin-
ing (6), (8), and (11)–(13),

Vðflow; mÞ
Vðfref ; 0Þ ¼ �3ðflowÞ

�3ðfrefÞ
ð1�mÞ3�

1þ 1
�2ðfref Þ ln

�R ffiffiffiffiffiffiffiffiffiffiffiffiffi
jgðflowÞj

p
d�dR ffiffiffiffiffiffiffiffiffiffiffiffi

jgðfref Þj
p

d�d

��
3=2

:

(14)

We call this the relative volume. For two-dimensional
template banks, a hexagonal covering of templates follow-
ing the A�

2 lattice will result in a distribution of mismatches
that is essentially flat between 0 and the maximum mis-
match [25]. Using this fact, the average relative volume is
found to be

FIG. 1. (a) shows different PSDs associated with different eras of the H1 LIGO detector. (b) shows different PSDs associated with
different eras of the Virgo detector. (c) shows different PSDs associated with detector networks from different eras. The H1H2L1V1
network PSD associated with the S5/VSR1 era is given by the harmonic sum of individual detectors’ PSDs. For the S6/VSR2-3 and
aLIGO/AdV eras, an H1L1V1 network is used. (a) H1 PSDs; (b) V1 PSDs; (c) harmonic sum PSDs.

TABLE I. We show the increase in the average relative volume
(15) that can be achieved by switching from the standard lower
frequency cutoff to the optimal lower frequency cutoff. The
minimal match in either case is set to be 3%. The volume
increase compared to the standard choice is very small, except
for the V1 VSR1 PSD, where a higher than normal lower
frequency cutoff was employed.

Era Detector fstandardlow (Hz) f
optimal
low (Hz) Volume gain

S5 H1 40 37.3 6:4� 10�5

VSR1 V1 60 38.1 1:9� 10�2

S5/VSR1 H1H2L1V1 40 37.8 4:9� 10�5

S6 H1 40 43.7 2:5� 10�5

VSR2-3 V1 50 16.8 1:5� 10�1

S6/VSR2-3 H1L1V1 40 34.0 7:0� 10�4

aLIGO H1 10 9.6 1:3� 10�5

AdV V1 10 17.6 1:7� 10�3

aLIGO/AdV H1L1V1 10 10.1 8:6� 10�7
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hVðflow;mÞi
hVðfref ;0Þi ¼ �3ðflowÞ

�3ðfrefÞ
hð1�mÞ3i�

1þ 1
�2ðfref Þ ln

�R ffiffiffiffiffiffiffiffiffiffiffiffiffi
jgðflowÞj

p
d�dR ffiffiffiffiffiffiffiffiffiffiffiffi

jgðfref Þj
p

d�d

��
3=2

;

(15)

where the average of the mismatch term in the numerator is
given by

hð1�mÞ3i ¼ 1� 3

2
mþm2 � 1

4
m3: (16)

The average relative volume can be maximized with the
proper choice of flow for a fixed value of the template bank
maximum mismatch.

IV. WIDER OR DENSER?: MAXIMIZING
SENSITIVITYAT FIXED COMPUTATIONAL COST

In the face of limited computational resources, we must
consider not only how to maximize the sensitivity of a
search through the choice of the lower frequency cutoff,
but we must also ensure that our choices of the lower

TABLE II. Similar to Table I, we show the increase in the average relative volume (15) that
can be achieved by switching to the optimal lower frequency cutoff. However, here the reference
lower frequency cutoff is set to the minimum frequency at which a detector’s PSD is reported.

Era Detector fminimum
low (Hz) foptimal

low (Hz) Volume gain

S5 H1 30 37.3 2:0� 10�6

VSR1 V1 10 38.1 3:5� 10�5

S5/VSR1 H1H2L1V1 10 37.8 1:7� 10�4

S6 H1 40 43.7 2:5� 10�5

VSR2-3 V1 10 16.8 1:1� 10�3

S6/VSR2-3 H1L1V1 10 34.2 5:5� 10�3

aLIGO H1 9 9.6 2:5� 10�6

AdV V1 10 17.6 1:7� 10�3

aLIGO/AdV H1L1V1 9 10.1 2:2� 10�5

FIG. 2. (a) shows the average relative volume Vtotal as a function of lower frequency cutoff for the H1 LIGO detector during the S5
era. (b) and (c) show the same for the Virgo detector and H1H2L1V1 detector network for the VSR1 and S5/VSR1 eras, respectively.
Each panel also contains traces for the contributions to the average relative volume from the recoverable SNR V� and the trials factor
Vtrials. (a) H1 S5 PSD; (b) V1 VSR1 PSD; (c) H1H2L1V1 S5/VSR1 harmonic sum PSD.
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frequency cutoff and the minimal match satisfy the con-
straint on the total computational costCtotal. This constraint
can be viewed as a combination of two effects: the com-
putational cost of filtering the data with a single template
waveform Cfilter multiplied by the computational cost as-
sociated with Ntemplates such filters

CtotalðflowÞ ¼ NtemplatesðflowÞCfilterðflowÞ
¼ CfilterðflowÞ�m�d=2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgðflowÞj

q
d�d: (17)

Using this constraint, we seek to maximize the constrained
average relative volume

hVðflowÞi
hVðfrefÞi ¼

�3ðflowÞ
�3ðfrefÞ

hð1�mðflowÞÞ3i
hð1�mðfrefÞÞ3i

� 1�
1þ 1

�2ðfref Þ ln
�R ffiffiffiffiffiffiffiffiffiffiffiffiffi

jgðflowÞj
p

d�dR ffiffiffiffiffiffiffiffiffiffiffiffi
jgðfref Þj

p
d�d

��
3=2

; (18)

with the proper choice of flow and mðflowÞ.
Assuming one is able to computationally preform the

search for a given combination of lower frequency
cutoff fref and maximum mismatch mðfrefÞ, the maximum

mismatch at any other choice of lower frequency cutoff
flow satisfying the constraint on the computational cost can
be solved for easily,

mðflowÞ ¼ mðfrefÞ
�
CfilterðflowÞ

R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgðflowÞj
p

d�d

CfilterðfrefÞ
R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgðfrefÞj
p

d�d

�
2=d

: (19)

The computational cost of filtering data with a single
template will depend intrinsically on the implementation of
a search. As a first example, it could be independent of the
choice of flow, as is the case in the FINDCHIRP algorithm
[26] where data is processed with fast Fourier transforms
using fixed length chunks.
In a different algorithm where data is analyzed in the

time domain using finite impulse response (FIR) filters, the
computational cost would be set by the number of taps in
the FIR filter. This is proportional to the length of the
waveform T, given to Newtonian order by

TðflowÞ ¼ 5

256M5=3
½ð4�flowÞ�8=3 � ð4�fhighÞ�8=3�; (20)

where M ¼ ðm1m2Þ3=5ðm1 þm2Þ1=5 is the chirp mass of
the binary system.

FIG. 3. (a) shows the average relative volume as a function of lower frequency cutoff for the H1 LIGO detector during the S6 era. (b)
and (c) show the same for the Virgo detector and H1L1V1 detector network for the VSR2-3 and S6/VSR2-3 eras, respectively. Each
panel also contains traces for the contributions to the average relative volume from the recoverable SNR V� and the trials factor Vtrials.
(a) H1 S6 PSD; (b) V1 VSR2-3 PSD; (c) H1L1V1 S6/VSR2-3 harmonic sum PSD.
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Alternatively, if one were able to change the sampling
rate associated with the template filter continuously, one
could reduce the computational cost by filtering the data
with a changing local sampling rate such that the frequency
of the signal at any time was always equal to the local
Nyquist frequency of the filter. In this approach, the

computational cost would be proportional to the number
of cycles in the signal waveform,

NcyclesðflowÞ ¼ 1

64�8=3M5=3
ðf�5=3

low � f�5=3
high Þ: (21)

TABLE III. We show the gain in the constrained average relative volume (18) that can be obtained by changing from the standard
choice of lower frequency cutoff and maximum mismatch to the optimal choice. The computational cost for each of these calculations
is set using the algorithm listed under ‘‘Cost.’’ Most of these searches are optimized by increasing the lower frequency cutoff and
decreasing the maximum mismatch (i.e., increasing the density) of the template bank.

Detector Era Cost fstandardlow , mstandard
max f

optimal
low , m

optimal
max Volume gain

S5 H1 Fixed 40 Hz, 3% 49.1 Hz, 2.4% 4:5� 10�3

VSR1 V1 Fixed 60 Hz, 3% 50.1 Hz, 2.8% 6:2� 10�3

S5/VSR1 H1H2L1V1 Fixed 40 Hz, 3% 50.2 Hz, 2.3% 5:3� 10�3

S6 H1 Fixed 40 Hz, 3% 55.7 Hz, 2.6% 3:5� 10�3

VSR2-3 V1 Fixed 50 Hz, 3% 37.8, 6.2% 1:8� 10�2

S6/VSR2-3 H1L1V1 Fixed 40 Hz, 3% 51.2 Hz, 2.2% 7:9� 10�3

aLIGO H1 Cycles 10 Hz, 3% 14.4 Hz, 1.1% 2:1� 10�2

AdV V1 Cycles 10 Hz, 3% 22.0 Hz, 0.56% 3:7� 10�2

aLIGO/AdV H1L1V1 Cycles 10 Hz, 3% 15.0 Hz, 1.0% 2:3� 10�2

aLIGO/AdV H1L1V1 LLOID 9.7 Hz, 3% 14.2 Hz, 0.84% 2:8� 10�2

FIG. 4. (a) shows the average relative volume as a function of lower frequency cutoff for the proposed H1 LIGO detector during the
aLIGO era. (b) and (c) show the same for the proposed Virgo detector and H1L1V1 detector network for the AdV and aLIGO/AdV
eras, respectively. Each panel also contains traces for the contributions to the average relative volume from the recoverable SNR V�

and the trials factor Vtrials. (a) H1 aLIGO PSD; (b) V1 AdV PSD; (c) H1L1V1 aLIGO/AdV harmonic sum PSD.
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Finally, as an application of this method to a pipeline
proposed to search for binary neutron star (BNS) signals
with low latency in the Advanced LIGO (aLIGO) sensitive
band, we consider the computational cost of the LLOID
algorithm [27]. The LLOID algorithm partitions the wave-
forms into S time slices and filters the waveform portions
of slice s at a power of two sampling rate fs such that the
Nyquist frequency of the slice is just greater than the
largest frequency of any of the portions of the waveform
in that slice. In addition, for each slice, the LLOID algo-
rithm decomposes the Ntemplates template waveform

portions into Ls
bases basis vectors using singular value de-

composition [28]. These basis vectors are used as FIR
filters of Ns

taps taps for slice s. The computational cost of

filtering a bank of waveforms with this algorithm is domi-
nated by the filtering costs of the basis vectors and the
reconstruction costs of turning the basis filter outputs into
outputs of template filters,

NFLOPS ¼ 2
XS�1

s¼0

fsLs
basesðNs

taps þ NtemplatesÞ; (22)

where FLOPS refers to the number of floating point op-
erations per second.
Let us look at how the different pieces of LLOID’s

computational cost will change with varying flow. For a
particular slice, as flow is reduced, the template waveforms
that go into the singular value decomposition matrix will
more densely cover the region of parameter space, result-
ing in a larger number of waveforms that will need to be
reconstructed (i.e., Ntemplates will increase). However, the

number of bases Ns
bases needed reconstruct the template

waveforms to a specific accuracy is invariant for the
minimal matches we are interested in [29]. Finally, the
number of slices kept will depend on flow as each slice
covers a different frequency range of the waveforms. Thus,
the total computational cost of the LLOID algorithm can
be written as

NFLOPS ¼ AðflowÞNtemplates þ BðflowÞ; (23)

where AðflowÞ and BsðflowÞ are defined appropriately with
respect to (22). For this algorithm, (19) takes a different
form,

FIG. 5. (a) shows the constrained average relative volume as a function of lower frequency cutoff for the H1 LIGO detector
during the S5 era. (b) and (c) show the same for the Virgo detector and H1H2L1V1 detector network for the VSR1 and S5/VSR1 eras,
respectively. The computational cost of the searches associated with these eras is given by the fixed cost algorithm. Each panel
also contains traces for the contributions to the constrained average relative volume from the recoverable SNR V�, the trials
factor Vtrials, and the average template bank mismatch hVmi. (a) H1 S5 PSD; (b) V1 VSR1 PSD; (c) H1H2L1V1 S5/VSR1 harmonic
sum PSD.
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mðflowÞ ¼ mðfrefÞ

0
BBB@

AðflowÞNref

R ffiffiffiffiffiffiffiffiffiffiffiffiffi
jgðflowÞj

p
d�dR ffiffiffiffiffiffiffiffiffiffiffiffi

jgðfref Þj
p

d�d

AðfrefÞNref þ BðfrefÞ � BðflowÞ

1
CCCA

2=d

;

(24)

where Nref :¼ NtemplatesðflowÞ.

V. EXAMPLES

In this section we apply the methods from Secs. III and
IV to the (expected) sensitivities of several past and future
detectors. In particular, we investigate the LIGO and Virgo
PSDs from S5/VSR1 [30], S6/VSR2-3 [31,32], and the
expected advanced detector PSDs for aLIGO [33] and
AdV [34]. We also consider joint detector analyses where
the individual detectors PSDs are combined by taking the
harmonic sum, which yields the same combined SNR as
either the coherent network SNR or the sum-of-squares
SNR associated with a coincident search [35,36]. These
PSDs can be seen in Fig. 1. The parameter space we focus
on for these comparisons is that associated with searches
for BNS signals from nonspinning objects. Using the

stationary phase approximation, we expand the template
waveforms to Newtonian order in the amplitude and 3.5
post-Newtonian order in the phase. The metric for these
waveforms is given in [24]. With this focus, we approxi-
mate the ratio of the integrated metric density by a point
estimate such that the mass of each object is 1.4 M�,R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgðflowÞj

p
d�dR ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgðfrefÞj

p
d�d

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgBNSðflowÞj
jgBNSðfrefÞj

s
: (25)

It should also be noted that, in this approximation, we
assume that the effects from the bulk of parameter space
dominate over effects from the boundaries. For parameter
spaces where the effects of the boundaries are non-
negligible, more care will be needed in computing the ratio
of the integrated metric densities and how they relate to the
trials factor and computational cost.

A. Choice of flow

First we optimize the choice of the lower frequency
cutoff of an inspiral search for different detectors without
regard to the computational cost. Table I summarizes the
results for all of the detector combinations mentioned,

FIG. 6. (a) shows the constrained average relative volume as a function of lower frequency cutoff for the H1 LIGO detector during
the S6 era. (b) and (c) show the same for the Virgo detector and H1L1V1 detector network for the VSR2-3 and S6/VSR2-3 eras,
respectively. The computational cost of the searches associated with these eras is given by the fixed cost algorithm. Each panel also
contains traces for the contributions to the constrained average relative volume from the recoverable SNR V�, the trials factor Vtrials,
and the average template bank mismatch hVmi. (a) H1 S6 PSD; (b) V1 VSR2-3 PSD; (c) H1L1V1 S6/VSR2-3 harmonic sum PSD.
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compared to the ‘‘standard’’ choice of the lower frequency
cutoff. For the most part, this is a very small effect, as can
be anticipated through the logarithmic dependence of the
effect of the trials factor in (15). The largest differences
between the standard choice and the optimal choice occur
for the Virgo detector during VSR1, which increases the
sensitivity of the search by 15%. This seems to be attrib-
uted to a rapid decrease in the recoverable SNR that is seen
between about 55 and 60 Hz.

Table II makes a similar comparison, although here the
standard lower frequency cutoff choice is replaced by the
minimum reported frequency associated with a particular
PSD. It is particularly interesting to see the trials factor
effect associated with the Virgo detector during VSR1. In
that case, the difference between the minimum choice of
10 Hz and the optimal choice of 38.1 Hz is a few parts in
105. What is interesting about this comparison is the large
difference in the lower frequency cutoff choices. As Virgo
detector’s PSD from VSR1 had a very shallow slope at the
low frequency end, it provides a good example of how
the effect of the trials factor can grow more quickly than
the SNR gain as the lower frequency cutoff is lowered.
More detailed sensitivity comparisons can be found in

Figs. 2–4, which separately show the effect of varying
lower frequency cutoff on the recovered SNR and on the
trials factor effect as a function of the lower frequency
cutoff. The example described above associated with the
Virgo VSR1 PSD can be seen in Fig. 2(b).

B. Fixed computational cost

We now consider the task of choosing optimal values
for both the lower frequency cutoff and the minimal match
of the template bank subject to the constraint of fixed
computational cost. Table III shows a comparison between
the standard values and the optimal values chosen using the
algorithm proposed in this paper. In addition to the detec-
tor/era associated with a particular PSD and the standard
and optimal choices for the minimal match and lower
frequency cutoff, this table also lists the computational
cost algorithm that is appropriate for a given search.
We see that including the constraint on the computa-

tional cost produces a larger effect than optimizing the
lower frequency cutoff alone without the constraint. It is
interesting to note that for the majority of the cases inves-
tigated, the optimal choice involves reducing the computa-
tional cost through raising the lower frequency cutoff and

FIG. 7. (a) shows the constrained average relative volume as a function of lower frequency cutoff for the proposed H1 LIGO detector
during the aLIGO era. (b) and (c) show the same for the proposed Virgo detector and H1L1V1 detector network for the AdV and
aLIGO/AdVeras, respectively. The computational cost of the searches associated with these eras is given by the cycles cost algorithm,
(21). Each panel also contains traces for the contributions to the constrained relative average volume from the recoverable SNR V�, the
trials factor Vtrials, and the average template bank mismatch hVmi. (a) H1 aLIGO PSD; (b) V1 AdV PSD; (c) H1L1V1 aLIGO/AdV
harmonic sum PSD.
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then reinvesting the computational savings into increasing
the density of the template bank.

As before, we also show a more detailed comparison of
the constrained optimization of the lower frequency cutoff
and minimal match as a function of the lower frequency
cutoff. This can be found in Figs. 5–8. In this situation, the
largest increase in sensitivity is a few percent, coming
from the proposed AdV detector’s PSD. Figure 7(b) shows
that the majority of the effect here is coming from decreas-
ing the maximum mismatch (i.e., increasing the minimal
match) of the template bank from 3% maximum mismatch
to 0.56% maximum mismatch. In this situation, the drive
toward larger lower frequency cutoffs seems to come from
the reduction in the computational cost per template asso-
ciated with the total number of cycles contained in the
waveform, as opposed to reducing the trials factor effect.

Finally, we also compare the previous choice of lower
frequency cutoff and minimal match suggested in [20]
(i.e., mmax ¼ 5% and lower frequency cutoff such that
fractional SNR loss is 1%) to the optimal choice at the
same computational cost. This comparison can be found in
Table IV. This choice is closer to the optimal choice,
although the optimal choice still provides sensitivity gains
as large as one percent for the aLIGO/AdV detector
network.

VI. CONCLUSION

We have presented an analysis of the two tunable vari-
ables that affect searches for inspiral signals in GW data.
We find that with the minimal match of the template
bank held fixed, there is an optimal choice for the lower
frequency cutoff below which reducing this parameter
reduces the sensitivity of a search that employs a maximum
likelihood ratio estimate of the SNR. This could be seen as
the following inverse result. Even though decreasing the
lower frequency cutoff does not gain significant amounts of
SNR, it still provides discriminating power in determining
the parameters, thus increasing the trials factor associated
with a fixed region of parameter space.
In addition, through careful balancing of the computa-

tional cost associated with the lower frequency cutoff
and the minimal match of the template bank, we show
that improved performance can be achieved at fixed
computational cost. This is the first work that has laid
out a procedure for determining the optimal choice of
these parameters for searches for BNS GW signals from
nonspinning objects. As searches for inspiral GW signals
from other systems can involve additional waveform
parameters, and thus larger computational cost, it will
be important to apply this method to other parameter
spaces (e.g., the parameter space of waveforms from
binary systems that include effects from the objects’
spins) in order to maximize the sensitivity of those
searches.

TABLE IV. We show the gain in the constrained average relative volume (18) that can be obtained by changing from the choice of
lower frequency cutoff and maximum mismatch proposed in [20] to the optimal choice. Again, the computational cost for each of these
calculations is set using the algorithm listed under ‘‘Cost.’’ The choices of [20] are close to optimal, although the advanced detector
network search can be improved by of order one percent when switching to the optimal choices.

Era Detector Cost f
previous
low , m

previous
max f

optimal
low , m

optimal
max Volume gain

S5 H1 Fixed 57.8 Hz, 5% 58.4 Hz, 4.9% 5:3� 10�5

VSR1 V1 Fixed 60.0 Hz, 5% 50.1 Hz, 5.4% 6:8� 10�4

S5/VSR1 H1H2L1V1 Fixed 60.0 Hz, 5% 59.7 Hz, 5.0% 3:2� 10�7

S6 H1 Fixed 67.1 Hz, 5% 63.2 Hz, 5.7% 2:0� 10�3

VSR2-3 V1 Fixed 44.7 Hz, 5% 43.4 Hz, 5.2% 3:0� 10�4

S6/VSR2-3 H1L1V1 Fixed 62.8 Hz, 5% 60.3 Hz, 5.3% 6:7� 10�4

aLIGO H1 Cycles 17.0 Hz, 5% 19.5 Hz, 3.1% 9:7� 10�3

AdV V1 Cycles 28.8 Hz, 5% 31.3 Hz, 3.7% 5:1� 10�3

aLIGO/AdV H1L1V1 Cycles 18.0 Hz, 5% 20.8 Hz, 3.1% 1:1� 10�2

FIG. 8. We show the constrained average relative volume as a
function of low frequency cutoff for the proposed H1L1V1
detector network during the aLIGO/AdVera. The computational
cost of this search is given by the LLOID algorithm. The
contributions to the constrained average relative volume from
the recoverable SNR V�, the trials factor Vtrials, and the average
template bank mismatch hVmi are also shown. It is interesting to
see that the optimal choices for this search are similar to that of a
search where the computational cost is given by the number of
cycles in the template waveform.
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