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Dimensional reduction in the sky
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We explore the cosmological implications of a mechanism found in several approaches to quantum
gravity, whereby the spectral dimension of spacetime runs from the standard value of 4 in the infrared (IR)
to a smaller value in the ultraviolet (UV). Specifically, we invoke the picture where the phenomenon is
associated with modified dispersion relations. With minimal assumptions, we find that UV behavior
leading to 2 spectral dimensions results in an exactly scale-invariant spectrum of vacuum scalar and tensor
fluctuations, regardless of the equation of state. The fluctuation production mechanism is analogous to the
one known for varying speed of sound/light models and, unlike in inflation, the spectrum is already scale
invariant before leaving the horizon, remaining so after freeze-in. In the light of Planck’s recent results we
also discuss scenarios that break exact scale invariance, such as the possibility that the spectral dimension
runs down to a value slightly higher than 2, or runs down to 2 but with an extremely slow transient. We
further show that the tensor to scalar ratio is fixed by the UV ratio between the speed of gravity and the
speed of light. Not only does our model not require inflation, but at its most minimal it seems incompatible
with it. In contrast, we find that running spectral dimensions can improve the outlook of the cyclic/
ekpyrotic scenario, solving the main problems present in its simplest and most appealing realizations.

DOI: 10.1103/PhysRevD.87.123532

I. INTRODUCTION

Over the past few years it has emerged that the phe-
nomenon of running spectral dimensions is a rather generic
prediction of the formalisms in use for the study of the
quantum gravity problem. It was first observed in computer
simulations of causal dynamical triangulations (CDT) [1].
It was then also found in asymptotically safe quantum
Einstein gravity [2,3], Horava-Lifshitz gravity [4,5], space-
time noncommutativity [6,7], spin foams [8—11], multi-
fractional space-times [12,13], and models centered on
the possibility of modified on-shell relations [14].
Finding observable consequences of dimensional reduc-
tion is therefore of great importance for quantum gravity
research.

In this paper we argue that running spectral dimensions
are relevant in cosmology and could leave traces in the
observables supplied by current cosmological data sets. In
doing so, we shall not probe running of spectral dimensions
in full generality. The present understanding of spectral
dimensions is confined to a characterization in terms of
return probabilities for diffusion times in fictitious diffu-
sion processes, a formulation way too abstract to be di-
rectly applicable to cosmology in its current state. Instead
we propose that, at least exploratively, phenomenology be
derived from the observations reported in Refs. [5,14]
suggesting that a large variety of scenarios for the running
of the spectral dimensions can be derived from modified
on-shellness/dispersion relations of the type

E2 = pX(1 + (Ap)?). (1)

Such modifications of the dispersion relation have long
been of interest, for independent reasons, in quantum
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gravity research [15-24] and are here of particular interest
since different choices of the parameter y produce some of
the most studied scenarios for running spectral dimensions.
In particular, adopting (1) in a spacetime with D + 1
Hausdorff dimensions' one finds [5] that the spectral di-
mension for small diffusion times runs down to

D
dy=1+——— 2
s T+ ()

(in this paper we shall assume the number of spatial
dimensions D to be 3). This allows us to make the impor-
tant point that running spectral dimensions can matter for
cosmology by simply finding the cosmological roles of the
exponent y and of the scale A determining the onset of the
running. Naturally, future studies may well show that
different quantum gravity mechanisms for achieving the
same running of spectral dimensions have different impli-
cations for cosmology. Nonetheless we have established
here the possible relevance of running dimensions, provid-
ing tangible phenomenological motivation for more refined
model-dependent analyses.

The plan of this paper is as follows. In Sec. II we lay out
the cosmological perturbation formalism for theories with
modified dispersion relations (MDR), explaining how they
have the potential to produce primordial fluctuations with-
out inflation. In Sec. III we present some results on running
spectral dimension from MDR. Then, in Sec. IV we

"We refer here to the Hausdorff dimension of a Euclidean
space as defined by the scaling of the volume of a ball B(R) of
radius R, e.g. in RP one has Vp ~ R and the Hausdorff
dimension is D.
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highlight the observation that most quantum gravity stud-
ies favor a value of dg of about 2, which in our approach
can be modeled through values of y of about 2. We make
the point that running of spectral dimensions to dg = 2 is
intimately connected with a scale-invariant spectrum of
cosmological perturbations. We find that for y = 2 the
spectrum of cosmological perturbations is scale invariant,
even without inflation, both for modes inside and outside
the horizon, and for all equations of state.

For the rest of the paper we take this understanding for
dg = 2 (7y = 2) as the starting point for other observations
of potential relevance for cosmology. In Secs. VA and VB
we take into account the evidence provided by Planck [25],
showing that the spectrum of cosmological perturbations is
indeed approximately, but not exactly scale invariant. This
leads us to suggest two possibilities. It could be that the
correct UV value of dg is not exactly 2 but rather slightly
larger (a possibility modeled here with a -y slightly smaller
than 2). Alternatively we could have a very slow transient
from the IR regime, with 4 spectral dimensions, to a UV
regime with dg = 2. Intriguingly this is possible only
because the CMB spectrum is slightly red, rather than
slightly blue. In Sec. VC we compute the spectrum of
primordial gravity waves. We find that the tensor-to-scalar
ratio is controlled by the UV ratio between the speed of
gravity and that of light. This would have to be rather small
to comply with observations.

Our work does not require inflation or any other standard
way to solve the horizon and structure formation problems.
However, in Sec. VI we examine how our results might be
combined with inflation and the ekpyrotic universe. While
we find incompatibility with the former, we discover the
pleasant result that scenarios with running spectral dimen-
sions might fix the main shortcomings found in the sim-
plest realizations of the latter. In the concluding section we
summarize our main results, highlighting the challenges
they raise to the quantum gravity community.

II. COSMOLOGICAL PERTURBATIONS

It is known that suitable density fluctuations would be
formed in the early universe as a result of a fast change in
their speed of propagation [26]. Bimetric varying speed of
light theories [27] and tachyacoustic cosmology [28] are
two possible ways of putting this mechanism to work. The
minimal bimetric theory leads to scale-invariant perturba-
tions but it is also possible to obtain deviations from strict
scale invariance, subject to consistency relations involving
the 3-point function [29,30]. It is also possible to imple-
ment this mechanism via deformed dispersion relations
[31], as we now review.

The class of MDR on which we are focusing allows us a
formulation in terms of a higher order derivative (HOD)
theory where only higher order spatial derivatives are used,
thereby fending off ghosts. Assuming that the gravitational
equations are still those of Einstein gravity, the key equa-
tion for the cosmological perturbations is then
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v+ [c2k2 — —]v = 0. 3)
a

In terms of the variable v the (comoving gauge) curvature
perturbation is given by { = —v/a. In this equation, as
usual in cosmology, modes are labeled by a comoving
(constant) k, which is nothing but the conserved charge
associated with translational invariance. However, the
physical wave number of the mode is given by

k
p=-, “4)

a
i.e. the expansion stretches the wavelength of the mode.
This is the p that enters the MDR, for example (1). The
speed ¢ appearing in (3) is to be obtained from the MDR,
with ¢ = E/p. Specifically, for the MDR (1) we find for

Ap > 1
E
c="« (ﬁ)y 5)
p a

We see that if we focus on a fixed comoving mode, as is
usual in cosmology, the presence of a frequency-dependent
speed of light translates into a time-dependent speed of
light by proxy, via the expansion.”> Considering that
a = n=1 with € = 3(1 + w), where w = p/p is the equa-
tion of state, we can make contact with the law ¢ « n~¢
used in [26], with

(6)

In (3) we find a competition between the pressure term
(the first, describing inside-the-horizon acoustic oscilla-
tions) and the tachyonic mass term (the second, describing
the Jeans instability, for outside the horizon modes). All
scenarios considered here are predicated on having solved
the horizon problem, i.e. the first term dominates first, then
the second. Since for a constant w we have that a”’/a o
1/m? this translates into condition a > 1 if 17 > 0. Thus for
an expanding Universe we must have

1 2y — 1

3 <w< 3 @)
The situation is different for contracting models, as we will
show in Sec. VI B.

III. RUNNING SPECTRAL DIMENSION FROM
MODIFIED DISPERSION RELATION

As mentioned in the Introduction, MDR can be used as
tools for realizing a running spectral dimension reproduc-
ing the dimensional reduction in the UV encountered in
several quantum gravity and discrete space-time scenarios

%For the models considered here the phase speed (w/k) and
group speed (dw/dk) are the same in the UV up to a factor of
order 1.
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[1-13]. For our purposes it is useful to think of the spectral
dimension as the effective dimension probed by a fictitious
random walk process. Given a (Euclidean) spacetime with
Hausdorff dimension D + 1 such a process will be gov-
erned by a differential operator A,, which for A =0
reproduces the ordinary Laplacian, and a diffusion time
parameter s. The average return probability is given by

d‘pdE
(2 7T)d+1
where Q,(p) is the MDR obtained from the momentum

space representation of our generalized Laplacian. The
spectral dimension is given by

dln P(s)
din(s)

P(s) = efsﬂA(p), (8)

ds(s) = =2 )

Notice how dy is in general a scale-dependent quantity, in
particular, in flat space for large values of the diffusion
parameter it coincides with the topological dimension
D + 1 while in the short distance, UV, regime s — 0 it is
sensitive to the details of the MDR and can assume non-
integer values. It is easy to check that in a 3 + 1 dimen-
sional spacetime with ordinary dispersion relation one has
ds(s) = 4 independently of the scale. We now specialize to
the case of Q,(p) = E% + f,(p?) with

£1(p?) = p*(1 + (Ap)™). (10)

For the case y = 1 we have (see Fig. 1)

5
lim,_ods(s) =3, lim_wds(s) =4 (11)

For the case y = 2 (quadratic plus sextic dispersion rela-
tion) we have (see Fig. 2)

lim _odg(s) = 2, lim ,_,,ds(s) = 4. (12)
For the case y = 3 (quadratic plus eighth power disper-
sion relation) we have
dy(s)
40¢
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FIG. 1 (color online). Running spectral dimension for
quadratic plus quartic dispersion relation (A = 1).
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FIG. 2 (color online). Running spectral dimension for qua-
dratic plus sextic dispersion relation (A = 1).

4
lim ._ods(s) = 3

lim_.dg(s) =4. (13)

As a last case let us consider a dispersion relation of the
kind f,(p?) = p*(1 + (Ap)*> + (Ap)*) (quadratic plus
quartic plus sextic). This, as shown in Fig. 3, has the
same asymptotic behavior of our case y = 2, but with a
smoother transition from the IR regime of d(s) = 4 to the
UV regime of dg(s) = 2.

These results show that the values of d(s) in the UV and
the IR are dominated, respectively, by the lower and upper
value of the powers of k appearing in the MDR. In
particular, to the UV value of dg¢ = 2, the one found in
simulations of CDT, we find the associated MDR which
exactly reproduces a scale invariant spectrum via a mecha-
nism which we describe in the next section.

dy(s)

l= — — I I ! S
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FIG. 3 (color online). Comparison of running spectral dimen-
sion for (blue/dashed line) quadratic plus quartic plus sextic
dispersion relation (A = 1) and (purple/continuous line) qua-
dratic plus sextic dispersion relation (A = 1). The presence of
the quartic term, while leaving unchanged the asymptotic UV
and IR behaviors, renders the onset of the running smoother.
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IV. PERVASIVENESS OF SCALE INVARIANCE
FOR dg =2

As discussed above the deformed dispersion relation
E? = p*(1 + (Ap)") (14)

appears in a number of different situations, seemingly
interconnecting them. In particular, it is associated with
Horava-Lifshitz (HL) theory for an anisotropic scaling
with dynamical critical exponent z = 3, a theory known
to be power-counting renormalizable [4]. Before the ad-
vent of HL theory it was known [31] that this dispersion
relation leads to a scale-invariant spectrum of density
fluctuations without appealing to inflation. This important
remark was later picked up in the context of HL theory
[32], where it was noted that the result is independent of
the assumption of detailed balance.

Here we return to the work of [31], where the depen-
dence of scale invariance purely on (14) was first studied,
and investigate its significance from the standpoint of
dimensional reduction. As noted at the end of Sec. II, for
an expanding universe we need —1/3 <w <1 for the
modes to start inside the horizon. The modes can then be
appropriately normalized and their vacuum fluctuations
computed, and followed as the modes leave the horizon.
In [31] this exercise was performed, solving (3) in terms of
Bessel functions for all values of -y and w. It was found that
v = 2 leads to ng = 1 universally. Here, instead of repeat-
ing the more rigorous treatment, we explain qualitatively
the pervasiveness of scale invariance for this dispersion
relation. We use a simple trick for deriving the spectrum.
We first find out the modes’ expression well inside the
horizon and then their time dependence well outside the
horizon. Then we match the two expressions at horizon
crossing. This will be enough to determine the spectrum
left “frozen-in” outside the horizon.

Using the notation w = ck, we know that inside the
horizon (wn >> 1) the modes are to be set to the appro-
priately normalized WKB solution

eikadﬂ e—i.BCk"l

Jok ek

[where B8 = 1/(a — 1) > 0]. These modes will then be
pushed outside the horizon (wn < 1), where we find the
growing mode solution, v = F(k)a. Where the two re-
gimes meet (at wn ~ 1) these two solutions should match,
fixing the frozen-in spectrum F(k).

Why do we get pervasive scale invariance? We see that
for the dispersion relation (14) inside the horizon the
spectrum of v is already scale invariant. Specifically in-
serting ¢ = (Ak/a)? [c.f. Eq. (5)] into (15) we get

(15)

e*iﬁck'r]

~ W“(ﬁ)- (16)
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Moreover, when we match this expression with v = F(k)a
both solutions have the same time dependence up to a phase.
Therefore the spectrum left outside the horizon is the same
as inside the horizon (the factors of a just cancel out when
we do the matching). This sheds light on the pervasiveness
of scale invariance for this MDR. The background equation
of state does not matter for two reasons. The spectrum left
outside the horizon is scale invariant because inside the
horizon the modes already are scale invariant and already
have the time dependence that they will have after they
leave the horizon. Therefore the details of the matching
(where the equation of state typically enters) are irrelevant:
the modes simply are scale invariant in all regimes.

This is quite unlike inflation, where the modes start off
as v ~ ekn/ 2k (i.e. not scale invariant), only to become
scale invariant in a near-deSitter background as they exit
the horizon. This is because they must match v = F(k)a
for k|n| ~ 1, and near de Sitter @ ~ 1/|n|. This induces the
extra factor of 1/k, rendering the spectrum scale invariant.

Itis remarkable that dimensional reductionto dgy = 2 cast
in this guise (MDR, spatial HOD theory, Einstein gravity)
implies strict scale-invariant fluctuations. While the argu-
ment in this section explains better why scale invariance is
so pervasive from the cosmology side, the real challenge is
to understand this result directly from the properties of
dimensional reduction. We will attempt this in a future
publication, but this is a matter for the whole community.

V. FURTHER COSMOLOGICAL RESULTS

In this section we extend the previous results, which
should be seen as a ““zeroth order” solution to the problem.
We explain how deviations from exact scale invariance
might be achieved. We also derive the spectrum of tensor
fluctuations and the tensor to scalar ratio.

A. Deviations from exact scale invariance
for v not exactly 2

Given the difficulties in obtaining suitable fluctuations
without inflation, it is already something of a victory to
derive an exactly scale-invariant spectrum without appeal-
ing to inflationary expansion. However, the Planck results
[25] prove conclusively that there is a small deviation from
exact scale invariance, favoring a slightly red spectrum, to a
significance level of about 6 sigma. Given our results there
are several possible explanations for this. At its most direct,
the Planck results imply that the UV spectral dimension
should be a fractional dimension slightly larger than 2.

It is not difficult to repeat the argument in Sec. IV away
from strict scale invariance (v = 2). The mode matching
procedure now gives us

1 (a\r?

to be performed at
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FIG. 4 (color online). The 1-sigma implications of the Planck
results for the UV spectral dimension dg, as a function of the
background equation of state w.

Ak
wn = ckn = (—)ykn ~ 1. (18)
a

As we see, no longer do the factors of a cancel out, so the
spectrum left outside the horizon is not that found inside
the horizon, and the expression of a(7) will come into play
bringing the equation of state w into the final result.
Carrying out the algebra we find that for a general y we
have

ey —2)

yoetl (4

ns_l=

i.e. except for v =2 and ng = 1, the relation between
ng and vy is w dependent. Consulting the ‘“‘dictionary”
presented in Sec. II, as well (2), we can convert the
Planck results into a band of possible dg for given w.
The result is plotted in Fig. 4.

B. Deviations from exact scale invariance
with slow running

An alternative explanation is that in the UV dg = 2 but
with a very long transient linking the UV and IR regimes.
Therefore when the modes we now observe first left the
horizon they were experiencing an effective y not yet
settled on 2, and so slightly smaller than 2. This argument
can only produce a slightly red spectrum, rather than blue,
and even then the transient has to be cooked up to be very
slow indeed, as we now show.

Let x = ckm. For modes such that Ap << 1 we have
x oy o 1/T (ignoring the matter epoch, and denoting
the temperature by T), describing their evolution from
outside (x > 1) to inside (x << 1) the horizon in the stan-
dard big bang universe. Studying the evolution of the
current horizon size with the temperature, we find that
when it reaches size A the value of x is
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Tenm\2 A
Xa ~( CMB) - (20)
Tp / Ly

Including the matter epoch in the calculation slightly com-
plicates the algebra at several steps, leading to

T 2 A
x*“*zm< CMB) A @1
TPI L Pl

where 7oy ~ 10* is the redshift of matter-radiation
equality. Since the normalization of the spectrum requires
A~ 10°Lp, (see [31] and also the next subsection), we
have that at the end of the varying-c epoch in the life of
this mode we must have x, ~ 1075, Before this Ap > 1,
and so

y—etl

x=cknoxc 7, (22)

which tells us the value of ¢ when the mode first left the
horizon.

We find that the mode that is now entering the horizon
(which pegs the relevant observational scale) first left the
horizon when ¢ was

55y
c~ 10771 (23)

(using units where ¢ = 1 nowadays). This is associated
with momenta:

Ap ~ 1077, (24)

For y =~ 2 this number is always larger than 10?7, depend-
ing on the equation of state. For w = 1/3, we have € = 2,
and so the relevant scale is Ap ~ 10%°. Therefore if we
want a dispersion relation with an effective y not yet
settled to 2 when Ap is this large we need a very special
expression, say of the form

E? = m? + p*(1 + (Ap)?P)), (25)

2

P = 2 T log L+ (ap)

(26)

This expression has the right limits (v — 0 for Ap — 0;
vy — 2 for Ap — o0), but it exhibits a very slow UV
(but not IR) transient, as required. Note the degeneracy
in the UV between C and the power of Ap inside the
logarithm (here chosen to be 2). For small deviations
from scale invariance (19) becomes

ns = 1=3——(y~2), @7)

and so we can convert (24) (with 7y set to 2) and (26) into
the constraint

" €

For w = 1/3 (e = 2) this translates into C = 0.909 (i.e. a
number of order one) in order to obtain, say ng = 0.96.

C (28)
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FIG. 5 (color online). The spectral index predicted for our
slow-running dispersion relation with C =1 as a function of
the primordial background equation of state. The superposed
band represents the 68% error bar from the recent Planck results.
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FIG. 6 (color online). Running spectral dimension for the
dispersion relation exhibiting a slow UV transient, with A = 1
and C = 0.909, such that it leads to n; = 0.96. The spectral
dimension does eventually settle on 2, but with a very long
transient.

Reciprocally, with C = 1 this model predicts ng = 0.964.
Improving the calculation (eschewing Taylor approxima-
tions) this is corrected to

ng =~ 0.9633. (29)

Restoring the w dependence, leads to Fig. 5.

In Fig. 6 we have plotted the running of spectral dimen-
sions (computed as in Sec. III) associated with this disper-
sion relation.

C. Generation of primordial gravity waves

A third improvement upon our zeroth order result con-
cerns tensor modes. The equation for gravity waves is
identical to (3). As a matter of fact in HL theory, strictly
speaking, this equation is only valid for tensor modes, with

PHYSICAL REVIEW D 87, 123532 (2013)

the setup for scalar modes used in [32] an adaptation by
analogy. Regardless of the context, it is important to point
out that the MDR for gravity and for matter need not be the
same, so even if the equation for the perturbations is the
same, the expression for ¢ could be different.

Indeed, even if the MDR have the same form (1) and
exponent vy it could be that the scale A is not exactly the
same, e.g. massless matter particles could satisfy (1) but
gravitons, instead, be subject to

E* = p*(1 + b*(Ap)™). (30)

The parameter b is a numerical (dimensionless) factor
which could arise from all sorts of reasons. If this is the
case, then we have a frequency-dependent speed of light
and of gravity, both as in (5), but the ratio between the two
at high energies is

£ = (31)

We now explain how b is also the ratio between the
amplitudes of scalar and tensor modes. For simplicity we
assume 7y = 2 but the calculation that follows carries
through in the more general case.

The amplitude of the scalar fluctuations spectrum may
be obtained from the argument given in Sec. IV by keeping
track of all relevant proportionality constants. This pro-
duces the result

Ly\2
B = A2 ~ (TP) , (32)
implying that A/Lp ~ 10° (see also [14]). Defining a vari-
able {; for tensor modes in an analogous way, the same
calculation for their amplitude leads to

Lo\2
KBL2 = A2 ~ b2<TP) . (33)
Thus the tensor to scalar ratio is
A
r= A—T = (34)
S

(here defined in terms of variables so that r = 1 when ¢, =
¢,,)- We conclude that the high energy ratio between the
speeds of light and gravity is therefore also the ratio
between the amplitude of tensor and scalar modes. So as
to comply with observations we therefore need the speed of
gravity to be smaller than the speed of light in the UV limit.

The argument on r remains unchanged when y # 2, so
that ng = ny # 1. But for all we know at this stage in the
game, we could contemplate scenarios where 7 is different
for matter and gravity, i.e. yg # yr, so that ng # ny as
well.

VI. INTERACTION WITH OTHER SCENARIOS

Our model uses the mechanism for producing structure
based on the varying speed of sound/light scenario [26,33,34].
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As such it works without appealing to more conventional
mechanisms, such as inflation. Nonetheless in this section
we examine how a direct combination of dimensional
reduction as modeled here would interact with the infla-
tionary and ekpyrotic scenarios.

A. Inflation

At least in a direct combination, inflation and our MDR
are incompatible (but we stress that a more subtle inter-
weaving might fare better). If w < —1/3, so that 5 <0,
then the only way for the first term in (3) to dominate the
second at early times would be to require a < 1, i.e. y <
€—1=(1+3w)/2 [cf. Eq. (6)]. Since w < —1/3, this
implies

y <0, (35)

but we already have a y = 0 term in the dispersion rela-
tions (the E? = p? low-energy term). Thus, unless at high
energies we cancel this term (and replace it with a lower
power), this cannot work, at least at face value.

B. The ekpyrotic scenario

The apparent no-go we found for inflation does not apply
to the ekpyrotic scenario [35-38]. In a contracting universe
with w > —1/3, we have n < 0. As with inflation, for the
first term in (3) to dominate the second at early times,
we still require a <1, ie, y<e—1=(1+3w)/2
[cf. Eq. (6)]. This now imposes the constraint

2y — 1
w > 73 , (36)

and there is nothing wrong with it, for a large range of y.
For our favored (14), for example, we have -y = 2 and this
requirement simply means w > 1.

Remarkably, the calculation for the fluctuations
described above still applies with minimal adaptation. In
particular (14) is still associated with a scale-invariant
spectrum (for all w > 1, now). The modes inside the
horizon still satisfy (15) and so already are scale invariant,
and proportional to a (which is now decreasing in time).
Outside the horizon we must check the form of the growing
mode, since usually growing and decaying modes are
interchanged in contracting universes (compared to
expanding ones). We find two solutions:

v % a, (37)
Uy * M (38)
a

and we see that when w > 1 the growing mode still is the
mode proportional to a (something that does not happen if
w < 1). As aresult the mode matching exercise leads to the
same scale-invariant result.

More generally formula (19) is still valid in ekpyrotic
scenarios when y # 2, but now a red spectrum implies
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FIG. 7 (color online). The 1-sigma implications of the Planck
results for the UV spectral dimension dg, within a basic one-field
ekpyrotic model.

running to a spectral dimension smaller than 2. The
implications of Planck results in this case are plotted in
Fig. 7. For large w the prediction for the spectral index
becomes weakly dependent on w, with the result

ds_z
d¢— 1

ng—1=2-—y=3 (39)

It is interesting that a combination of dimensional
reduction (or more precisely MDR) and the ekpyrotic
scenario removes some of the major shortcomings found
in its simplest and most appealing realizations [35,38].
Specifically,

(i) we now find a scale-invariant spectrum in ¢ (rather

than in ® only);

(i1) the growing mode is the frozen-in time-independent
mode, instead of an unstable, time-dependent mode,
as in conventional scenarios.

These problems have led to the construction of more com-
plex multifield models [39-42]. We point out here that the
simplest models can be fixed, should dimensional reduc-
tion play a role close to the bounce. Furthermore we only
need w > 1, rather than w — oo, to realize a viable struc-
ture formation scenario.

VII. CONCLUSIONS

We conclude by laying down a series of challenges set
by the results we have derived. In this paper we have shown
how under basic assumptions dimensional reduction has
clear implications in cosmology. The assumptions are rep-
resentation of the phenomenon by modified dispersion
relations; representation of MDR by spatial HOD field
theories; and Einstein gravity. It is reasonable to expect
that some of our findings will prove to be generic for
theories with running spectral dimensions, rather than
specific to their MDR interpretation. Still it would be
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important for this research program to find more direct
evidence of this general applicability.

For example, in Sec. IV we showed how running to
a UV 2 dimensional world is intimately associated with
“pervasive” scale invariance: fluctuations which are scale
invariant inside and outside the horizon, and for all equa-
tions of state. We shed light on this phenomenon from the
cosmology side. However, we feel this raises another chal-
lenge directed to the quantum gravity community: to
understand this remarkable result directly from the prop-
erties of spectral dimensional reduction. Such an under-
standing would prove the generality of our conclusion.

We then took the results on scale invariance in Sec. IV as
a benchmark, or a “zeroth” order cosmological require-
ment, and went beyond models that produce strict scale
invariance. We found two ways in which dimensional
reduction may be tuned to produce deviations from strict
scale invariance, as those seen by the Planck satellite
(Secs. VA and V B). First, it could be that the UV spectral
dimension to which one runs is not exactly 2, but it is
slightly higher. The exact figure is not universal and
depends on the background equation of state (see Fig. 4).
We note with interest that there is some cursory evidence
for this scenario in CDT computer simulations (e.g. [43]).
But it could also be that we do run to dg¢ = 2 but with a
very slow UV transient. We quantified this “‘slowness”
carefully at the end of Sec. VB, and we propose that a
thorough investigation of this possibility be performed in
the various scenarios being considered in the study of the
quantum gravity problem.

Beyond the zeroth order cosmology we also examined
the spectrum of gravity waves. A further challenge to the
quantum gravity community arises from the phenomenol-
ogy of tensor modes. We obtained the ratio between tensors
and scalars in terms of the UV ratio between the speed of
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gravity and that of light, . But for all we know from
quantum gravity theory it could be that the exponent vy
entering their MDR is different as well, so that the tensor
and scalar spectral indices are different (ng # ny).
Currently this remains a completely unconstrained possi-
bility within quantum gravity theory, with no relation
between r, ng, and ny. Therefore there are no a priori
consistency conditions in terms of these observables, just
like there are in inflation, something that should be seen as
a shortcoming. The possibility that further theoretical work
in quantum gravity might change this state of affairs should
therefore be cherished, and taken up as a challenge. Ideally
the theory should provide exact values for yg, y7, and b,
but even a constraint between them would be helpful.

In this paper we restricted ourselves to issues that could
be investigated without a detailed description of interac-
tions. This is justified by the rather preliminary state of
progress in the description of interactions within most
theories that can motivate MDRs. However, the payoff
for facing this challenge would be substantial on the cos-
mology side, since it would allow one to examine non-
Gaussianities in this class of models.

We also feel that it would be important to look deeper
into the interplay between dynamical dimensional reduc-
tion and the inflationary and ekpyrotic scenarios, which
was here only preliminarily explored.
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