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Self-interacting dark matter resolves the issue of cuspy profiles that appear in noninteracting cold dark

matter simulations; it may additionally resolve the so-called ‘‘too big to fail’’ problem in structure

formation. Asymmetric dark matter provides a natural explanation of the comparable densities of baryonic

matter and dark matter. In this paper, we discuss unique indirect detection signals produced by a minimal

model of self-interacting asymmetric scalar dark matter. Through the formation of dark matter bound

states, a dark force mediator particle may be emitted; the decay of this particle may produce an observable

signal. We estimate the produced signal and explicitly demonstrate parameters for which the signal

exceeds current observations.

DOI: 10.1103/PhysRevD.87.123531 PACS numbers: 95.35.+d

I. INTRODUCTION

A number of scenarios have been put forth for explaining
why the amounts of dark matter and ordinary matter are
relatively close to each other, within one order of magni-
tude. One of the popular approaches is to consider dark
matter with a conserved particle number and a particle-
antiparticle asymmetry related to matter-antimatter asym-
metry [1–21]. (For a recent review, see, e.g., Ref. [22]).
Such asymmetric darkmatter does not annihilate at present,
and, as long as it is stable, no indirect detection signals are
expected in gamma rays or neutrinos. At the same time,
some inconsistencies between numerical simulations of
cold dark matter and the observations hint at the possibility
of self-interacting darkmatter [23–36]. Indeed, interactions
of dark-matter particles can facilitate the momentum trans-
fer and angular momentum transfer in halos, hence creating
cored rather than cuspy density profiles in both dwarf
spheroidal galaxies and in larger halos. There is a variety
of particle-physics candidates for self-interacting dark mat-
ter, which include, e.g., hidden-sector particles with gauge
[30], or Yukawa interactions [37], as well as nontopological
solitons with a large enough geometrical size [26].

In this paper we will show that, if dark matter is both
asymmetric and self-interacting, then its detection in
gamma rays is possible. Although asymmetric dark matter
particles do not annihilate, their interactions can result in
emission of quanta of the field that mediates the self-
interaction. We will investigate several methods of produc-
ing these quanta and decay paths; on the production side, we
particularly consider emissions occurring in elastic scatter-
ing (as bremsstrahlung), or in the events of two interacting
particles forming a bound state. The latter is plausible
because a number of models have employed attractive
self-interaction, such as, for example Yukawa fields.

To illustrate the possibilities of indirect detection, we
will consider a fairly generic model of scalar dark matter S
interacting by means of exchange of some lighter scalar
field �, both of which are singlets of the Standard Model
gauge group. The mediator field � can have a nonzero
mixing with the Higgs boson, and, therefore the � boson
can decay into photons and other Standard Model particles,
even if its couplings to Standard Model particles are other-
wise highly suppressed. This decay ultimately produces the
signal detectable by gamma-ray telescopes.
The paper is organized as follows. In Sec. II, we discuss

the relevant features of the particle physics model under
consideration. In Sec. III, we consider the bound state for-
mation and the prospects of indirect detection of darkmatter
forming bound states. Finally, in Sec. IV,we discuss possible
signals from bremsstrahlung of self-interacting dark matter.

II. THE MODEL

We begin this section by introducing the minimal
particle physics model that we will use. Following this,
we discuss properties of the dark matter halo within the
Milky Way. We then discuss the relevant constraints on the
parameters present in the model in general, although de-
tailed discussion of the implementation of these constraints
is contained in later sections where the signal from brems-
strahlung and bound state formation is explicitly calcu-
lated. Then finally we discuss the decays of the dark force
mediator.

A. Dark sector

We begin with a specific model of the relevant particle
physics. We supplement the Standard Model with a com-
plex scalar SUCð3Þ � SULð2Þ �UYð1Þ singlet S; we also
introduce a global USð1Þ symmetry under which
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S ! ei�S; Sy ! e�i�Sy: (1)

Without a loss of generality we may assume S particles
carry unit USð1Þ charge. Because of charge conservation,
the S particles are completely stable.

We will assume that dark matter is composed of the S
particles, and the correct abundance is generated in some
process similar to or combined with baryogenesis. We do
not assume that dark matter is necessarily a thermal relic.
To make this dark matter self-interacting, we introduce an
additional scalar field � which is a singlet under all the
gauge symmetries, as well as USð1Þ. The most general
potential, after the Standard Model gauge symmetry is
spontaneously broken, is

V ¼ M2h0�þm2
SS

ySþm2
�

2
�2 þm2

h

2
ðh0Þ2 þ Ahðh0Þ3

þ A��
3 þ A�SS

yS�þ A�hðh0Þ2�þ Ah��
2h0

þ AhSS
ySh0 þ �SðSySÞ2 þ ��

4
�4 þ �hS

2
SySðh0Þ2

þ �h

4
ðh0Þ4 þ ��S

2
�2SySþ ��h

4
�2ðh0Þ2: (2)

The Higgs field h0 and the � field carry identical
quantum numbers and therefore mix. The true mass
eigenvalues are

m2
1;2 ¼

1

2

�
m2

h þm2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

h �m2
�Þ2 þM4

q �
; (3)

and the eigenstates are

�1 ¼ cos ð�M=2Þh0 þ sin ð�M=2Þ�; (4)

�2 ¼ � sin ð�M=2Þh0 þ cos ð�M=2Þ�; (5)

where the mixing angle is

tan ð�MÞ ¼ M2

m2
h �m2

�

: (6)

We will require that the mixing between the Higgs field
and the � field be small; this can be accomplished by
setting the free parameter M appropriately. Then we may
speak of the � fields and Higgs fields as approximate mass
eigenstates with masses mh and m�, respectively; this
allows the mass m� to be small even though no light scalar
boson has been observed.

We assume that any interactions between the dark sector
particles (S, Sy, and �) and the particles of the Standard
Model are highly suppressed.

Finally, we note that the relevant unitless coupling to
describe the Yukawa interaction between the S and �
particles is � ¼ A2

�S=16�m
2
S. This can be established in

two ways. Regarding bound states, it is well known that the
Bethe-Salpeter equation reproduces the ground state en-
ergy of the hydrogen atom. Therefore, one may determine
� by setting the binding energy of the lowest bound state,

A4
�S=1024�

2m3
S, equal to �2mS=4, which includes the

correction for identical particles. Secondly, one may con-
sider the nonrelativistic limit of two particle scattering. We
recall that quantum-field-theoretic wave functions include
a normalization factor of 1=

ffiffiffiffiffiffiffiffiffi
2mS

p
for each S particle.

Therefore, the relevant prefactor before the overlap inte-
gral for one particle exchange is 4�� ¼ A2

�S=4m
2
S, which

again gives � ¼ A2
�S=16�m

2
S. If one instead defines � ¼

A2
�S=4�m

2
S, as in [38] for example, then additional factors

of 4 must be introduced in other equations, e.g., the bound
state mass.

B. Dark matter in the Milky Way

Let us now discuss the assumptions that we will make
regarding the properties of dark matter in the Milky Way
halo. First, we assume that the correct abundance of S
particles is determined by some process that is similar to
baryogenesis or related to baryogenesis, as in models
reviewed in Ref. [22]. The absence of antiparticles in
today’s Universe eliminates the possibility of a signal
from SSy annihilation.
We use the Navarro-Frenk-White (NFW) profile [39] to

approximate the spatial mass distribution of dark matter:

�ðrÞ ¼ �0

ðr=RsÞð1þ r=RsÞ2
: (7)

We do not expect this profile to be accurate near the center
of the Galaxy; indeed, one of the motivations of self-
interacting dark matter is to remove the cusp present at
r ¼ 0 in the NFW profile. Therefore, we will cut off our
integrals at scales of 1 kpc. We emphasize that our results
are not dependent on the sharp cusp present in the NFW
profile. The parameters �0 and Rs are related to the virial
mass, virial radius, and concentration by

Rs¼ rvir
C

; �0¼ Mvir

lnð1þCÞ�C=ð1þCÞ
1

4�R3
s

: (8)

For the Milky Way, we use the parameters Mvir ¼ 1:0�
1012M�, rvir ¼ 258 kpc, andC ¼ 12 [40]. This givesRs ¼
3:4� 1036 GeV�1 and �0 ¼ 1:4� 10�42 GeV4.
In calculating the cross sections for bremsstrahlung

emission of � particles and bound state formation, we
will need to average over the relative velocities of the
particles. Therefore, we need the velocity distribution
PðvðrÞÞ as a function of the distance from the center of
the Galaxy. If the dark matter has virialized, then its
average circular velocity should decrease near the
Galactic center, except for a small region near the super-
massive black hole. However, the dark matter radial veloc-
ity profile and dispersion are currently unknown.
Because of these uncertainties, we will instead use a

Maxwellian distribution with the effective temperature Teff

chosen such that the average velocity is 220 km=s. We note
that simulations support the assumption of a locally
Gaussian velocity distribution even for cold dark matter
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[41], and the isothermal approximation is better for self-
interacting dark matter [42,43]. The velocity distribution
for two nonrelativistic S particles is

Pðv1; v2Þdv1dv2

¼ ð4�Þ2
�

mS

2�Teff

�
3
e�mðv2

1
þv2

2
Þ=2Teffv2

1v
2
2dv1dv2: (9)

In terms of the total velocity vT ¼ v1 þ v2 and the relative
velocity vrel ¼ v1 � v2, the distribution is

Pðvrel;vTÞdvreldvT

¼ð4�Þ2
8

�
mS

2�Teff

�
3 �e�mSðv2

rel
þv2

T Þ=4Teffv2
relv

2
TdvreldvT:

(10)

We integrate over the total velocity to find the relative
velocity distribution (in a reference frame at rest with
respect to the Milky Way):

PðvrelÞdvrel ¼ 4�ffiffiffi
8

p
�

mS

2�Teff

�
3=2

e�mSv
2
rel
=4Teffv2

reldvrel: (11)

Because the S particles are moving nonrelativistically, this
distribution also applies to their center of momentum
frame. We observe that this is peaked at slightly larger
velocities than the velocity distribution of a single particle.

C. A general discussion of constraints

Thus far, we have introduced a model which provides
a viable dark matter candidate. We introduced several
parameters in the Lagrangian describing our model
(e.g., the self-interaction coupling). These parameters can-
not be set arbitrarily; there are numerous constraints they
must satisfy, from both astrophysics and particle physics.
In this subsection, we will give only a general discussion of
these constraints; the specifics of how the constraints are
implemented will be discussed when particular values for
the coupling constants are chosen, which will be done
separately for bremsstrahlung emission and bound state
formation. Since we aim to demonstrate that this model
produces an observable indirect detection signal, we de-
mand that it satisfy all experimental constraints except
those from indirect detection experiments.

First, we require that this model make only insignificant
modifications to the branching ratio for the decays of the
Higgs boson. We forbid the decay h0 ! SSy by requiring
mS >mh02 � 63 GeV, using the recent Higgs mass mea-
surements [44,45]. The decay h0 ! �� can be arbitrarily
suppressed by taking A�h to be sufficiently small; this
parameter is not used elsewhere in our analysis. We also
demand that the mixing angle �M be small enough that the
apparent branching ratio for h0 ! � is less than the
branching ratio for the h0 ! �� decay.

There are many well-known bounds on the self-
interaction cross section of dark matter. As explained in

[37], these constraints more appropriately restrict �T , the
momentum transfer cross section. [For identical particles,
the closely related viscosity cross section should be used
instead [46]. In the limitmS �v=m� � 1, which will be valid
for our parameters, these differ byOð1Þ [46] and so we will
ignore this complication.] The bullet cluster bound re-
quires �SS=mS & 0:7 cm2=g [47], and bounds from the
evaporation of galactic halos favor �SS=mS & 0:1 cm2=g
[35]. These bounds appear to be in conflict with the pre-
ferred range to eliminate cuspy profiles, 0:56 cm2=g &
�SS=mS & 5:6 cm2=g [24,25].
However, because these bounds affect vastly different

scales, they may be resolved by considering a velocity
dependent into the cross section, as naturally arises in the
Yukawa exchange of a light boson [37,48]. Furthermore,
such a cross section may additionally solve the ‘‘too big to
fail’’ problem [34,35,49]. For an attractive Yukawa poten-
tial, as we have introduced above, the bounds are consistent
for Yukawa interactions provided that the masses mS and
m� satisfy particular relations given in [34,50]. The precise

constraint is a function of vmax ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�m�=�mS

p
, the ve-

locity at which v�T peaks at a transfer cross section equal
to �max

T ¼ 22:7=m2
�.

Additional bounds on the self-interaction cross section
arise from observations of halo ellipticity, as introduced in
[51], although these bounds are quite model-dependent.
Yukawa couplings are discussed in [31], which uses the
observed elliptical shape of the dark matter halo of galaxy
NGC 720. If the self-interaction between the S particles is
too strong, the energy transfer from these collisions makes
the halo spherical instead of elliptical. Reference [31]
presented analyses for masses up to 4 TeV; however, we
will consider masses above this. Furthermore, as has been
noted by [35], these bounds may in fact be somewhat
weaker due corrections from the triaxial distribution of
dark matter outside of the core; however, as they note,
more detailed simulations are required to firmly establish
this conclusion. We discuss these issues in more detail in
Appendix A, in which we extend the halo ellipticity bounds
to the relevant mass range.
Direct detection experiments such as XENON100 [52]

and CDMS [53] have set an upper bound on the cross
section for the interaction between S particles and nucle-
ons; because this interaction occurs through the exchange
of a Higgs boson, this constrains AhS. The stability of
neutron stars generally imposes stronger constraints on
AhS [54–57] but these constraints do not apply to scalar
dark matter with masses at the TeV scale or above [58]. We
will not use AhS in our analysis; therefore, it can be set
arbitrarily small. These constraints can also constrain the
quartic interaction between self-interacting dark matter
[59]; we may also set this arbitrarily small because it will
not be used in our analysis. We note that while we can
arbitrarily suppress the S-nucleon interaction which
occurs through the exchange of a Higgs boson, there is
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an additional diagram in which the S boson emits a �
boson, which turns into a Higgs boson via mixing, which
is then absorbed by the nucleon. Although we are not free
to arbitrarily suppress this diagram, as one might expect,
this cross section is beneath current direct detection limits;
we discuss it in more detail in Appendix B.

D. Decays of the dark force carrier particle

From the constraints discussed above, we have seen that
the mass m� must be relatively small. However, these dark
force mediator particles are not necessary stable, and their
decays can potentially produce detectable signals. Later in
the paper we will discuss how these � bosons are produced
(for example, though bound state formation or bremsstrah-
lung); in this section, we will simply discuss their decays
irrespective of their production. Because of the nonzero
�-Higgs mixing, a � particle has the same decay modes as
the Higgs boson, provided that they are kinematically
allowed. The amplitudes are suppressed by the �-Higgs
mixing parameters. Since the mass m� must be small, we
consider the decays � ! �� and � ! eþe�.

Form�� a few MeV, the dominant decay is � ! eþe�.
The decay rate in the rest frame of the � boson is

�eþe� ¼ g2Wm
2
em�sin

2ð�M=2Þ
32�m2

W

�
1� 4m2

e

m2
�

�
3=2

; (12)

where gW is the weak coupling constant.
If m� < 2me, the decay � ! eþe� is kinematically

forbidden, and instead the dominant decay is � ! ��.
In the � particle’s rest frame, the decay rate is

��� ¼ sin 2ð�M2 Þ�2g2W
1024�3

m3
�

m2
W

��������X
i

Ncie
2
i Fi

��������2

: (13)

In this equation, � � 1=137, gW is again the weak
coupling constant, Nci is the number of color states of
the particle in the loop, and ei is this particle’s electric
charge. The dominant contributions to the loop will be
from electrons, up quarks, and down quarks, for which

F ¼ �	ð1þ ð1� 	Þfð	ÞÞ; (14)

where 	 ¼ 4m2
i =m

2
h, and

fð	Þ ¼
8><
>:
�
arcsin ð ffiffiffiffiffiffi

1	
p Þ

�
2

	 	 1;

�ðln ð
þ
�Þ � {�Þ2 	 < 1;
(15)

and 
� ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffi
1� 	

p
.

We note that in a reference frame in which the � particle

is moving with speed v, its gamma factor is � ¼
ð1� v2Þ1=2 and its lifetime is 	 ¼ �=�.

For the product of decay to be observed, the particles
must decay in flight before they travel the distance� 8 kpc
separating Earth from the Galactic center. For our choice of
parameters, the mean distance traveled in the Milky Way’s
rest frame before decaying is significantly shorter than this
distance. We also note that we do not need to take into

account scattering when calculating decays of � bosons
because the collisions are rare (see Appendix C).
To determine the signal produced by our model, we also

need to know the width of the energy distribution of the
decay products. The above decays are two body decays;
therefore, in the rest frame of the � particle the energy
spectrum of the decay products is a sharp line at m�=2.
This energy spectrum must be boosted into the Milky Way
reference frame, in which the � particles are moving with

speed v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� �m2

�

p
=E�. Because the � boson is

spinless, the energy distribution is flat.
For decays to an electron and positron, the energy

distribution is

PðEeÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE2
� �m2

�Þð1� 4m2
e=m

2
�Þ

p (16)

for Ee between the values of

Ee;max ; Ee;min ¼ E�

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE2
� �m2

�Þð1� 4m2
e=m

2
�Þ

p
2

:

Similarly, for decays to two photons, the energy
distribution is

PðE�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� �m2

�

p (17)

for Ee between the values of

E�;max ; E�;min ¼ E�

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� �m2

�

p
2

:

III. DARK MATTER BOUND STATES

It has previously been observed that many models of
self-interacting dark matter, including supersymmetric
models, permit the existence of dark matter bound states
[38]. The same reference notes that the decay of emitted
force carrier particles could, in theory, produce a signal for
indirect detection experiments. Therefore, wewill begin by
explicitly calculating the produced signal for the above
asymmetric scalar dark matter model. We will establish
that it is indeed possible to produce a signal above current
observational bounds, establishing the possibility of indi-
rect detection of asymmetric self-interacting dark matter.
However, we will further show that the limit � 
 1, as
taken in [38], does not produce a detectable signal.

A. Choice of parameters

We begin by discussing in more detail the constraints
that our parameters must satisfy. To facilitate the formation
of bound states, we desire a large coupling A�S; we will
choose � ¼ A2

�S=16�m
2
S ¼ 2. Although calculations in

the strongly interacting regime are notoriously difficult,
the astrophysical bounds determined in [31,50] may be
extrapolated to these regimes; in both references, the
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transfer cross section used includes corrections for the
strongly interacting regime, as the authors note. We will
also consider � ¼ 1 and show that this is not sufficient to
produce an observable signal.

First, we ensure that our parameters are consistent with
elliptical halos; as discussed in [31], the restriction on �
becomes weaker as m� is increased. In Appendix A, we
have determined the minimum m� for which we may
consistently choose � ¼ 2 as a function of mS. We choose
mS ¼ 4 TeV, which requires that we choose m� *
30 MeV; we will take m� ¼ 40 MeV. Similarly, for mS ¼
4 TeV and � ¼ 1, we must satisfy m� * 20 MeV; we
choose m� ¼ 25 MeV.

We must also ensure that our parameters are consistent
with the astrophysical data. The velocity for which v�T ¼
�max

T is vmax ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�m�=�mS

p
; this is 1100 and

2000 km=s, respectively, for the two sets of parameters
above. To be consistent with astrophysical data, we then
must have �max

T =mS � 100 GeV�3 [50]; the above num-
bers correspond to 0.2 and 9 GeV�3.

In order to produce a bound state, a real � particle must
be emitted; therefore, we must also have m� 
 B, where
the binding energy B ¼ �2mS=4. For the first set of pa-
rameters chosen, the binding energy is 4 TeV, and for the
second set of parameters, B ¼ 1 TeV. For both, m� 
 B.

B. Production of bound states

The rate of formation of bound states, neglecting charge
depletion, is given by

dNBS

dt
¼

Z
nSðrÞ2�BSvreldV; (18)

where nSðrÞ ¼ �ðrÞ=mS is the number density of S p
articles and �BS is the cross section for bound state for-
mation. Because the S particles do not escape to infinity,
this cannot be approximated using the Born approxima-
tion. In Appendix D we present a calculation of this cross
section as a function of the relative momentum jpj ¼ �vrel

where � is the reduced mass of the system. (This cross
section is calculated by adapting the derivation for posi-
tronium formation given in [60] to the case for the ex-
change of a spinless boson). The distribution of relative
momentum of the incoming particles can be found from
Eq. (11) and is given by Eq. (D19). Averaging the above
equation over the relative momentum gives

dNBS

dt
¼

Z
nSðrÞ2dV �

ZZ 2jprelj
mS

�ðjpreljÞPðjpjÞdjprelj:
(19)

The first set of parameters discussed above corresponds
to a cross section of 4:11� 10�2 GeV, which gives the
rate dNBSdt ¼ 2:1� 1014 GeV. In one year, 9:8� 1045

bound states are formed, which means that during the
lifetime of the Milky Way, 1:3� 1056 would have formed.

This is indeed negligible in comparison to the total number
of S particles between 1 and 8 kpc, which is 7:2� 1063.
This justifies our neglect of charge depletion.
If we decrease � to 1, then the cross section drops

by 2 orders of magnitude, to 5:76� 10�4 GeV�3. The
rate is also 2 orders of magnitude smaller, dNBS=dt ¼
2:9� 1012 GeV. Again, we may neglect charge depletion.

C. � boson production and decay

The S particles do not interact electromagnetically.
Therefore, when a bound state is formed, the excess energy
is carried off by a light � particle. Although the binding
energy is large enough that a Higgs boson could be emitted
instead, the � particle dominates because it is lighter and
has a stronger coupling to the S particles. Because of the
nonzero �-Higgs mixing, this � particle has a nonzero
probability to transform into a Higgs boson which then
decays. Given our choices for m�, the dominant decay is
� ! eþe�.
In the rest frame of the Milky Way, the � particles will

have a typical energy equal to the binding energy; the
additional energy the � particle may carry from the kinetic
energy of the nonrelativistic S particles is negligible. Using
Eq. (12), we find that the lifetime of the � boson, in the
Milky Way’s rest frame, is 1:46� 1025 GeV, or 9.61 s, for
the first set of parameters. The distance that they travel
before decaying is 109 m, which is significantly less
than both the distance from the Galactic center to the
Solar System and the mean free path calculated in
Appendix C. For the second set of parameters, the lifetime
is 9:36� 1024 GeV ¼ 6:17 s.
As explained in Sec. II D, the resulting electrons and

positrons have a flat energy distribution; their spectrum is

dNe

dEedt
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðB2 �m2

�Þð1� 4m2
e=m

2
�Þ

p dNBS

dt
: (20)

These electrons and photons have typical energies on or
just below the TeV scale; they lose energy through
synchrotron radiation and inverse Compton scattering rap-
idly, within about 1 kpc [61]. Therefore, few of these
particles will be observed near Earth.

D. Scattering of high energy electrons and positrons

There are three sources of background photons: the
cosmic microwave background (CMB) radiation, starlight,
and the starlight reprocessed by dust (including the extra-
galactic background light, which is the starlight reemitted
by dust outside Milky Way). Outside the central molecular
zone, the cosmic microwave background radiation domi-
nates the photon number density [62]. If the cross section
exhibited a rapid growth with energy, the higher energy
optical photons could have played a role, but this is not
the case for the inverse Compton (IC) cross section. For the
signal from distances between 1 and 8 kpc from the
Galactic center, one may safely neglect scattering from
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photons other than CMB photons. Because of the small-
ness of the IC mean free path, other propagation effects are
not significant.

In Appendix E, we calculate the final energy distribution
for a scattering photon using the Klein-Nishina cross
section; we then average over the appropriate energy
distribution for the electrons and positrons produced by
dark force mediator decays. The rate of the production of
these photons is the rate of production of the high energy
fermions themselves. The end result of this calculation is
described by Eq. (E15), which gives the number of photons
produced by this process per unit energy per unit time;
from this, we can find the flux of gamma rays at the Solar
System.

The production of dark force mediator particles results
in an isotropic flux of these particles about the Galactic
center; similarly, we expect the flux of their decay products
and the scattered photons to be isotropic about the Galactic
center. Therefore, the photon flux per unit area is well
approximated by an equivalent point source at the
Galactic center. We can find the average flux per unit
area, per unit solid angle by further dividing by 2�, since
the signal will appear to come from the hemisphere cen-
tered on the Galactic center. We note that this is an average;
as a function of solid angle, we expect the signal to be
greater near the Galactic center and less further away from
it. We also note that this is only an approximation to the
true diffuse flux, meant to demonstrate that a detectable
signal is possible. (As discussed above, we neglect the
contribution from the Galactic center itself and include
only the contributions from decays outside the inner kilo-
parsec). If such a signal were to be observed, more careful
analysis should be done before attempting to fit this sce-
nario to the data.

Furthermore, we note that the production of the dark
force mediator bosons � scales as the density squared; this
increases as one approaches the Galactic center. Since the
sigma bosons only travel 109 m before decaying into the
fermions which scatter the CMB photons, the signal is
dominated by the innermost region we consider. Since
we have cut off our calculation at an inner radius of
1 kpc to avoid the known cusp in the NFW profile, the
signal comes predominantly from the region near this cut.
Therefore, the point source approximation is better than
one may naively expect. (We remind our reader that due to
this cutoff, this calculation produces an approximate lower
bound on the signal strength).

We find that the average flux over the hemisphere cen-
tered on the Galactic center, neglecting the Galactic center
itself, is

� ¼ dN�;tot

dEdt
� 1

2� st
� 1

4�ð8 kpcÞ2 : (21)

To compare with the sensitivity of the Fermi-LAT
Gamma Ray Telescope, we evaluate E2�; this function

is plotted in Fig. 1. The signal for � ¼ 1 is peaked at a
lower energy and falls off more sharply, as we would
expect because the binding energy is smaller. We see that
� ¼ 2 produces a signal that is one order of magnitude
larger than the values measured by Fermi-LAT, but the
signal produced by � ¼ 1 is 2 orders of magnitude too
small. Therefore, we conclude that sufficiently large cou-
plings may produce a detectable signal. This suggests that
WIMPonium models [38], which assume � 
 1, will not
produce a detectable signal through bound state formation.
One can also show that the resulting signal is rather

insensitive to the precise value of m�, provided that � !
eþe� remains the dominant decay. However, this parame-
ter is highly constrained by the astrophysical bounds dis-
cussed in Sec. II C. Finally, we also note that this signal
depends relatively weakly on the cutoff we imposed to
avoid the center cusp of the NFW profile. If we cut off
the integral at 1 pc instead of 1 kpc, the signal would only
be about 20% greater, although the point source approxi-
mation would be more accurate.

E. Possibility of a positron or electron excess

We will briefly discuss the possibility of producing a
detectable positron or electron signal within this model.
This is a particularly interesting question because of the
positron excess observed by PAMELA [63], which was
confirmed by Fermi-LAT [64] and more recently AMS-II
[65]. In order to travel from the Galactic center to the Solar
System relatively unimpeded, the fermions would need to
be lower energy that those discussed above, which lost
significant energy due to inverse Compton scattering.
Energy loss due to inverse Compton scattering is somewhat

FIG. 1 (color online). Depending on the model parameters, the
signal can range from undetectable to already excluded. The
signal is shown for two values of �, as shown in the legend, and
for mS ¼ 4 TeV, m� ¼ 40 MeV for � ¼ 2, m� ¼ 25 MeV for
� ¼ 1. For comparison, the data from Fermi LAT space tele-
scope are also shown [78].
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suppressed for energies on the GeV scale; therefore, we
will briefly discuss the difficulties of producing electrons
and positrons on this scale.

To produce a significant number of dark force mediator
particles, we desire to keep � relatively large in order to
maintain a large cross section for bound state formation.
However, the energy of the fermions produced by the
decay of the dark force mediator depends only on the
mass of the S particles and �. Therefore, to produce
10 GeV-scale positrons and electrons, we must decrease
mS to be on the scale of a few hundred GeV. This is below
the scale typically discussed in the WIMPonium literature.

Naively, these parameters appear to run into difficulties
with the halo ellipticity bounds such as in [31]; for
example, mS ¼ 100 GeV with � ¼ 2 appears to require
m� ¼ 232 MeV, for which the dominant decay is to
muons instead of eþe�. (However, it should be noted
that the analytic approximation for the cross section
begins to break down at m� � 100 MeV). This appears
to eliminate the possibility of an observable electron or
positron excess.

However, a more detailed analysis of the bounds by [35]
suggests that these bounds should be about an order of
magnitude weaker. In Appendix A, we have parametrized
this uncertainty with the parameter F, which is one if the
considerations of [35] are ignored. If one assumes F� 0:1,
then a small region of parameter space remains which is
consistent with the halo ellipticity bounds and m� is small
enough (50–80 MeV) that the decay to eþe� dominates.

The analysis proceeds as above, up to the point where
one calculates the inverse Compton scattering. For these
lower energy electrons and positron, we do not expect
inverse Compton scattering to be a significant effect.
However, other effects can influence the shape of the
spectrum observed at Earth; for example, we must be
particularly concerned with positron annihilation, which
will generically decrease the detected positron fraction. We
do expect these particles to lose energy due to bremsstrah-
lung. A detailed analysis could be run using cosmic ray
propagation software such as GALPROP.

However, we believe that it is unlikely that the resulting
spectrum could be tuned to reproduce the observed posi-
tron excess observed in PAMELA [63], Fermi-LAT [64],
and AMS-II [65]. The energy spectrum of fermions pro-
duced through the decay of dark force mediator particles is
flat, and while this spectrum will no doubt be modified by a
detailed analysis of propagation from the Galactic center to
the Solar System, we think the resulting E3� is unlikely to
be as flat as that observed by PAMELA. Furthermore, the
positron excess extends to higher energies beyond that
which can be accommodated by our model. Hence, we
conclude that such models are unable to account for this
observed excess.

Finally, we note that it may be possible to adjust the
parameters so that an excess of positrons or electrons

above PAMELA’s observations is produced, although
again careful analysis of the propagation of said fermions
would be necessary. If such an excess can be produced, we
would expect it decrease at or before the TeV scale, at
which point the spectrum would be limited due to inverse
Compton scattering energy losses. Since no such behavior
is observed in PAMELA’s spectrum, one would translate
this into bounds on the parameters. However, since the
parameter space in which such a signal is potentially
possible is already quite small, any resulting constraints
(if any) would be quite weak.

IV. BREMSSTRAHLUNG EMISSION OF DARK
FORCE MEDIATORS

In this section, we will discuss the signal produced by
bremsstrahlung emission of a � boson which decays to
photons. First, we choose our free parameters consistent
the constraints discussed in Sec. II C. Then we calculate
the rate at which � bosons are produced via bremsstrah-
lung near the Galactic center. Finally, we determine the
flux at the Earth and compare with observations by the
INTEGRAL experiment. We will see that while the flux
exceeds the flux produced via bound state production, the
resulting signal is significantly beneath observational lim-
its, due to the substantial background at lower energies.

A. Choice of parameters

In bremsstrahlung emission, the emitted � boson will
carry an energy comparable to the kinetic energy of the S
particles. Since these have a velocity of order 10�3, this
means that the typical energy scale of bremsstrahlung
emission will be 6 orders of magnitude below mS. We
will require m� 
 �v2mS=2 because we do not want an
additional suppression from the difficulty of emitting real
� bosons. This will influence the implementation of the
constraints discussed in Sec. II C. (We note, however, that
due to the contribution of the tail of the relative velocity
distribution, we do not necessarily expect a sharp cutoff at
the average kinetic energy).
The first constraint comes from Ref. [50], which deter-

mines the condition for astrophysical observations to be
consistent with dark matter whose self-interaction is de-
scribed by a Yukawa potential. The precise constraint is a

function of vmax ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�m�=�mS

p
, the velocity at which

v�T peaks at a transfer cross section equal to �max
T ¼

22:7=m2
�. If vmax � 10 km=s, then the astrophysical con-

straints are consistent if 22:7=m2
�mS & 35 cm2=g ¼

16000 GeV�3 [34]; we will verify that we satisfy this
condition below. Combining this with m� 
 �v2mS=2
reveals that we must satisfy

mS �
�

22:7 � 4
�v4 � 16000 GeV�3

�
1=3 ¼ 1:3 TeV: (22)

Let us choose mS ¼ 10 TeV and m� ¼ 0:5 MeV.
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Next let us discuss the bound from halo ellipticity; this
will constrain the coupling A�S. We extended the analysis of
Ref. [31] to mS ¼ 10 TeV in Appendix A; this showed that
for m� ¼ 0:5 MeV and mS ¼ 10 TeV, we prefer to take
� ¼ A2

�S=16�m
2
S & 0:93 although this may be loosened

somewhat. If we choose to saturate this bound, we find
A�S ¼ 68 TeV. These values give vmax � 50 km=s, self-
consistent with our initial assumption that vmax � 10 km=s.

The bremsstrahlunged � boson can be emitted by either
of the S particles; however, it can also be emitted by the �
boson exchanged between the S particles. These diagrams
involve the coupling A�, which is thus far unconstrained.
In order to enhance the signal, we will saturate the pertur-
bativity bound, taking A� ¼ 3:5 MeV. On the other hand,
we will also consider A� ¼ 0, which is equivalent to
neglecting the two diagrams on the right of Fig. 2. While
this certainly will not help to increase our signal, the
properties of the signal will be qualitatively different in
the two cases in interesting ways.

B. Production of � bosons through bremsstrahlung

Next, we must know the cross section for bremsstrah-
lung emission of a soft � boson, which involves evaluating
the 10 diagrams shown in Fig. 2. The derivation of this
cross section, including averaging over the relative velocity
of the incoming particles, is contained in Appendix F.
For the parameters given above, the cross section is � ¼
0:0108 GeV�2. This is the same order of magnitude as the
� ¼ 2 cross section for bound state formation; we note,
however, that we did not have to increase the coupling �
into the nonperturbative regime in order to reach this value.
In general, as we would expect, the bremsstrahlung cross
sections are indeed large in comparison to the bound state
formation cross section.

We should note that this cross section does not include
any enhancement due to Sommerfeld factors; this contri-
bution will be discussed later. Also, although naive esti-
mates would suggest a large enhancement, in this regime
the Sommerfeld factor may be unreliable and a proper

resummation suggests that any enhancement is at most
Oð1Þ to Oð10Þ [66]. This is discussed in somewhat more
detail after the calculation of the cross section in
Appendix F.
The rate of production of bremsstrahlung � bosons is

dN�

dt
¼

ZZ
nSðrÞ2vrel�bremðvrelÞPðvrelÞdVdvrel; (23)

wherenSðrÞ ¼ �ðrÞ=mS is the number density of darkmatter
S particles, and �ðrÞ is given by Eq. (7). We have also
averaged over the relative velocity of the S bosons, and the
integration extends from 1 to 8 kpc, the distance from the
Solar System to theGalactic center. For thegivenparameters,
dN�=dt ¼ 3:21� 1013 GeV, or 4:87� 1037 s�1. Asmight
be expected, for A� ¼ 0, we find the lower rate dN�=dt ¼
1:45� 1011 GeV�1 ¼ 2:20� 1035 s�1. The fact that the
cross section drops by 2 orders of magnitude shows that at
A� ¼ 2:5 MeV, the diagrams inwhich the bremsstrahlung�
boson is emitted by the exchanged� boson dominate. Since
these diagrams are absent for A� ¼ 0, we expect the signals
produced to have qualitative differences.
We will show that bremsstrahlung will not produce a

detectable signal, while we found that for sufficiently large
couplings bound state formation can. Since this is perhaps
a surprising result, one may find it beneficial to compare
with the calculation of the bound state signal at each step to
determine why this is so. We emphasize, however, that
such comparisons must be made carefully, since the bound
state calculations were performed in a different region of
parameter space. We wish to emphasize that for any fixed
perturbative value of �, the rate of bremsstrahlung produc-
tion will always be much greater than the rate of bound
state formation, as one would expect. However, if one
compares the value of dN�=dt found above with
dNBS=dt given in the previous section, which are evaluated
at different parameters, one finds that dNBS=dt is larger by
about an order of magnitude, even though we have chosen
parameters such that the cross sections are comparable.
This is a result of taking mS ¼ 10 TeV here as opposed

FIG. 2. These diagrams contribute to the emission of a bremsstrahlung � boson. The solid lines represent S bosons, while the dashed
lines represent � bosons. The top line represents t-channel scattering, while the bottom line represents u-channel scattering.
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to 4 TeV above; increasing mS decreases the number
density nSðrÞ.

Next we observe that the spectrum of the emitted �
bosons per SS ! SS� event is given by

dN�

dE�

¼ 1

�brem

d�brem

dE�

: (24)

As we might expect, this spectrum is sharply peaked at
600 keV, which is on the same scale as the kinetic energy.
The spectrum of the produced � bosons per unit time is

d2N�

dtdE�

¼
�Z

nSðrÞ2dV
�Z

vrel

d�brem

dE�

PðvrelÞdvrel: (25)

C. Decay of the � bosons and resulting signal

For m� ¼ 0:5 MeV, the dominant decay mode of the �
boson is � ! ��, which is described by Eq. (13). If we
assume the mixing angle between the � boson and the
Higgs boson is 10�3, then the typical lifetime of the
produced � bosons is 105 s, during which they travel about
1014 m, which is significantly less than the 1020 m between
the Galactic center and the Solar System.

The spectrum of the photons produced by the decay of
the bremsstrahlung � bosons is given by

d2N�

dE�dt
¼ 2

Z d2N�

dtdE�

PðE�; E�ÞdE�; (26)

where the distribution of photon energies, as a function
of the initial � boson energies, is given by Eq. (17).
(The E� dependence appears in evaluating the Heaviside

step functions). As we would expect, this spectrum is
peaked around 300 keV. We note that the tail decreases
less rapidly as A� is decreased. As a result, the signal for
A� ¼ 0 will be skewed towards higher energies.

The production of dark force mediator particles results
in an isotropic flux of these particles about the Galactic
center; similarly, we expect the flux of their decay products
to be isotropic about the Galactic center. Therefore, the
photon flux per unit area is well approximated by an
equivalent point source at the Galactic center. We can
find the average flux per unit area, per unit solid angle by
further dividing by 2�, since the signal will appear to come
from the hemisphere centered on the Galactic center. We
note that this is an average; as a function of solid angle, we
expect the signal to be greater near the Galactic center and
less further away from it. We also note that this is only an
approximation to the true diffuse flux, meant to demon-
strate that a detectable signal is possible (and we remind
the reader that we are already neglecting the contribution
from the Galactic center itself).

We find that the average flux at the Solar System is

� ¼ 1

4�d2
� 1

2� st

d2N�

dE�dt
; (27)

where d ¼ 8 kpc is the distance from the Galactic center to
the Solar System. Since we have calculated the number of
produced � bosons out to a radius of 8 kpc, the signal we
calculate here comes from the hemisphere centered on the
Galactic center, which explains the 2� st. We note that this
is the average over the hemisphere; the flux will be some-
what greater towards the Galactic center and somewhat
less towards the edges; however, this is a relatively small
effect, contributing perhaps an order of magnitude increase
as we approach the center.
Again, with the same caveats as above, let us compare

with the bound state case. The photon energies here are
spread out over the scale of 100 keV, whereas the photon
signal for the bound state production is spread over the
scale of 100 GeV. However, a single high energy fermion
produces about 102–103 GeV-scale photons through scat-
tering off of the CMB, while each � boson produced
through bremsstrahlung produces a mere two photons. As
a result, the estimated ratio of fluxes is �brem=�BS � 104

or 105. We note that since the two scenarios are in different
regions in parameter space, this cannot be interpreted as
the ratio of actual bremsstrahlung-produced photons to
bound state produced photons in the Galaxy.
The relevant energy scale for bremsstrahlung emission is

on the scale of hundreds of keV, while the relevant energy
scale for bound state emission is on the scale of a hundred
GeV. Astrophysical backgrounds are significantly larger at
this smaller scale; the SPI instrument on the INTEGRAL
experiment records E2

�� on the order of 1–10 keV=cm2 s st

for energies 20 and 1000 keV [67]. The flux of produced
photons cannot be distinguished from this large background.
The resulting signal is shown in Fig. 3; as we expect,

it is about 8 orders of magnitude smaller than the bound
state formation signal. More importantly, the larger A� ¼
3:5 MeV signal is about 7 orders of magnitude beneath
INTEGRAL’s observations. We also can see the qualitative
difference in the signal shapes alluded to above; this is
because for A� ¼ 2:5 MeV, the rightmost two diagrams of
Fig. 2 dominate, whereas these are absent if A� ¼ 0. We
observe that without these diagrams, the signal is signifi-
cantly smaller, but it is peaked at higher energies.
We have noted above that the calculated cross section does

not include a Sommerfeld enhancement, because some analy-
sis suggests that such large factors are unreliable [66]. Even if
we assume that the naive Sommerfeld factor given by

S ¼ ��=v

1� exp ð���=vÞ (28)

is accurate to arbitrarily large scales, this enhancement is not
sufficient to produce a detectable signal. For the parameters in
the range discussed, the enhancement is of order 103 or 104,
which is still too small to produce the 7 orders of magnitude
amplification required for the signal to be detectable.
The signal can be increased by increasing the couplings;

and indeed, as discussed in Appendix A, there is some
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uncertainty in the halo ellipticity bounds. To produce a
detectable signal requires increasing the coupling � to
�103, well outside the perturbative regime and far beyond
what can be made consistent with the halo ellipticity
bounds. It is true that A� is unrestricted by astrophysical
bounds, but in order to amplify the two diagrams it appears
in to the scale of INTEGRAL’s observations, we would
need to take A�=m� � 103, which is unreasonably large.

Therefore, we conclude that bremsstrahlung emission of
dark force mediator particles cannot produce detectable
signals, although the photon flux is generally significantly
larger than bound state production. One might consider the
idea that even if the signal produced near the Galactic
center is not detectable, perhaps such processes enhance
the gamma ray or x-ray emission of nearby dwarf galaxies
sufficiently to be observable; however, a simple estimate
reveals that this is not the case. Even if the signal calculated
above, for the Milky Way Galaxy, was somehow shrunk
into a dwarf galaxy 40 kpc from us which covered a 3� by
3� patch of the sky, the number of counts expected in an
ideal 1 m2 detector is of order 10�5 keV�1 s�1, which is
again well below the background emission.

V. CONCLUSIONS

We have considered indirect detection signals produced
by a minimal asymmetric self-interacting dark matter.
Because of the USð1Þ asymmetry, the typical indirect de-
tection signal from dark matter annihilation is absent in this
model. However, we demonstrated that asymmetric self-
interacting dark matter can, in fact, produce a strong signal
from the processes accompanying the formation of bound
states, as has been discussed in the WIMPonium literature.

We have found that signals are possible for sufficiently large
couplings. This effect makes possible indirect detection of
asymmetric self-interacting dark matter. The spectrum of
gamma rays can help distinguish collisionless dark matter
from self-interacting dark matter. We have performed ex-
plicit calculations for several sets of parameters; showing
that for� ¼ 2,mS ¼ 4 TeV, andm� ¼ 40 MeV the signal
would be detectable. However, we have shown that this
signal is detectable only in the strongly interacting regime,
by showing that if� is decreased to 1 (keepingmS constant),
the resulting signal is not detectable.
Then we have discussed, albeit briefly, the possibility

that this model could, in a narrow region of parameter
space, produce a detectable excess in electrons and/or
positrons. Additionally, we have also considered the
signal produced by the bremsstrahlung emission of the �
boson. This was calculated for two points in parameter
space (mS ¼ 10, m� ¼ 0:5 MeV, � ¼ 0:93 with A� ¼
3:5 MeV and A� ¼ 0) to demonstrate two limits of spec-
trum shape. However, we have shown that although the flux
of gamma rays can be rather large, the resulting signal is
actually quite small and significantly below backgrounds.
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APPENDIX A: EXTENSION OF BOUNDS FROM
HALO ELLIPTICITY

As was noted in Sec. II C, one constraint on the
self-interaction of dark matter arises from the observed
ellipticity of dark matter halos. In this Appendix, we will
extend the result of [31] to higher dark matter masses. As
has been noted by [35], these bounds may in fact be
somewhat weaker due corrections from the triaxial distri-
bution of dark matter outside of the core; however, as they
note, more detailed simulations are required to firmly
establish this conclusion. Therefore, we will parametrize
our uncertainty by the coefficient F; the numerical simu-
lations presented in [35] could be interpreted as favoring
F� 0:1 for the particular halo model considered.
The dark matter halo will be spherical, as opposed to

elliptical, if collisions which change the particle velocities
by factors of order 1 happen frequently enough. The rate at
which these collisions occur is given by

�k ¼
Z

d3v1d
3v2fðv1Þfðv2ÞðnSvrelF�TÞðv2

rel=v
2
0Þ; (A1)

where�T is the momentum-transfer cross section, given by
�T ¼ R

d�ðd�=d�Þð1� cos ð�ÞÞ, and fðvÞ is the dark

matter velocity distribution. The analytic fit for �T , the
distribution functions, and the relevant parameters for
NGC 720 are all available in [31]. In this reference, they

FIG. 3 (color online). The flux of gamma rays produced by
bremsstrahlung emission of � particles and their subsequent
decay for mS ¼ 10 TeV, m� ¼ 0:5 MeV.
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produce plots of numerical results for mS up to 4 TeV.
However, we will need to consider masses above this, and
therefore, we extend their results to higher masses. We note
that quantum corrections to the cross section become im-
portant if the limit mS �v=m� � 1 is violated; however, all
of our parameters will be in this regime. If not, corrections
such as those discussed in [46] should be included.

In particular, we extrapolate the plot of the critical
coupling � ¼ A2

�S=16�m
2
S to mS ¼ 12 TeV in Fig. 4.

We show the results for m� ¼ 0:5 MeV, relevant for
Sec. IV, and for m� ¼ 3 MeV. We also consider F ¼ 1
and F ¼ 0:1 as suggested by the results of [35].
For m� ¼ 0:5 MeV and mS ¼ 10 TeV, this bound with

F ¼ 1 requires � � 0:93. However, it is substantially
loosened to � � 3:6 if we instead take F ¼ 0:1.
In the discussion of the signal from the formation of

bound states, we desire a large coupling; however, we must
remain consistent with the halo ellipticity bound. As
discussed in [31], this bound becomes weaker as m�

increases. Therefore, we calculate the minimum m� for
which � ¼ 2 or � ¼ 1 is consistent with the observed halo
ellipticity, as a function of mS. The results are shown in
Fig. 5. Again we see that taking F ¼ 0:1 dramatically
weakens the bound.

APPENDIX B: S-NUCLEON INTERACTION
CROSS SECTION

As was noted in Sec. II C, the dominant interaction
between the S boson and nucleons, which is relevant for
direct detection experiments, typically occurs through the
exchange of a single Higgs boson. This diagram is propor-
tional to A�h, which is otherwise unconstrained in our
model, and therefore we can arbitrarily decrease this cou-
pling, thus killing the signal.
However, as we note in the text, there is another diagram

which becomes dominant at sufficiently small values of the
coupling: theS bosonmay emit a� boson,which transforms
into aHiggs bosonviamixing and couples to a nucleon. This
diagram involves the couplingA�S and themixing angle�M.
We cannot take either of these parameters to zero without
eliminating the signal, although the mixing angle may be
quite small. Thus one cannot arbitrarily decrease the
S-nucleon cross section; there is a minimum value set by
this diagram. In this Appendix, we will show that the con-
tribution of this diagram is indeed quite small, as expected,
and causes no tension with direct detection constraints.
We note that the oscillation time scale, which is given by

	osc ¼ 2�E=�m2, is generally many orders of magnitude
smaller than the interaction time scale, which can be
estimated by considering the overlap of the wave functions.
Consequently, averaging over the ‘‘detector scale’’
(nucleon size), along with the source location, will simply
give a factor of 1=2. (This is in contrast with certain
neutrino oscillation experiments, for which 	osc may be
large in comparison to other experimental scales, due to the
small �m2. In our scenario, �m2 �m2

h).

The S particles under consideration are generally much
heavier than the protons; we will use masses between 4 and
10 TeV. Therefore, in the center of momentum reference
frame the S particles are approximately stationary, while
the protons approach at speeds of approximately
220 km=s. The momentum transfer is approximately
2mpv ¼ 1:5 MeV, which is far below the scale at which

the nucleon form factors must be included.
The relevant matrix element is

�iM � 3 �u
i

m2
S �v

2
A�S cos

�
�M
2

�
mq

v
sin

�
�M
2

�
u;FIG. 5 (color online). The minimum value of m� for which

� ¼ 2 or � ¼ 1 is consistent with elliptical halos.

FIG. 4 (color online). A plot of the critical coupling � ¼
A2
�S=16�m

2
S as a function of mS. Couplings below the critical

coupling are consistent with the elliptical shape of darkmatter halos.
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where v is the vacuum expectation value of the Higgs
boson and u, �u are spinors for the proton. This yields

jMj2 � 9

m4
S �v

4

A2
�Sm

2
qm

2
n

v2
cos 2

�
�M
2

�
sin 2

�
�M
2

�
:

Because the velocities are nonrelativistic, the initial energy
squared is approximately ðmS þmnÞ2 � m2

S, which gives

an approximate cross section

� � 1

16�m2
S

� 9

m4
S �v

4

A2
�Sm

2
qm

2
n

v2
cos 2

�
�M
2

�
sin 2

�
�M
2

�
:

Let us consider one of the sets of parameters used in
the bound state cross section; mS ¼ 4 TeV and A�S ¼
20 TeV, corresponding to � ¼ 2. For the average effective
mass of a quark, we use 3MeV, and we choose �M ¼ 10�3.
This gives �� 10�18 GeV�2. All of our other choices for
parameters give a cross section below this value. This is
well beneath the limits from direct detection experiments,
which are 10�43 cm2 or 10�16 GeV�2 [52,53]. There is a
significant uncertainty in the contribution of the s quark to
the effective quark mass. Since the Higgs coupling to s is
much greater than the couplings to u and d, even a rela-
tively small contribution of the sea quarks with higher
masses can dominate the cross section. The measured s
quark contribution, manifest as the nuclear pion-nucleon
sigma term, is uncertain, and the resulting uncertainty in
the cross section can be as large as an order of magnitude
[68]. However, even at the upper edge of the range, the
cross section does not reach the present lowest cross sec-
tions accessible in experiment. Hence, at present, direct
detection experiments do not constrain the scenario we
have considered.

APPENDIX C: MEAN FREE PATH OF DARK
FORCE MEDIATOR PARTICLES

As was noted in Sec. II D, the mean free path for the �
particles in the Galaxy must be greater than the distance
they would travel before decaying; otherwise, constant
scattering can act like a quantum Zeno experiment that
prevents the decay. In this Appendix, we present the cal-
culation for the mean free path and show that it is greater
than the distance from the Galactic center to the Solar
System for the relevant regions of parameter space.

Since the quartic coupling ��S can be made arbitrarily
small, we will assume that the scattering is dominated by

the S� interaction mediated by an S boson; there are two
diagrams that contribute, which are shown in Fig. 6.
We assume that in the lab frame, the� particle is moving

relativistically with energy E�, while the S particle is
moving nonrelativistically with velocity v of order 10�3.
We do not assume any relation between E� and the kinetic
energy of the S particle. Since the cross section is a
relativistic invariant, we may evaluate it in the center of
momentum frame, which under the above assumptions is
attained by boosting by� ¼ E�=ðE� þmSÞ. Keeping only
the largest terms, we find that the initial and final four-
momenta in the CM frame are

p
�
�;i ¼ ð��mS; 0; 0; ��mSÞ;

p
�
S;i ¼ ð�mS; 0; 0;���mSÞ;

p�
�;f ¼ ��mS; ��mS sin ð�Þ; 0; ��mS cos ð�Þ;

p�
S;f ¼ ð�mS;���mS sin ð�Þ; 0;���mS cos ð�ÞÞ;

(C1)

where we have used the fact that the collision is elastic. The
matrix element is

�{M ¼ � A2
�S

m2
S � ðpS;i � p�;fÞ2

� A2
�S

m2
S � ðpS;i þ p�;iÞ2

¼ � A2
�S

2�2m2
S

�
1þ cos ð�Þ

ð1þ �Þð1þ � cos ð�ÞÞ
�
: (C2)

The cross section is given by

� ¼ 1

64�2

Z jMj2
�2ð1þ �Þ2m2

S

d�

¼ A4
�S

128��6ð1þ �Þ4m6
S

Z �

0

�
1þ cos ð�Þ
1þ � cos ð�Þ

�
2
sin ð�Þd�

¼ A4
�S

64�m6
S

2�þ ð1� �2Þ ln ðð1� �Þ=ð1þ �ÞÞ
�6�3ð1þ �Þ5 : (C3)

The mean free path is ‘ ¼ ð�nSÞ�1, where nS can be
found using Eq. (7). Since nS depends on r, the mean free
path will also depend on r; it is the smallest as we approach
the Galactic center. Let us consider some typical parame-
ters. For mS ¼ 5 TeV, A�S ¼ 3 TeV, and E� ¼ 1 TeV,
the mean free path at 1 pc is of order 1036 m. If we decrease
E� to 1 MeV, the mean free path increases to order 1035 m
(at 1 pc again). These values are all much greater than the
1020 m between the Galactic center and the Solar System;
therefore, requiring that the� particles decay before reach-
ing the Solar System provides a stronger bound as claimed.

APPENDIX D: BOUND STATE FORMATION
CROSS SECTION

In this Appendix, we calculate the cross section for two
S particles to form a bound state through the exchange of�
bosons. We emphasize that because the S particles form a
bound state, they do not escape to infinity, and therefore
the Born approximation is not applicable. We note that,FIG. 6. The scattering of � particles on dark matter.
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although the coupling is strong, we are in the classical
regime, because mS �v=m� � 1; therefore we do not need
to include additional quantum corrections such as those
calculated numerically in [46].

We will approximate the � boson as massless. The cross
section for nonrelativistic electrons and positrons to form a
bound state through photon exchange was calculated in
[60]; we adapt this derivation for scalar fields. The matrix
element is

M ¼ �i
Z

�

fðr1; r2Þ

� X
n¼1;2

Ane
�ik�rn

�

��iðr1; r2Þd3r1d3r2ð2�Þ
ðEi � Ef � E�Þ: (D1)

In this equation, r1 and r2 are the locations of the two S
particles, respectively, �f is the wave function of the

bound state, and �i is the wave function for the two
incoming S particles. The factor e�ik�rn represents the
wave function of the � particle, and the sum is over the
two S particles it can couple to. In this equation, the wave
functions have the standard normalization in quantum field
theory; however, since we are interested in the nonrelativ-
istic limit, let us use wave functions that are normalized to
one. Then the matrix element is

M ¼ �i
A�S

2mS

Z
�


fðr1; r2Þðe�ik�r1 þ e�ik�r2Þ
��iðr1; r2Þd3r1d3r2ð2�Þ
ðEi � Ef � E�Þ: (D2)

Next we define

R ¼ r1 þ r2
2

; r ¼ r1 � r2 (D3)

and write the wave functions as

�iðr2; r1Þ ¼ e{Q�R�iðrÞ; �fðr2; r1Þ ¼ e{P�R�fðrÞ;
(D4)

where Q ¼ p1 þ p2 is the total momentum of the initial
particles. Similarly, P is the momentum of the bound state.
After performing the d3R integral, we have

M ¼ �i
A�S

2mS

Z
�


fðrÞðeik�r=2 þ e�ik�r=2Þ�iðrÞd3r
� ð2�Þ4
ðEi � Ef � E�Þ
3ðQ� k� PÞ: (D5)

The reduced matrix element is

�M ¼
Z

�

fðrÞðe{k�r=2 þ e�{k�r=2Þ�iðrÞd3r; (D6)

and the differential probability is

dW ¼ TV

ð2�Þ22E�

A2
�S

4m2
S


ðEi � Ef � E�Þ
3ðQ� k� PÞ

� j �Mj2jkj2djkjd�d3P; (D7)

where V is the normalized volume, T is the interac-
tion time, and d� is the solid angle for the � particle.

The remaining integrals enforce momentum and energy
conservation; we may perform them by directly imposing
these constraints in our calculation. The transition proba-
bility per unit volume and unit time is

dw ¼ A2
�S

4m2
S

jkj2d�
2E�ð2�Þ2

j �Mj2: (D8)

If m� 
 B, then E� � jkj, and this simplifies to

dw ¼ A2
�S

4m2
S

jkjd�
2ð2�Þ2 j

�Mj2: (D9)

The differential cross section is d� ¼ dw=vrel, where vrel

is the relative velocity of the particles in the initial state.
We define the relative momentum by p ¼ �vrel, where
� ¼ mS=2 is the reduced mass. jpj is also the momentum
of one of the incoming particles in the center of momentum
frame; we will now specialize to this frame. (We note that
the cross section is Lorentz invariant, and therefore still
applicable to other reference frames). Then

d� ¼ A2
�S

4mS

jkjd�
jpjð2�Þ2 j

�Mj2: (D10)

The free S particles do not escape to infinity; they exist
only in the initial state. Therefore, at large r,�iðrÞmust be
a superposition of a plane wave and an outgoing spherical
Coulomb wave. (Although our interaction is not electro-
magnetic, the appropriate asymptote is still a spherical
Coulomb wave in the approximation that m� 
 mS).
The appropriate wave function to use is [69] (also
discussed in [60])

�iðrÞ ¼ e��=2�ð1� {�ÞFð{�; 1; {ðpr� p � rÞÞe{p�r;
(D11)

where � ¼ A�SmS=4jpjmS ¼ A�S=4jpj, and F is the con-
fluent hypergeometrical function. This has the same nor-
malization as a plane wave. We note that the cross section
will be very sensitive to the ratio A�S=jpj � A�S=mS as a
consequence of the exponential. We adapt the hydrogen
ground state wave function for �fðrÞ; again, this is accu-
rate in the approximation that m� is negligible.

�f ¼
ffiffiffiffiffiffi

3

�

s
e�r
; (D12)

where 
 ¼ �jpj ¼ A�S=4; this is the radius of the bound
state. The reduced matrix element is

�M ¼
ffiffiffiffiffiffi

3

�

s
e��=2�ð1� {�Þ

Z
e{p�r�r
ðe{k�r=2 þ e�{k�r=2Þ

� Fð{�; 1; {ðpr� p � rÞÞd3r: (D13)
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To evaluate the integral, we differentiate the identity [70]

Z
e{ðp��Þ�r�
rFð{�; 1; {ðpr� p � rÞÞ d

3r

r

¼ 4�
½j�j2 þ ð
� {jpjÞ2��{�

½ðp� �Þ2 þ 
2�1�{�
; (D14)

with respect to 
. The result isZ
e{ðp��Þ�r�
rFð{�; 1; {ðpr� p � rÞÞd3r

¼ 8�
½j�j2 þ ð
� {jpjÞ2��{�

½ðp� �Þ2 þ 
2�2�{�

�
�
�
ð
� {jpjÞ½ðp� �Þ2 þ 
2�

½j�j2 þ ð
� {jpjÞ2� � {
ð1� {�Þ
�

� gð�; �Þ; (D15)

where � is the angle between p and �. We observe that
gð�;�� �Þ ¼ gð��; �Þ. If the angle between k and p is
�, the reduced matrix element is

�M ¼
ffiffiffiffiffiffi

3

�

s
e��=2�ð1� {�Þ

�
g

�jkj
2
;�

�
þ g

�
�jkj

2
;�

��
:

(D16)

This can be evaluated numerically. The last remaining
unknown quantity in (D10) is jkj, which can be found
from the energy conservation equation

2mþ jpj2
m

¼ ð2m� BÞ þ jkj2
2ð2m� BÞ þ jkj; (D17)

where we have noted that in the center of momentum
reference frame, the bound state also has momentum jkj.
We find the total cross section by numerically integrating
(D10). We will also average over a relative momentum
distribution PðjpjÞ; the total cross section is given by

�BS ¼
ZZ A2

�S

4mS

jkjj �Mj2
jpjð2�Þ2 PðjpjÞdjpj2� sin ð�Þd�: (D18)

We note that in the nonrelativistic limit the momentum
difference of the two particles is independent of reference
frame; therefore we can calculate PðjpjÞ in any convenient
frame even though we specialized to the center of momen-
tum reference frame above. The total cross section is, of
course, Lorentz invariant. Using Eq. (11), we find the
relative momentum distribution

PðjpjÞdjpj¼4�
ffiffiffi
8

p
m3

S

�
mS

2�Teff

�
32
e�jpj2=mSTeff jpj2djpj: (D19)

APPENDIX E: SCATTERING FROM CMB
PHOTONS

When we calculated the signal produced by bound state
formation, we found that the dark force mediator bosons �

decayed into TeV-scale fermions. These lose energy due to
scattering with CMB photons, as noted in Sec. III D. In this
Appendix, we produce a calculation of the spectrum of
gamma rays produced by this scattering.
First, we will show that we can neglect the energy loss

due to synchrotron radiation, which is described by

dEe

dt
¼ �bsyncE

2
e; (E1)

where the unitless coefficient bsync is given by

bsync ¼ 4�T

3me

B2

8�
(E2)

and �T is the Thomson cross section. Since we consider a
spherical region extending from 1 to 8 kpc, very few of the
fermions will be created in the Galactic plane. Therefore,
the appropriate magnetic field is 1 �G [71,72], which
gives bsync ¼ 6� 10�43.

The energy loss of a single fermion due to inverse
Compton scattering is described by the equation

dEe

dt
¼ �bICSE

2
e; (E3)

where now the unitless coefficient is

bICS ¼
4�KNwph

3m2
e

: (E4)

�KN is the Klein-Nishina cross section, which reduces to
the Thomson cross section when relativistic corrections are
negligible. Since this is applicable for scattering with CMB
photons, bICS ¼ 5:2� 10�41 and is approximately inde-
pendent of energy. (For the parameters with � ¼ 1, we
have 5:3� 10�41 instead). Since this is 2 orders of magni-
tude larger than the corresponding value for synchrotron
radiation, we may neglect energy loss due to synchrotron
radiation.
Therefore, we calculate the photon energy spectrum

from inverse Compton scattering with CMB photons. The
cosmic microwave background radiation is a blackbody at
TCMB ¼ 2:73 K; therefore the photon density per unit
energy is

nphð�Þ �
d2Nph;CMB

dVd�
¼ 1

�2

�2

exp ð�=TCMBÞ � 1
; (E5)

where � is the energy of the unscattered photon. For inverse
Compton scattering, the number of scattered photons per
unit energy per unit time produced by an electron or
positron with Lorentz factor � is given by [73,74]

d2N�

dEdts
ðE; �Þ ¼

Z 1

0
d�nphð�Þ�KNðE; �; �Þ; (E6)

where �KNðE; �; �Þ is

�KNðE; �; �Þ ¼ 3�T

4��2
Gðq;�Þ (E7)
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and

Gðq;�Þ¼ 2q ln ðqÞ þ ð1þ 2qÞð1� qÞ þ 2
qð1� qÞ;
� ¼ 4�

me

; 
 ¼ �E

m2
e

; q ¼ E

�ðme � EÞ :

We have put a subscript on tS to remind us that this variable
measures the time during which the fermion scatters
against CMB photons. We use the symbol E for the final
energy of the scattered photon. The Thomson limit corre-
sponds to � 
 1 which is applicable here. By energy
conservation, only energies E between the following val-
ues are allowed:

Emin ð�; �Þ ¼ �me�

4�2 þ �
; Emax ð�; �Þ ¼ �me�

1þ �
; (E8)

which we enforce by writing

d2N�

dEdtS
ðE; �Þ ¼

Z 1

0
d�nphð�Þ�KNðE; �; �Þ

��ðEmax ð�; �Þ � EÞ�ðE� Emin ð�; �ÞÞ:
(E9)

This equation gives the number of photons per unit
energy per unit time scattered by an electron or positron
with energy �me. From the fermion energy distribution
given in Eq. (16), the corresponding � distribution is

Pð�Þ ¼ meffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðB2 �m2
�Þð1� 4m2

e=m
2
�Þ

p (E10)

for � between the values

�max ; �min ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðB2 �m2

�Þð1� 4m2
em

2
�Þ

p
2me

: (E11)

Averaging d2N�=dEdt over the � distribution gives

d2N�

dEdtS
ðEÞ ¼

Z �max

�min

Pð�Þ
Z 1

0
d�nphð�Þ�KNðE; �; �Þ

��ðEmax ð�; �Þ � EÞ�ðE� Emin ð�; �ÞÞ:
(E12)

This equation gives us the number of photons scattered
per electron (or positron) per unit time; however, we re-
quire the total number of photons scattered by one electron
before it loses all of its energy. Properly, we should inte-
grate over tS; this is complicated because � is a function of
tS. Therefore, we will approximate

dN�

dE
� d2N

dEdtS
� T; (E13)

where T ¼ 1=bICSEe ¼ 1=bICS�me is the relevant time
scale for energy loss. This gives

dN�

dE
ðEÞ ¼ 1

bICSme

Z �max

�min

Pð�Þ
�

Z 1

0
d�nphð�Þ ��KNðE;�;�Þ

��ðEmax ð�;�Þ �EÞ�ðE�Emin ð�;�ÞÞ:
(E14)

The equation describes the total number of scattered
photons of a particular energy, per single electron or posi-
tron. We have evaluated this equation for the � ¼ 2 pa-
rameters and the result is shown in Fig. 7 for energies
between 1 and 10 GeV. We see that it drops off rapidly
as a function of energy.
To find the total number of photons per unit energy per

unit time, we must multiply by the rate of production of the
high energy fermions, which gives

dN�;tot

dEdt
ðEÞ

¼ dNBS

dt

2

bICSme

Z �max

�min

Pð�Þ
�

�
Z 1

0
d�nphð�Þ � �KNðE; �; �Þ�ðEmax ð�; �Þ � EÞ

��ðE� Emin ð�; �ÞÞ: (E15)

APPENDIX F: BREMSSTRAHLUNG
CROSS SECTION

In this Appendix, we derive the cross section for brems-
strahlung emission of a � boson in SS ! SS scattering.
Then 10 relevant tree-level diagrams are shown in Fig. 2.
Note that the t- and u-channel diagrams cancel to lowest
order in the m� ! 0 limit. Therefore, the resulting cross
section may be smaller than what one may naively expect.
Let us denote the incoming four-momenta as p1 and p2, the
outgoing momenta of the two S particles as p3 and p4, and
the outgoing momentum of the bremsstrahlung � particle
as p5. The matrix element is then

FIG. 7 (color online). This plot shows dN�;tot=dE, described
by Eq. (E14), evaluated for the first set of parameters (� ¼ 2,
mS ¼ 4 TeV, m� ¼ 40 MeV).
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�{M ¼ � A3
�S

ðm2
� � ðp3 � p1Þ2Þðm2

S � ðp4 þ p5Þ2Þ

� A3
�S

ðm2
� � ðp2 � p4Þ2Þðm2

S � ðp3 þ p5Þ2Þ

� A3
�S

ðm2
� � ðp3 � p1Þ2Þðm2

S � ðp2 � p5Þ2Þ

� A3
�S

ðm2
� � ðp2 � p4Þ2Þðm2

S � ðp1 � p5Þ2Þ

� A2
�SA�

ðm2
� � ðp2 � p4Þ2Þðm2

� � ðp3 � p1Þ2Þ
þ ðp3 $ p4Þ; (F1)

where the last term, in which the momenta p3 and p4 are
switched, represents the contribution of the bottom row of
diagrams. We will specialize to the center of mass frame;
we note that the total cross section is a relativistic invariant
and therefore it is irrelevant what frame it is calculated in.
Without a loss of generality we write the momenta as

p
�
1 ¼

�
mS þ jpIj2

2mS

; 0; 0; jpIj
�
; (F2)

p
�
2 ¼

�
mS þ jpIj2

2mS

; 0; 0;�jpIj
�
; (F3)

p�
3 ¼

�
mS þ jp3j2

2mS

; jp3j sin ð�3Þ cos ð�3Þ; jp3j sin ð�3Þ

� sin ð�3Þ; jp3j cos ð�3Þ
�
; (F4)

p�
4 ¼

�
mS þ p2

3

2mS

; jp4j sin ð�4Þ cos ð�4Þ; jp4j sin ð�4Þ

� sin ð�4Þ; jp4j cos ð�4Þ
�
; (F5)

and

p�
5 ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ jp5j2
q

; jp5j sin ð�5Þ; 0; jp5j cos ð�5Þ
�
: (F6)

Now we turn our attention to the cross section, which is
given by

�brem ¼
Z jMj2

4ðE1 þ E2Þ2
ð2�Þ4
4

� ðp1 þ p2 � p3 � p4 � p5ÞdLips; (F7)

where the extra 1=2 comes from the two identical particles
in the final state and dLips is the Lorentz-invariant phase
space for the final state particles. In particular, this is

dLips ¼ Y5
i¼3

d3pi

ð2�Þ32Ei

: (F8)

In the phase space denominators, we may make the
approximation E1 ¼ E2 ¼ E3 ¼ E4 ¼ mS, and we inte-
grate over the three-momentum delta function, setting
p3 ¼ �p4 � p5. When the S particles are nonrelativistic,
the energy delta function becomes




�jpIj2
mS

� jp4j2
2mS

� jp4 þ p5j2
2mS

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� � jp5j2
q �

: (F9)

Let us call the angle between p4 and p5 �45. The delta
function enforces

jpIj2
mS

� jp4j2
mS

� jp5j2
2mS

� jp4jjp5j cos ð�45Þ
mS

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ jp5j2
q

¼ 0; (F10)

which can be solved for jp4j in terms of jp5j and �45:

jp4j ¼ � jp5j cos ð�45Þ
2

þ 1

2
ðjp5j2cos 2ð�45Þ � 2jp5j2

þ 4jpIj2 � 4mS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ jp5j2
q

Þ1=2: (F11)

We must of course ensure that the result is positive. By our
choice of coordinates, the d�5 integral is trivial; this leaves
the integrals over �4, �4, �5, and djp5j to be done numeri-
cally. This integral is not infrared divergent due to the
nonzero mass of the � boson. Since the initial momentum
in the center of momentum frame is pI ¼ vrel=2mS, the
above calculation gives �ðvrelÞ. We can then average over
the relative momentum

�brem ¼
Z

PðvrelÞ�ðvrelÞdvrel (F12)

using Eq. (11).
Finally, we address Sommerfeld factors, which multiply

the cross section and naively can have a large impact at low
velocities. (Note that this is a multiplicative factor in
addition to the typical 1=v behavior of the cross section).
These describe the formation of a quasibound state during
the interaction; the modified cross section is

�Somm ¼ ��=v

1� exp ð���=vÞ�: (F13)

For the parameters under consideration, these factors can
be extremely large, of order 103 or 104. However, it has
been argued that in this regime the Sommerfeld factor
given above is unreliable; additional diagrams beyond the
ladder diagrams implicitly summed in the above equation
must be taken into account and a proper resummation
suggests the factors are of order Oð1Þ–Oð10Þ [66]. This
is supported by some experimental evidence [75,76], in-
cluding more recent observations at BABAR [77]. As we
note in the text, even these large Sommerfeld factors (if
correct) would not be sufficient to produce a detectable
signal through bremsstrahlung emission.
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