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Robust strong lensing time delay estimation
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Strong gravitational lensing of time variable sources such as quasars and supernovae creates observable
time delays between the multiple images. Time delays can provide a powerful cosmographic probe
through the “‘time-delay distance” involving the ratio of lens, source, and lens-source distances. However,
light curves of lensed images have measurement gaps, noise, systematics such as microlensing from
substructure along an image line of sight, and no a priori functional model, making robust time-delay
estimation challenging. Using Gaussian process techniques, we demonstrate success in accurate blind
reconstruction of time delays and reduction in uncertainties for real data.
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L. INTRODUCTION

Multiple images of a single source are dramatic evi-
dence for the effect of gravity, specifically general relativ-
ity, on light. This strong gravitational lensing not only
splits the images, but magnifies or demagnifies the source
flux and induces time delays between the images. The time
delays arise from both the geometric path differences along
the various lines of sight and the gravitational potential
differences traversed by the photons.

When the source is variable, such as from a quasar or
supernova, the time delays in the flux of one image relative
to another can be observed. With careful modeling of the
lens mass distribution, and measurement of the angular
positions of the images, the geometric factors of distances
between observer and lens, observer and source, and lens
and source can be extracted as a ratio called the time-delay
distance. Recent advances in lens modeling [1,2] and
careful, long-term flux monitoring programs such as
COSMOGRAIL [3] (also see [4,5]) have matured strong
lensing time delays to an incipient cosmographic probe.

This prospect is exciting for several reasons. Since time
delays over cosmological distances are sensitive not just to
the overall scale, or Hubble constant, but the cosmic en-
ergy density and its evolution with redshift, one can con-
strain (combinations of) the matter and dark energy
densities and dark energy equation of state. Moreover,
the time delay distance acts fundamentally differently
from luminosity and angular distances measured by cali-
brated standard candles such as type la supernovae and
rulers such as baryon acoustic oscillations. Hence it has
distinct covariances among cosmological parameters and
can be powerful in complementarity with the standard
distance probes [6,7]. Finally, despite the lens mass mod-
eling, strong lensing time delays are a geometric probe and
are tied only to the late universe, unique except for super-
novae (but with different systematics and covariances)
among all cosmological probes.
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Here we address the following important element of the
use of lensing time delays: accurate estimation of the
actual time delays. While great progress has been made
in recent years (see, e.g., [§—10]), in large part due to heroic
observing programs and improved data sets, this is not a
solved problem. Mathematically, one can consider it as
reconstructing a shift between multiple noisy, irregularly
sampled, differentially amplified data streams. We apply a
special combination of Gaussian process statistics to this
task. Such a concept for strong lensing dates back to [11]
and more recently has been shown to have reasonable
success [8]; we introduce several new features that exhibit
noticeable improvement in the state of art.

Section II outlines the challenge of reconstructing the
time delays from realistic data complete with systematics
such as microlensing. The Gaussian process methodology
is described in Sec. III, introducing the various correlation
function terms and accounting for systematics. We test the
method against blinded mock data, and real data from the
literature, in Sec. IV, and conclude in Sec. V.

II. TIME-DELAYED LIGHT CURVES

Fluxes received from an image at several times define a
light curve, but the name is misleading since the data are
not continuous but discrete, and the observations are often
irregular and sparse and have measurement uncertainties.
The best monitoring frequency may be every day or two,
while long gaps of a few months occur due to seasonal
visibility of regions of the sky from a single telescope. The
cadence is often irregular, though ongoing wide area sur-
veys such as Dark Energy Survey (DES [12]), Kilodegree
Survey (KIDS [13]), and PanSTARRS [14], and in the
future LSST [15], may have regular observations with
periods of several days.

Apart from the sparseness, the data has photometric mea-
surement noise. Most current observations come from small
(1 meter) telescopes, and atmosphere, telescope, and detector
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noise all contribute. With wide field surveys, hundreds to
thousands of time-delay systems may be found, enabling
choice of the cleanest for use as time-delay distance probes.
Since to obtain a time-delay distance one must have a robust
model of the lens mass distribution, galaxy lenses are pre-
ferred over cluster lenses due to less complex modeling.
Depending on lens mass and geometry this implies time
delays in the range of a few to hundred days in general.

Comparing light curves from different images involves
some form of cross-correlation, looking for the time delay
between them. Straightforward -cross-correlation tech-
niques tend not to work well due to the noisiness and
sparseness of the data, and extrinsic contributions (see,
e.g., [16]). Instead of comparing noisy data with noisy
data, regression techniques attempt to reconstruct the
underlying true source variation and compare the image
measurements to that. We employ Gaussian processes (GP)
as the regression technique. See [17] for an example of its
application to (nonlensed) supernova light curves.

In addition to measurement difficulties, astrophysical
systematics contribute to the challenge of time-delay esti-
mation. Further time variations arise from microlensing
caused by passage of substructure near to the line of sight.
This affects images independently, breaking the (delayed)
coherence between them, and can occur on all time scales.
Short variations just add noise but long term variations
disrupt the relation between the light curves for large
portions of the data set and so can cause misestimation
of the time delay. These long term variations are moder-
ately smooth and some previous work has used low order
polynomials or splines to represent them; we instead allow
the data to determine their time scale.
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FIG. 1 (color online). Magnitudes (log flux) of four images of
the quasar HE 0435 — 1223 are plotted vs time, with an arbitrary
overall zeropoint.
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Thus we have three elements entering into the light
curves: the intrinsic variation that we want to measure,
the observational noise, and the astrophysical microlensing
systematic (in fact our formalism would allow multiple
versions of the last two). The challenge of robust time-
delay estimation is to reconstruct phase shifts of a source
with unknown intrinsic flux variation, for images with
independent microlensing magnifications along their lines
of sight, using noisy data with irregular temporal sampling.
Figure 1 shows an example of real light curves from
four images of quasar HE 0435 — 1223 measured by
COSMOGRAIL [18]. Conventionally observations are re-
ported in magnitudes (logarithmic flux units).

III. TIME-DELAY ESTIMATION

For reconstructing an intrinsic function from isolated,
noisy data points, Gaussian processes offer a robust, sub-
stantially model independent statistical method with well
defined error characterization. See [19] for a thorough
discussion of GP from a statistical point of view. The basic
idea is that the function is not parametrized, but rather the
data are fit to a whole family of possible curves, given by a
Gaussian distribution with a mean function and a covari-
ance kernel between points.

The key choices are the form of the mean function
(which ideally does not affect the final fit but in practice
a poor mean function can lead to difficulties) and the
covariance kernel, together with any hyperparameters
used in those functions. There is a single GP representing
the true source underlying all of the images plus the micro-
lensing of a reference image. For a mean function we adopt
a constant function, then allow hyperparameters for mag-
nifications relative to the reference image. We try different
reference images to test for robustness.

For the covariance kernel we investigate three possibil-
ities. A damped random walk (DRW) is often adopted to
model the intrinsic quasar light curve [20-23]. While we
are here focused on extracting accurate time delays,
not modeling the quasar per se, it is natural to try the
DRW kernel,

k(t;, 1)) = grelimul/l, (1)

where #; and 7; are measurement times, the hyperparameter
o adjusts the amplitude of the kernel, and / functions as a
correlation length.

Another choice is a Matern function with index 3/2,

t; — ti|V3
k(tl‘, tj) = 0'2(1 + %—)e—hi—tﬂﬁﬂ' (2)

The Matern function is commonly used in statistics [19] and
allows for greater roughness in the variation than another
common choice, the squared exponential or Gaussian,

k(1 1)) = o™i 1)?/@0), 3)
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TABLE I. Blind analysis of time delays works for DRW,
Matern, and squared exponential GPs. The input to the simula-
tion had Aryp = 15.0 days, Az, = 25.0 days.

Kernel AZAB AZAC AZBC

DRW 14.94 £ 0.14 24.99 = 0.09 10.0 = 0.2
Matern 14.3 +0.8 25.1 0.9 10.8 = 0.9
Sq Exp 139+ 1.3 258+ 1.4 10.6 = 0.7

We will compare the results for these three kernels to give
extra cross-checks on the results; generally, we find that
DRW works best, once guided by an initial Matern run.

We include measurement noise and an additional nugget
term o-,%éij, which acts as a zero lag dispersion, e.g., an
empirical term for misestimated measurement noise or
finite realization scatter. This is distinct from the GP
amplitude o in that o accounts for the global variations
of the kernel whereas the nugget term o,, accounts for the
independent dispersion of the individual data points around
the predicted GP value.

The microlensing systematic has been attempted to be
addressed in the literature by multiplying the light curves
by a quadratic polynomial or a cubic spline over short time
spans or within an observing season. This restricts the
allowed variations and has the potential to lead to bias in
the reconstructed time delays or simply a failed fit. We
remain within the GP framework, which does not impose a
specific model or timescale for the microlensing, and
account for the microlensing with a GP for each image
(other than the reference one) with zero mean function and
a squared exponential kernel of common amplitudes a’i
and correlation lengths /,,. To separate the microlensing
GP from the quasar GP, we require a long correlation
length [, (systems with the microlensing timescale com-
parable to the intrinsic variations are not useful for time-
delay measurement). We have investigated various choices
of priors, for example, 7(l,,) > 50 days, m(l,)> season, or
m(l,) > 31; all give equivalent results.

We emphasize that neither the intrinsic quasar light
curve nor the microlensing actually have to be (and may
not be) true GPs in themselves; all we want to test is
whether robust time delays can be estimated from this
approach.

In summary, the light curve predictions for our full GP
regression take the form

Vi~ GPQ(éth; t—1) 4)

Y2~ GPQ(éth; t— 1)+ GP,Lz(é )+ Amy  (5)

whp

V3~ GPQ(éth; t—13) + GP/.L}(é,u,hp) + Amy  (6)

and so forth for each image, where éth is the

hyperparameter vector for the quasar GP, 6, is for the

uhp
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microlensing GP, and Am represents the magnification
relative to the reference image 1.
The GP likelihood is [19]

2Inp(Y|6) = —YTK~'Y —In|K| — NyIn2m@, (7)

where Y is the vector of magnitude data, with N, the total

number of data points, 6 represents the fit parameters, e.g.,
time delays, and K is the full kernel (the sum of the quasar
GP, microlensing GP, measurement noise, and nugget) with
|K| being its determinant. The likelihood is maximized for
the most likely values of the time delays and magnifica-
tions, which we find using the function minimizer routine
Minuit [24] and have validated using a Monte Carlo
analysis.

In principle, we can combine all light curves at once,
compare two at a time, or any number of light curves.
Simultaneous analysis of more than two curves allows a
consistency check in the form of the triangle equality, e.g.
Atyc = Atyp + Atpe, and is our baseline approach. Using
more light curves also has the advantage of the leverage of
more images on simultaneously constraining the under-
lying source light curve. Analysis using just a pair has
fewer hyperparameters and may deliver smaller statistical
errors, but at the risk of bias. We carry out cross-checks by
trying different numbers of light curves in the analysis,
finding that the results from the pair analyses can provide
useful initial conditions to the simultaneous fit. One can
also use portions of data, such as selected observation
seasons, to cross-check the consistency of the results or
to reduce the impact of microlensing as has been done in
the literature before. We find the results from our approach
to be robust to the number of data points used in the
analysis.

In summary, when fitting N light curves we have the
N — 1 time-delay parameters that are our goal, the
N — 1 magnifications Am, and the hyperparameters o2,
o2, afu L1,

IV. TESTS AND RESULTS
A. Blind mock data

To test the accuracy and robustness of the method we
initially created blinded mock data sets. To preserve real-
istic sampling and data quality, one author took light curve
data from one image of quasar HE 0435 — 1223, realized
three new light curves using random Gaussian distributions
with mean zero and standard deviation equal to the data
errors, and shifted each of the resulting light curves
vertically by various magnifications and horizontally by
time delays. The shifted data were then resampled onto
the original time sampling using linear interpolation.
Another author, unaware of the simulated time-delay and
magnification values, was given the final data points with
error bars and carried out the GP fit.
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Time-delay estimations are compared between our GP analysis and values in the literature using different reconstruction

methods. A question mark represents time-delay estimates not provided by the literature, a - - - indicates there is no fourth image.

Kernel AtAB AIAC AtAD AtBC AtBD AtCD
HE 0435 — 1223 GP-DRW -9.5*+03 -1.9*+04 —156*03 81=*03 —6.0 =03 —13.6 £ 0.4
HE 0435 — 1223 GP-Mat —-9.6 = 1.1 —-1.5*+1.1 —14.0*x09 81=*1.1 -5.0=*1.1 —12.3 £ 1.1
HE 0435 — 1223 Lit(1) [3] —8.4+2.1 —-0.6 =23 —149x21 7.8=0.8 —6.5*+0.7 —143*0.8
HE 0435 — 1223 Lit(2) [27] —8.8+x24 -2.0=*x27 —147x20 68 =27 -59=*+17 —12.7 %25
WF1J2033 — 4723 GP-DRW 35109 —249 0.4 —59.2 + 2.1

WFI1J2033 — 4723 GP-Mat 36.0 = 1.5 —26.3 £ 1.7 —62.0x23

WFI1J2033 — 4723 Lit [26] 355+ 1.4 —27.1+4.1/-2.3 s ?

B1608 + 656 GP-DRW 31.8 £24 —-1.3%15 —51.0£6.2 —33.1*x27 —72.0 £ 4.5 —43.1 £3.6
B1608 + 656 GP-Mat 31.7*x2.1 —24=*+22 —50.4 £6.9 —35.0=*4.0 =775 %£17.1 —44.4 54
B1608 + 656 Lit [28] 31.5 +2.0/—1.0 ? ? -36.0*+15 —77.0+20/-1.0 ?

The results are shown in Table I, with the true values of
15.0 and 25.0 day delays recovered within the 68% confi-
dence level by each of the three covariance functions. Several
other tests with different time delays had similar results. The
DRW kernel gives results that are significantly more precise,
but due to its allowance of high level of variations we find
that it works best when we first run a GP with a Matern
kernel, and use that result as a prior with 10 times the Matern
time-delay uncertainties when running DRW.

We find that the magnification and nugget terms are
both important to include. Time delays are also tested for
robustness by choosing different reference curves and
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FIG. 2 (color online). Marginalized one-dimensional and two-
dimensional likelihood contours are illustrated for the two time
delays in the mock data case. The fiducial value is marked with a
white plus sign.

different multiplicities (i.e. fitting for the AB time delay
in isolation, or simultaneously fitting the GP to more than
two light curves). Quoted values reflect the central values
and uncertainties from the configuration that has the best
reduced y? and the smallest errors. These uncertainties are
marginalized over all the other parameters and hyperpara-
meters; the distributions are sufficiently Gaussian that the
68% C.L. error bars are symmetric.

Figure 2 shows the one-dimensional and two-
dimensional joint likelihood contours for the time-delay
parameters in the mock data case using the DRW GP. As a
comparison, these results are obtained using COSMOMC
[25] as a generic Monte Carlo sampler, and are wholly
consistent with the Minuit results. For all the parameters
and hyperparameters we impose a very wide flat prior and
let data decide their values. The only constraint is on the
microlensing correlation length, which as discussed should
not be too small and hence mix with the actual correlation
length of the GP kernel.

A larger and more sophisticated series of data challenges
is forthcoming as part of the LSST Dark Energy Science
Collaboration strong lensing working group. This will
provide large, sophisticated mock data sets and an excel-
lent opportunity for testing further development of robust
time-delay estimation.

B. Actual data

The second part of testing the GP method involves using
public data sets from COSMOGRAIL and other literature
sources [3,4,26-28] as inputs for time-delay estimation.
These results can then be compared to the literature results
obtained using a variety of different methods.

We use the two sets of COSMOGRAIL light curves pub-
licly available at [18], for quasars HE 0435 — 1223 and
WFI J2033 — 4723, and the radio light curves of quasar
B1608 + 656, courtesy of Chris Fassnacht. Table II com-
pares the results we obtain from our GP analysis using the
DRW and Matern kernels with those published in the
literature. We also have tested the square exponential
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kernel but this gives weaker uncertainties. The values from
our analysis and the literature are consistent with each other,
with the GP analysis tending to have smaller uncertainties.
Note the true values of the time delays are not known, but
the consistency offers an indication of robustness.

The GP analysis not only estimates the time delays, a
key input for cosmography through time-delay distances,
but provides information on the intrinsic quasar variability,
the variations around the best-fit GP light curve, and the
microlensing systematics through the hyperparameters
such as the correlation lengths, GP amplitudes, and nugget.

We find that there is no significant correlation between
the parameters. The nugget term is usually important and
has a value comparable to the errors on the data points. We
also find that including the microlensing term is useful even
when there is no significant microlensing in the system.

The quasar HE 0435 — 1223 (Fig. 1) has a long obser-
vation period with distinct features in the intrinsic varia-
bility, making it fairly straightforward to compute the time
delays. The bottom curve has significant microlensing
variation which leads to large microlensing amplitude
o, The microlensing correlation length (~700 days) is
completely separated from the quasar GP correlation
length (~ 100 days). There is strong agreement between
our results, those of Literature 1 [3] that uses only the first
two observation seasons, and those of Literature 2 [27].
Our uncertainties are smaller by a factor of several.

The quasar WFI J2033 — 4723 has a relatively shorter
observation time but distinct features in the light curves.
There is no significant long-range microlensing and hence
o, is very small indicating that including microlensing
terms may not be necessary (but this is not known a priori).
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FIG. 3 (color online). Magnitudes (log flux) of four images of
the quasar B1608 + 656 are plotted vs time, with an arbitrary
overall zeropoint.
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Again, despite using several hyperparameters, our margi-
nalized uncertainties are smaller than the results from [26].

The quasar B1608 + 656 (light curves shown in Fig. 3)
is an example of a challenging system with large data gaps,
relatively small intrinsic variability, and significant micro-
lensing, all of which make it hard to estimate the time
delays of its images. While we have successfully derived
the time delays between all the images, including the cases
not presented in the literature, the error bars are relatively
large. This is in part due to the featureless light curves
(especially the bottom curve, D in Table II, which is almost
flat) and also due to the fact that our errors are marginalized
over other parameters. For example, fitting the nugget term
increases the errors by at least a factor of two, while its
presence is relatively unimportant for this system. We find
that the probability distributions for some of the time
delays in the DRW case have a smaller secondary peak,
so comparison with the Matern results is useful to ensure
robustness.

V. CONCLUSIONS

Accurate estimation of strong lensing time delays is an
essential element in the use of time-delay distances as a
novel cosmological probe. The complementarity, substan-
tially geometric nature, and disjoint systematics of this
technique make its use a goal worth striving for.

We have explored Gaussian processes as a regression
method that is effectively model independent and we dem-
onstrated robust results for both blind mock data and actual
literature data, in many cases reducing the uncertainties of
the time-delay estimations. Noisy data, gaps in the obser-
vations, and extrinsic microlensing variations can all be
handled by the method.

Robustness arises not just from the technique itself,
but the ability to use multiple light curves simultaneously,
and test results against different combinations. Several
possibilities exist for further improvement. For example,
one could weight the estimations derived from different
combination of curves or one could remove unnecessary
hyperparameters to reduce estimation uncertainty while
checking that the best fit does not shift.

Future data challenges will provide an opportunity
to further develop the technique, providing important train-
ing and assessment of the reconstruction method. And of
course one could obtain better real data. Forthcoming
surveys will find many more suitable lensing systems,
allowing choice of the cleanest or best observed (with
low photometric uncertainties, better cadence with fewer
gaps, etc.).

While time-delay estimation is just one element in the
development of strong lensing distances as a new cosmo-
logical probe, its improvement is key to this promising
technique for mapping the Universe. Future work includes
applying our GP reconstruction method to studies of lensed
supernovae or other variable sources.
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