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Oscillons are long-lived, localized, oscillatory scalar field configurations. In this work we derive a

condition for the existence of small-amplitude oscillons (and provide solutions) in scalar field theories

with noncanonical kinetic terms. While oscillons have been studied extensively in the canonical case, this

is the first example of oscillons in scalar field theories with noncanonical kinetic terms. In particular, we

demonstrate the existence of oscillons supported solely by the noncanonical kinetic terms, without any

need for nonlinear terms in the potential. In the small-amplitude limit, we provide an explicit condition for

their stability in dþ 1 dimensions against long-wavelength perturbations. We show that for d � 3, there

exists a long-wavelength instability which can lead to radial collapse of small-amplitude oscillons.
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I. INTRODUCTION

Scalar fields with noncanonical kinetic terms are used
ubiquitously in cosmology. They are especially prevalent
in modeling of the inflaton (e.g., [1,2]), dark energy and
modifications of gravity (e.g., [3,4]). A significant amount
of work has been done on their homogeneous evolution
in an expanding universe and the evolution of linear-
ized fluctuations about this homogeneous background.
However, less attention has been paid to their spatially
varying, nonlinear dynamics (e.g., [5–9]). In particular,
localized, time-dependent, solitonlike solutions in theories
with noncanonical kinetic terms have been rarely dis-
cussed. If such configurations exist, they would be novel
objects from a mathematical standpoint. If they form a
significant component of the energy fraction of the uni-
verse, they might have cosmological consequences.

In this paper we show that in a general class of scalar
field theories with noncanonical kinetic terms and/or non-
linear potentials, there exist extremely long-lived, spatially
localized, oscillatory field configurations called oscillons1

[11,12]. While oscillons in scalar field theories have been
studied extensively in the literature (e.g., [13–36]), every
instance so far uses a nonlinear term in the potential and a
canonical kinetic term. To the best of our knowledge, this is
the first time their existence is being demonstrated in
the presence of noncanonical kinetic terms. When the
noncanonical kinetic terms are significant, we refer to the
oscillons as ‘‘k-oscillons.’’2 We derive the condition for
their existence, including effects from the noncanonical
kinetic term as well as the nonlinearity in the potential. Our
results are general enough to include oscillons supported
by nonlinear potentials, oscillons supported purely by the

noncanonical kinetic terms, and oscillons supported by a
combination of both. The inclusion of noncanonical kinetic
terms significantly expands the space of theories where
oscillons can exist.
Our analysis is done in a small-amplitude approxima-

tion, but is otherwise quite general. We consider scalar
field Lagrangians of the form

L ¼ TðX;’Þ � Vð’Þ; (1)

in dþ 1 space-time dimensions where

X ¼ � 1

2
���@�’@�’: (2)

��� is a Minkowski space metric with the ‘‘mostly þ’’

signature. The only restriction of T and X is that they can
be written as

TðX;’Þ ¼ X þ �2X
2 þ �3’X

2 þ � � �
Vð’Þ ¼ 1

2
’2 þ �3

3
’3 þ �4

4
’4 þ �5

5
’5 þ � � � ;

(3)

where all the field variables, space-time coordinates
and coefficients have been made dimensionless using
appropriate scalings. In the next section we motivate this
Lagrangian and discuss scalings of the parameters and
fields in terms of a mass and a cutoff scale. Anticipating
a small-amplitude expansion, we have organized the series
in terms of powers of the field and kept terms up to fourth
order in the fields. Note that terms of the form ’X and
’2X which should be included in the above expression can
always be absorbed using a field redefinition. Furthermore,
note that the X2 term cannot be eliminated using a field
redefinition. Our choice of T and V also ensures that
we recover a free, canonical scalar field theory when X,
’ ! 0. This form is general enough to cover a large class
of scalar field theories of interest in cosmology including
axions [37], Dirac-Born-Infleld (DBI) inflation [1], mo-
nodromy inflation [38,39], k-essence [4] and scalar-tensor
theories [3].

*mamin@ast.cam.ac.uk
1Oscillons are similar to Q-balls [10] in that their existence has

nothing to do with topology; however, unlike Q-balls, oscillons
do not have an exactly conserved charge.

2Scalar field dark energy with significant noncanonical kinetic
terms is often referred to as k-essence (as opposed to quintessence).
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For the Lagrangian discussed above, and in the small-
amplitude, spherically symmetric case, we provide

(i) a condition for the existence of oscillons in terms of
a relationship between the first few coefficients in the
series for T and V,

(ii) explicit, controlled, analytic solutions in 1þ 1
dimensions and approximate solutions in 3þ 1
and higher dimensions,

(iii) a condition for their stability against long-
wavelength perturbations. The condition shows
the presence of a long-wavelength instability for
d � 3 (in the small-amplitude approximation).

We also calculate the energy loss from these general
oscillons due to an expanding background.

For canonical kinetic terms, the authors of [25,28–30,40]
show that oscillons are produced copiously at the end of
inflation (as well as in phase transitions and bubble colli-
sions, for e.g., [41–43]) and can dominate the energy
density of the universe at that time (e.g., [30]). A similar
situation is possible with a somewhat contrived model of
dark energy as well [44]. Models with noncanonical kinetic
terms and/or nonlinear potentials are well suited for am-
plifying fluctuations around a homogeneous oscillatory
background field. This provides a natural mechanism to
amplify quantum fluctuations existing at the end of infla-
tion, possibly leading to the formation of large-amplitude
oscillons. We will pursue this possibility in inflationary
models with noncanonical kinetic terms in future work.
Indeed our original motivation for studying oscillons in
noncanonical theories arose while trying to explore self-
resonance and preheating in the DBI scenario (see e.g.,
[45–47]).

The rest of this paper is organized as follows. In Sec. II
we motivate the Lagrangian discussed in the introduction,
in Sec. III we derive an oscillon solution in dþ 1 dimen-
sions, in Sec. IV we discuss the stability of the oscillon
solutions and in Sec. V we summarize the main results and
discuss directions for future work.

II. THE EFFECTIVE LAGRANGIAN

In this section we discuss the motivation for the
Lagrangian in the introduction. For the reader interested
in oscillons from a mathematical standpoint, this section
can be omitted without affecting the rest of the paper. From
an effective field theory perspective, a general Lagrangian
with noncanonical kinetic terms has the form

L� ¼ a1ð�ÞX� þ a2ð�Þ X2
�

�dþ1
þ � � � �Uð�Þ; (4)

where X� ¼ �ð1=2Þ@ ���@ ���. We are assuming that only

first derivatives of the field appear in the Lagrangian. Let
Uð�Þ ¼ ð1=2Þm2�2 þ � � � and � � m is the cutoff scale.
Furthermore, we assume that a Taylor expansion exists for
all anð�Þ and a1ð0Þ ¼ 1. A field redefinition enacted via

d ��=d� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
a1ð�Þp

yields

L �� ¼ X �� þ b2ð ��Þ
X2

��

�dþ1
þ � � � � Vð ��Þ; (5)

where X �� ¼ �ð1=2Þ@ ��
��@ �� ��. We Taylor expandL around

ð ��;X ��Þ ¼ ð0; 0Þ and assume that as ðX ��;
��Þ ! ð0; 0Þ we

recover a canonical free-field Lagrangian. This yields

L ¼ X �� þ ��2

X2
��

�dþ1
þ � � � � 1

2
m2 ��2

� 1

3
m

5�d
2 ��3

��3 � 1

4
m3�d ��4

��4 þ � � � : (6)

Let us redefine the fields and space-time variables as follows:

x� ¼ mx ��; ’ ¼ m
1�d
2 ��; X¼ m�ðdþ1ÞX ��;

�2 ¼
�
m

�

�ðdþ1Þ
��2; �n ¼ ��n:

(7)

With these redefinitions we get the Lagrangian wewill use for
the rest of the paper:

L¼ TðX;’Þ �Vð’Þ
¼ ½Xþ �2X

2 þ �� ���
�
1

2
’2 þ�3

3
’3 þ�4

4
’4 þ �� �

�
;

(8)

where anticipating a small-amplitude expansion, we have
only kept terms up to fourth order in the field ’. Note that
the next order terms in the first and second brackets above
would have the forms �3’X

2 and ð1=5Þ�5’
5, respectively.

Another way of arriving at the Lagrangian above is as
follows (see e.g., [48]). Consider a Lagrangian with two
fields in 3þ 1 dimensions (the generalization to dþ 1
dimensions is straightforward):

L ¼ � 1

2
@ ��

��@ �� ��� 1

2
@ ��c @ ��c � 1

2
�2c 2 � 1

2
m2 ��2

� 1

3
m ��3

��3 � 1

4
��4

��4 �
ffiffiffiffiffi
��2

2

s
c

�
@ ��

��@ �� ��þ � � � (9)

with� � m. The heavy field will sit at the minimum of its
effective potential, with the corresponding field value
given by

c � ¼ �
ffiffiffiffiffi
��2

2

s
@ ��

��@ �� ��

�3
: (10)

Substituting into the original Lagrangian and setting the
kinetic term of the heavy field to zero, we have

L ¼ � 1

2
@ ��

��@ �� ��þ ��2

ð@ ��
��@ �� ��Þ2
4�4

� 1

2
m2 ��2 � 1

3
m ��3

��3 � 1

4
��4

��4 þ � � �

¼ X �� þ ��2

X2
��

�4
� 1

2
m2 ��2 �m

3
��3

��3 � 1

4
��4

��4 þ � � � :
(11)
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With appropriate scalings of space-time and fields with
mass m and � defined in Eq. (7), we recover the effective
Lagrangian discussed above and in the introduction
[see Eq. (3)].

Note that if ��2 and ��n are order 1, we expect �2 � �n

and �2 � 1 if � � m. However, this need not always

be the case. For example, in the DBI case L ¼ f�1ð’Þ�
½1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2fð’ÞXp � � Vð’Þ [1] yields �2 ¼ 1=2. For the
rest of the paper we do not make any particular assump-
tions about the sizes of �2 and �n, apart from assuming that
they are not much larger than unity.

III. OSCILLONS IN dþ 1 DIMENSIONS

Let us begin with the equations of motion associated
with the Lagrangian presented in the introduction and
discussed in the previous section:

h’þ @2XT

@XT
@�’@

�X þ @X@’T

@XT
@�’@

�’ ¼ @’V � @’T

@XT
:

(12)

We are interested in small-amplitude, radially symmetric,
spatially localized, oscillatory (in time) solutions. First, we
rescale the time and space variables by a small parameter 	
as follows:


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
t; � ¼ 	r; (13)

and expand the solution as a series in 	 (a possibly asymp-
totic one):

’ðt; rÞ ¼ 	�1ð
; �Þ þ 	2�2ð
; �Þ þ 	3�3ð
; �Þ þ � � � :
(14)

Plugging the above scalings and form of the solution into
the equation of motion (12), and collecting terms to lowest
order in 	 we get

@

�1 þ�1 ¼ 0;) �1ð
; �Þ ¼ fð�Þ cos 
; (15)

where we assumed that @
�1ð0; �Þ ¼ 0. At second order in
	 we get

@

�2 þ�2 ¼ � 1

2
�3f

2ð�Þ½1þ cos 2
�;
) �2ð
; �Þ
¼ 1

6
�3f

2ð�Þ½�3þ 2 cos 
þ cos 2
�; (16)

where we assumed that �2ð0; �Þ ¼ @
�2ð0; �Þ ¼ 0. At the
next order in 	, we get

@

�3 þ�3 ¼
�
@2�fþ ðd� 1Þ

�
@�f

� fþ 3

4

�
�2 � �4 þ 10

9
�2
3

�
f3
�
cos 


þ ½� � �� cos 2
þ ½� � �� cos 3
: (17)

If the coefficient of the cos 
 term is nonzero, �3 would
grow linearly with time, inconsistent with the time-
periodic solution we are looking for.3 To avoid linear
resonance, we need to set the coefficient of cos 
 to zero.
This in turn yields the equation for the profile fð�Þ:

@2�fð�Þ þ ðd� 1Þ
�

@�fð�Þ � fð�Þ þ 3

4
�f3ð�Þ ¼ 0; (18)

where for future convenience we have defined

� 	 �2 � �4 þ 10

9
�2
3; (19)

whose sign will turn out to determine whether oscillons
exist or not.
This profile equation (18) is valid in any dimension d,

but can be solved exactly for d ¼ 1. Let us consider the
d ¼ 1 case first.

A. 1þ 1 dimensional oscillons

For d ¼ 1 the profile equation becomes

@2�fð�Þ � fð�Þ þ 3

4
�f3ð�Þ ¼ 0: (20)

One can think of the above equation as describing the
motion of a particle in a potential

UðfÞ ¼ � f2

2
þ 3

16
�f4: (21)

The energy associated with this motion is conserved, and
given by

E ¼ Uðf0Þ ¼
ð@�fÞ2

2
þUðfÞ; (22)

where we have used @�fð0Þ ¼ 0 and fð0Þ 	 f0. Now since

the solutions are localized, the energy E ¼ Uðf0Þ ¼ 0.
This immediately yields

f0 ¼
ffiffiffiffiffiffiffi
8

3�

s
: (23)

For a localized solution to exist, we need

� ¼ �2 � �4 þ 10

9
�2
3 > 0: (24)

This is one of our main results. Before moving on to
solving the profile equation, we pause to discuss � in a
bit more detail. If the noncanonical terms are absent
(�2¼0), we need the usual ‘‘opening up of the potential’’
condition,��4 þ ð10=9Þ�2

3 > 0, to get oscillons. More im-

portantly, note that for a quadratic potential (i.e., �n¼0), the

3Note that the ½� � �� cos 2
 and ½� � �� cos 3
 terms will yield a
periodic solution for �3. This solution can then be used in
calculating terms at the next order, just as the periodic solution
for �2 played a role in the �3 equation. This pattern extends to
all orders.
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noncanonical terms are sufficient to yield oscillons. For
example if �n ¼ 0, then �2 > 0 is sufficient. It is also worth
noting that in models with noncanonical kinetic terms, the
sound speed differs from 1. For the model under considera-
tion, the sound speed is

c2s ¼
�
1þ 2X

@2XT

@XT

��1 ¼ 1� 4�2X þ � � � : (25)

Thus, for �n ¼ 0, the condition for having k-oscillons is the
same as the sound speed being less than 1.

Now, let us get back to solving the equation for the
profile fð�Þ. Using fð0Þ ¼ f0 derived above and integrat-
ing ð@�fÞ2=2þUðfÞ ¼ 0 yields

fð�Þ ¼
ffiffiffiffiffiffiffi
8

3�

s
sechð�Þ: (26)

Explicitly in terms of the original variables,

’ðt; rÞ ¼ 	

ffiffiffiffiffiffiffi
8

3�

s
sechð	rÞ cos ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
tÞ þO½	2�; (27)

where � ¼ �2 � �4 þ 10
9 �

2
3. This is our second main

result: a small-amplitude oscillon in 1þ 1 dimensions in
theories with noncanonical kinetic terms. This solution has
the same functional form as the canonical small-amplitude
oscillon, apart from the appearance of �2 in �. One can go
beyond the leading order as well:

’ðt; rÞ ¼ 	

ffiffiffiffiffiffiffi
8

3�

s
sech� cos 


þ 	2
4�3

9�
sech2�½�3þ 2 cos 
þ cos 2
�

þO½	3�; (28)

where � ¼ 	r and 
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
t. Note that at second

order, only the odd term contributes. If the Lagrangian
had ’ ! �’ symmetry, the correction is higher order.

B. 3þ1 dimensional oscillons

For d ¼ 3, the profile equation becomes

@2�fð�Þ þ 2

�
@�fð�Þ � fð�Þ þ 3

4
�f3ð�Þ ¼ 0: (29)

We can view the above equation as describing the motion
of a particle in the presence of a potential UðfÞ as in the
1þ 1 D case, but now we have a ‘‘friction term’’ of the
form ð2=�Þ@�fð�Þ. As a result, the energy

Eð�Þ ¼ ð@�fÞ2
2

þUðfÞ (30)

is no longer conserved. It changes with � as

@�Eð�Þ ¼ � 2

�
ð@�fÞ2: (31)

With the requirement that the solution is localized, we need
E ! 0 as � ! 1. Requiring that the solution is smooth at
� ¼ 0 implies @�fð0Þ ¼ 0. This implies that for a localized

solution we must have Eð0Þ ¼ Uðf0Þ � 0. Numerically,
one finds a localized solution for4

f0 

ffiffiffiffiffiffi
24

�

s
: (33)

Thus the solution will have the form

’ðt; rÞ 
 	f0Fð	rÞ cos ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
tÞ þO½	2�: (34)

The profile Fð�Þ looks ‘‘sech-like’’ with Fð0Þ ¼ 1. An
excellent approximation (at the few % level in the
‘‘core’’ region, deteriorating in the tails) is given by

Fð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sechðf2

3ð2�Þ1=3
0 �Þ

r
1 & � & few: (35)

An identical analysis can be carried out in d � 1, 3 and we
do not repeat the derivation here.

IV. STABILITY

We now turn to the question of stability of the oscillons
against perturbations. To this end, we linearize the equa-
tion of motion (12) around the small-amplitude oscillon
solutions ’osc as follows:

� €’� 6�2’osc _’osc� _’þ ½�ð1� 2�2 _’2
oscÞr2

þ 1þ 2�3’osc þ 3�4’
2
osc � 3�2 _’2

osc��’ ¼ 0: (36)

We have used the following to arrive at the above equation:

O½’osc� �O½ _’osc� � 	; O½jr’oscj� � 	2; (37)

and kept terms up to order 	2. The �2’
2
oscr2�’ term has to

be kept since we have not (yet) restricted ourselves to long-
wavelength perturbations. Let us remove the term with the
linear derivative by redefining the �’ as follows:

�’ ¼ 
 exp

�
3�2

Z t

0
ds _’osc’osc

�
: (38)

With this redefinition, the equation of motion becomes

€
þ ½�ð1� 2�2 _’2
oscÞr2 þ 1þ 2�3’osc

� 3ð�2 � �4Þ’2
osc�
 ¼ 0: (39)

The solutions ’osc are periodic in time. Hence stability
can be determined via a Floquet analysis. It is tempting to
Fourier transform the above equation and try to determine
the Floquet exponents (growth-rate) mode by mode.

4More precisely,

f0 
 3:06699�
ffiffiffiffiffiffiffi
8

3�

s
: (32)
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However, since the background varies in space, the Fourier
modes do not decouple. A stability analysis in Fourier
space, while possible (see [27]), is numerically intensive,
especially in higher dimensions. We do not follow this
approach here. Instead we will carry out a stability analysis
in position space, but restrict ourselves to perturbations
which vary on length scales comparable to the size of the
oscillon. Even without considering short wavelengths, we
will show that there exists an important instability in
dimensions � 3.

A. Long-wavelength stability analysis

When considering perturbations with wavelengths
comparable to the size of the oscillon, we can drop the
�2 _’2

oscr2�’� 	4 term in Eq. (39) since it is higher order
in 	. This yields

€
þ ½�r2 þ 1þ 2�3’osc � 3ð�2 � �4Þ’2
osc�
 ¼ 0: (40)

At this point, the equation of motion for linearized
fluctuations is identical to that in the canonical case, apart
from the coefficient �2. From now onwards, our long-
wavelength stability calculation closely follows the one
by Amin and Shirokoff [26], where we related oscillon
stability to the stability criterion derived by Vakhitov and
Kolokolov [49] in the context of light focusing in a non-
linear medium. Here, apart from showing this relationship
in the context of noncanonical oscillons, we also provide a
pedagogical proof of the stability criterion itself in the
Appendix (not provided in [26]).

Recall that the oscillon solutions have the form

’oscðt; rÞ ¼ 	fð�Þ cos ð
Þ
þ 	2

�3

6
f2ð�Þ½�3þ 2 cos 
þ cos 2
� þ � � � ;

(41)

where � ¼ 	r, 
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
t and f is the radial oscillon

profile satisfying Eq. (18).
We are interested in determining the stability of the

above oscillons to perturbations with wavelengths compa-
rable to the size of the oscillons. With this in mind, let us
define a scaled spatial coordinate ~� ¼ ~	rwhere ~	 ¼ 	=

ffiffiffiffi
�

p
with � being an order 1 parameter. We expect the most
unstable perturbations to oscillate at the oscillon fre-

quency:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
with a ‘‘slowly varying,’’ time-dependent

envelope driven by the oscillating background. To capture
the time dependence of the envelope we define a slow time
T ¼ ~	2t which is to be treated independently from 
. Note
that although O½~	� �O½	�, they are independent. 	 plays
the role of determining the oscillon solution whereas ~	 is
used for analyzing the stability about this solution. This
distinction is made explicit via the introduction of the �
parameter. With these definitions we have

d2

dt2
¼ ð1� 	2Þ@2
 þ ~	2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
2@T@
 þ ~	4@2T


 @2
 þ 	2
�
2

�
@T@
 � @2


�
;

r2 ¼ ~	2 ~r2 ¼ 	2

�
~r2: (42)

Furthermore, let us expand the perturbation 
 in powers of
	 as follows:


 ¼ 
0 þ ~	
1 þ ~	2
2 þ � � �
¼ 
0 þ 1ffiffiffiffi

�
p 	
1 þ 1

�
	2
2 þ � � � : (43)

We now substitute the space-time scalings, the 	 expan-
sion of the perturbation and the oscillon solution into the
equation of motion of the perturbation (40). Collecting
terms order by order in 	 we have (up to order 	2)

½@2
þ1�
0¼0;

½@2
þ1�
1þ½2�3�cos
�
0¼0;

½@2
þ1�
2þ½2�3�cos
�
1

þ
�
2@
@T� ~r2��@2
�3

2

�
�2��4þ2

3
�2
3

�
�2

þ2

3
�2
3�

2cos
�3

2

�
�2��4�2

9
�2
3

�
�2cos2


�

0¼0;

(44)

where we have defined

�ð�; ~�Þ 	 ffiffiffiffi
�

p
fð ffiffiffiffi

�
p

~�Þ ¼ ffiffiffiffi
�

p
fð�Þ: (45)

Note that treating O½~r2
0� �O½
0� we are restricting
ourselves to perturbations that vary spatially on the scale
of 	. The first equation of (44) yields


0 ¼ uðT; ~�Þ cos 
þ vðT; ~�Þ sin 
: (46)

Substituting 
0 into the second equation and solving for 
1

we get


1 ¼ 1

3
�3�½uð�3þ cos 2
Þ þ v sin 2
�; (47)

where we have ignored the homogeneous solution of

1. Finally, substituting 
0 and 
1 into the third equation
we get

½@2
 þ 1�
2 ¼ �
�
2@Tv�

�
~r2 � �þ 9

4
��2

�
u

�
cos 


�
�
�2@Tu�

�
~r2 � �þ 3

4
��2

�
v

�
sin 


þ ½� � �� cos 3
þ ½� � �� sin 3
; (48)

where � ¼ �2 � �4 þ ð10=9Þ�2
3 (the combination which

appears in the oscillon solution). Avoiding secular growth
requires
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@Tu ¼ H1v; @Tv ¼ �H2u; (49)

where

H1 	 � 1

2

�
~r2 � �þ 3

4
��2

�
;

H2 	 � 1

2

�
~r2 � �þ 9

4
��2

�
:

(50)

We are interested in the eigenvalues of the above linear
system. Let vðT; ~�Þ ¼ e�Tveð~�Þ and uðy; TÞ ¼ e�Tueð~�Þ
where ðue; veÞ is an eigenvector of Eq. (49). Substituting
ðu; vÞ ¼ e�Tðue; veÞ into our linear system, we get

�ue ¼ H1ve; �ve ¼ �H2ue: (51)

Equivalently

��2ue ¼ H1H2ue; ��2ve ¼ H2H1ve: (52)

Since H1 and H2 are real operators, the eigenvalues ��2

are real; that is, � is purely real or imaginary. There exist
exponentially growing modes if and only if min ½��2�<
0. Hence, we now try to determine min ½��2�.

In the above form, our problem becomes similar to that
of light focusing in a nonlinear medium as analyzed by
Vakhitov and Kolokolov [49]. Following their techniques,
we will show in the Appendix that

sign½min ½��2�� ¼ sign

�
dN

d�

�
; (53)

where

N 	
Z

�2ð�; ~�Þdd ~� ¼ �
Z

f2ð ffiffiffiffi
�

p
~�Þdd ~�

¼ �ð1�d=2Þ Z f2ð�Þdd� / �ð1�d=2Þ: (54)

The proof of the relationship between the sign of dN
d�

and sign½min ð��2Þ� that we used in the first line above
is somewhat involved, which is why we have moved it
to the Appendix. Here, we discuss the important and
interesting consequences of the result.

For d > 2, we will have dN=d� < 0 and thus
sign½min ½��2��< 0, whereas for d � 2 we have
dN=d� � 0 and thus sign½min ½��2��> 0. Evidently,
our oscillons are stable against long-wavelength perturba-
tions in d ¼ 1, 2 but not so in d > 2. This is confirmed by
our numerical simulations. For �2 ¼ �3 ¼ 0, and in the
small-amplitude limit, this reduces to the result in [26].

Recall that � is merely a scaling of 	 in the oscillon
solution. In terms of 	, the stability condition is as follows:
Oscillons are stable if and only if

dN

d	
> 0; (55)

where

N 	 	2
Z

f2ð	rÞddr ¼ 	2�d
Z

f2ð�Þdd� / 	d�2; (56)

where f is the oscillon profile, that is, ’osc ¼ 	fð	rÞ�
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
t. We have numerically verified the existence

of a long-wavelength instability for d � 3.
We stress that the stability criterion (55) is applicable in

the small-amplitude limit. More precisely it is applicable
when a single frequency solution is a good approximation
to the true solution. We now connect the above result to
some related work in the literature.
In the example of [26] with canonical kinetic terms,

unlike our discussion here, the coefficient of the ’6 term
was assumed to be unusually large. This allowed for an
(approximate) single frequency solution for the entire al-
lowed amplitude range, which in turn allowed for the deri-
vation of the same stability criterion derived above.
However, unlike the above case, in the large ’6 case, N
was a nonmonotonic function of 	 in 3þ 1 dimensions,
allowing stable solutions to exist at large amplitudes. We
also note that a similar stability criterion in terms of the
oscillon energy was also conjectured in [23] based on
numerical results in a massless dilaton þ scalar field oscil-
lon. While no general stability condition exists for the
general, large-amplitude case, the stability and lifetime of
large amplitude oscillons are often investigated using
Gaussian initial profiles with varying widths and amplitudes.
For a flavor of such investigations see for example [24,31].

B. Radiating tails in an expanding universe

While we have discussed the stability of our oscillons
against ‘‘external’’ long-wavelength perturbations, even
without external perturbations, oscillons are not exactly
stable. Similar to the canonical case, our more general
oscillons possess a radiating tail which we expect to be

highly suppressed [22,50], with a decay rate �e�1=	.5

Nevertheless, in an expanding universe, this tail can be
significantly enhanced [20,26,52].6 We briefly sketch out
the energy loss due to this radiating tail in an expanding
universe below.
For simplicity we will only consider the case in 1þ 1

dimensions. In local coordinates, the metric for a homoge-
neous and isotropic expanding space can be written as
(space and time are measured in units of m�1)

ds2 ¼ �ð1� x2H2Þdt2 þ ð1� x2H2Þ�1dx2; (57)

where we assume that H ¼ constant and O½H=m� ¼
O½	2�. In this case the solution takes the following form
(following the technique used in [20]):

’ðx;tÞ
 	

ffiffiffiffiffiffiffi
8

3�

s
sechð	xÞcosð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�	2

p
tÞ x� 	

H
(58)

5There exist scenarios where there are no radiating tails [51].
We thank an anonymous referee for pointing this out.

6A quantum treatment of the radiation will also increase the
decay rate, with the decay rate becoming a power law in 	 [27].
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and

’ðx; tÞ 
 	3=2e��	2

2H 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3Hx�

s
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
t� 1

2
x2H

�

	

H
� x � 1

H
(59)

which leads to an energy loss (averaged over time)
given by

dEosc

dt

 	3

32

3�
e��	2

H
	

H
� x � 1

H
: (60)

Our analysis appropriately generalizes the result of
[20]. The � appearing above contains �2 from the non-
canonical kinetic term along with �3 and �4 whereas in
[20], � ¼ ��4. Note that this analysis in only valid when
m � H. The energy loss, while enhanced compared to the
Minkowski case, can still lead to lifetimes � H�1.

V. DISCUSSION

In this paper we have shown that oscillons can exist in a
significantly larger class of scalar field theories than pre-
viously shown. For a rather general class of scalar field
Lagrangians of the form (1) and (3), we have demonstrated
the following:

(i) For small-amplitude oscillons to exist, � ¼
�2 � �4 þ ð10=9Þ�2

3 > 0 where �2 is the coefficient

of the noncanonical part of the kinetic term.
(ii) The oscillon solutions in dþ 1 dimensions have the

form ’ðt; rÞ ¼ 	fð	rÞ cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
tþO½	2� where

fð	rÞ is the radial profile. In 1þ 1 dimensions,

fð	rÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8=ð3�Þp

sechð	rÞ. We also provided an ap-
proximate form for fð	rÞ in 3þ 1 dimensions.
These solutions are identical to those in theories
with canonical kinetic terms, apart from the appear-
ance of �2 in �.

(iii) The solutions are stable against long-wavelength
perturbations if and only if dN=d	 > 0, where
N ¼ 	2�d

R
f2ð�Þdd�.

We have also calculated the energy loss from oscillons due
to an expanding background.

There are a number of natural extensions of our results.
The stability criterion above is related to long-wavelength
instabilities, which we believe to be the most dangerous
instabilities. However, as discussed in the stability section,
a calculation of the ‘‘Floquet’’ instability rates at shorter
wavelengths, while numerically intensive, is also possible.
A further detailed investigation of the suppressed radiating
tail, effects of expansion on lifetimes, Floquet instabilities,
and a quantum treatment for these noncanonical oscillons
would be interesting.

We have concentrated on the small-amplitude regime in
this paper. However, large-amplitude oscillons (with large
energies) in 3þ 1 dimensions are interesting due to their
possible relevance in cosmology (see e.g., [25,28–30,40]).

In addition, in 3þ 1 dimensions, single field, small-
amplitude oscillons can collapse due to perturbations
with wavelengths comparable to the size of the oscillons.
As we move to larger amplitudes this instability can dis-
appear (e.g., [26]). Thus an analysis of the large-amplitude
case is certainly worth pursuing. However, moving to
large amplitudes also requires a larger number of terms
in T and V, which in turn requires a case by case analysis
of the solutions and their stability. It is of course possible
to analyze them numerically. Although we have not pre-
sented the results here, we have analyzed large-amplitude

oscillons in the DBI Lagrangian: L ¼ f�1ð’Þ �
½1 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 2fð’ÞXp � � ’2=2, with rather intriguing dy-
namics appearing at large amplitudes [53]. To keep our
analysis as general as possible, and in an effort to present
analytic rather than numerical results, we have restricted
ourselves to the small-amplitude case in this paper. An
analysis of large-amplitude k-oscillons and their implica-
tions in a cosmological context is in progress [53].
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APPENDIX: PROOF OF
sign½min ½��2� ¼ sign½dN=d��

Our proof will closely follow the stability analysis of
Vakhitov and Kolokolov presented in the context of light
focusing in a nonlinear medium [49]. We will need two
technical results regarding the Hermitian operators H1

and H2:
(a) huejH�1

1 juei is positive definite for � � 0.7

(b) H2 has only one bounded eigenmode with a nega-
tive eigenvalue, all other eigenvalues for radially
symmetric eigenmodes are greater than zero, and
the lowest angular eigenmode has zero eigenvalue.

We will assume these to be true for the moment and
proceed with the proof. After the proof, we justify (a),
but for (b) we refer the reader to [49].

7h� � �i ¼ R � � �dd ~� and we are using the usual bra-ket
notation.
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We believe that some of the statements in the rest of
the proof can be understood more readily based on our
experience and intuition with single particle quantum
mechanics. In particular, H1 (and H2) can be thought of
as a nonrelativistic Hamiltonian of a particle in a finite,
radially symmetric potential in d spatial dimensions.
Hence we use language from quantum mechanics where
appropriate. The energies and eigenstates of H1 are
denoted by fE�;��g and those of H2 by fE�; c �g.

From Eq. (52) we get ��2h�juei ¼ hH1�jH2uei ¼ 0.
The first equality uses the Hermitian nature of H1 whereas
the second follows becauseH1� ¼ 0 is simply the oscillon
profile equation (18). Hence for � � 0, h�juei ¼ 0. If
huejH�1

1 juei is nonzero, we can rewrite the first equation
in (52) as

��2 ¼ huejH2juei
huejH�1

1 juei
with h�juei ¼ 0: (A1)

Now, since huejH�1
1 juei is positive definite based on (a)

stated above, we have

sign½min ½��2�� ¼ sign½min ½huejH2juei��; (A2)

with

h�juei ¼ 0 and huejuei ¼ 1: (A3)

We introduce Lagrange multipliers E and � to minimize
huejH2juei subject to the above constraints:

F ½ue; E; �� ¼ huejH2juei þ Eðhuejuei � 1Þ þ �h�juei:
(A4)

The extremum of F is obtained if ue satisfies

H2ue ¼ Eue þ ��: (A5)

Moreover, the minimum value of huejH2juei is given by the
smallest eigenvalue of H2 consistent with h�juei ¼ 0. Let
Emin denote this minimum eigenvalue. Then

sign½min ½��2�� ¼ sign½min ½huejH2juei�� ¼ sign½Emin �:
(A6)

We will now try to determine the sign of Emin . As mentioned
earlier, one can also think of H2 as the Hamiltonian of a
nonrelativistic particle in a finite potential well V2ð~�Þ ¼
ð�=2Þ½1� ð9=4Þsech2ð ffiffiffiffi

�
p

~�Þ�. Let fc �g be the eigenstates

of H2 with energies E�. Let us expand ue and � in terms of

these eigenstates as� ¼ P
�¼0a�c � and ue ¼

P
�¼0b�c �.

Plugging these into (A5) and using h�juei ¼ 0 we get

�
X
�¼0

ja�j2
E� � E

¼ �gðEÞ ¼ 0; (A7)

where a� ¼ hc �j�i and we have defined

gðEÞ 	 X
�¼0

ja�j2
E� � E

: (A8)

Noweither� ¼ 0 orgðEÞ ¼ 0. If� ¼ 0, then fromEq. (A5).
we see that min ½E� ¼ Emin is obtained if ue ¼ c 0: the
ground state of H2, which is radially symmetric and has no
nodes. This contradicts h�juei ¼ 0. Hence � � 0 and we
havegðEÞ ¼ 0.We need to find the smallest root ofgðEÞ ¼ 0.
We will now make use of the technical properties of H2

specified at the beginning of this appendix to analyze the
minimum value of E that satisfies gðEÞ ¼ 0. For the lowest
radially symmetric eigenstate (ground state of H2 without
any nodes), a0 ¼ hc 0j�i � 0. Moreover, from (b), E0<0.
For any radially asymmetric (angular) eigenstate a� ¼ 0

since that eigenstate will be orthogonal to �. In particular
if c 1 is the lowest angular eigenstate, then a1¼hc 1j�i¼0
and, by our assumption (b), has E1 ¼ 0. If c 2 is the next
radial eigenstate, then by (b), E2 > 0. Now consider the
behavior of gðEÞ for E < E0. In this domain, gðEÞ> 0. For
E0 < E < E2, gðEÞ varies monotonically from �1 to þ1
and crosses 0 for the ‘‘first’’ time. Hence if gðEÞ ¼ 0 in this
domain, the root E is the smallest root Emin .

8 Moreover,
since gðEÞ varies monotonically from �1 to þ1 in this
domain, the sign of gð0Þ determines the sign of Emin.
Explicitly gð0Þ> 0 , Emin < 0. Hence from (A2)

sign ½min ½��2�� ¼ sign½Emin � ¼ sign½�gð0Þ�: (A9)

Finally, let us now relate gð0Þ to dh�j�i=d� as follows:

d

d�
ðH1�Þ ¼ 0 ) H2

d�

d�
þ� ¼ 0 ) d�

d�
¼ �H�1

2 �:

(A10)

Multiplying both sides by � and integrating, we get

1

2

dh�j�i
d�

¼�h�jH�1
2 j�i¼�X

�¼0

ja�j2
E�

¼�gð0Þ: (A11)

Thus using the above result and Eq. (A9), we finally have

sign½min ½��2�� ¼ sign

�
dN

d�

�

where N 	 h�j�i ¼
Z

�2dd ~�:

(A12)

Let us now turn to the justification of the property (a) of
H1 assumed in the proof. We will show that huejH�1

1 juei is
positive definite. Note that the eigenvalue problem
H1�� ¼ E��� is the time-independent Schrodinger

equation for a particle of mass m ¼ 1 in a radial potential
well V1ð~�Þ ¼ ð�=2Þ½1� ð3=4Þsech2ð ffiffiffiffi

�
p

~�Þ�. Using the
profile equation (18) we get H1� ¼ 0 where � has no
nodes. This implies that �0 ¼ � is the unique ground
state of H1 (up to a normalization) with energy E0 ¼ 0
and all other eigenvalues must be greater than 0. Moreover
one has the orthonormal set of excited states f��g with

8gðEÞ varies monotonically between every consecutive pair of
distinct E�.
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� � 0 which satisfies h��j�i ¼ 0. For any state which

belongs to this subspace spanned by��, the operatorH1 is

positive definite. Hence H�1
1 exists on this subspace

and is also positive definite. This follows from
h��jH�1

1 j��i ¼ E�1
� ���. Now, from Eq. (52), note that

��2h�juei ¼ hH1�jH2uei ¼ 0. Hence for� � 0, ue lies

in the space spanned by f��g. Thus huejH�1
1 juei is positive

definite. We still need to show that H2 has only one
bounded eigenmode with a negative eigenvalue, and the
lowest angular eigenfunction has 0 eigenvalue. This is
somewhat involved, and we refer the reader to [49] where
this is discussed further.
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