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Sources of isocurvature perturbations and large non-Gaussianities include field degrees of freedom

whose vacuum expectation values are smaller than the expansion rate of inflation. The inhomogeneities in

the energy density of such fields are quadratic in the fields to leading order in the inhomogeneity

expansion. Although it is often assumed that such isocurvature perturbations and inflaton-driven curvature

perturbations are uncorrelated, this is not obvious from a direct computational point of view due to the

form of the minimal gravitational interactions. We thus compute the irreducible gravitational contribu-

tions to the quadratic isocurvature-curvature cross-correlation. We find a small but nondecaying cross-

correlation, which in principle serves as a measurable prediction of this large class of isocurvature

perturbations. We apply our cross-correlation result to two dark matter isocurvature perturbation

scenarios: QCD axions and wimpzillas. On the technical side, we utilize a gravitational Ward identity

in a novel manner to demonstrate the gauge invariance of the computation. Furthermore, the detailed

computation is interpreted in terms of a soft-� theorem and a gravitational Ward identity. Finally, we also

identify explicitly all the counterterms that are necessary for renormalizing the isocurvature perturbation

composite operator in inflationary cosmological backgrounds.

DOI: 10.1103/PhysRevD.87.123502 PACS numbers: 98.80.Cq, 04.62.+v

I. INTRODUCTION

As physics beyond the Standard Model is expected to
contain many fields in addition to the inflaton; there are
many candidates for isocurvature perturbations in the
context of inflationary cosmology, including those of the
dark matter. Indeed, the current data are consistent with
the existence of an Oð5%Þ isocurvature component [1–8].
Furthermore, it is well known that quadratic isocurvature
perturbations [i.e., the vacuum expectation value (VEV) of
the field is much smaller than the Hubble expansion rate]
are one of the very few ways to generate measurably large
local non-Gaussianities [9–40] in the context of the slow-
roll inflationary paradigm. The only nontrivial requirement
that the isocurvature field degree of freedom must possess
is that it be light enough to be excited by the inflationary
quasi-de Sitter (dS) background and that it not be confor-
mally invariant. In the literature [41–43], quadratic isocur-
vature perturbations are often assumed to have negligible
cross-correlations with the curvature perturbations (which
corresponds to the inflaton field degree of freedom dressed
by gravity). However, the gravitational interactions lead
to a minimum cross-correlation, which in principle can be
observationally important. We present a computation of
this minimal gravitational cross-correlation in this paper.

As explained below, the form of the gravitational inter-
action between the curvature and isocurvature perturba-
tions naively suggests that there can be cross-correlators
which do not vanish in the long wavelength limit. If this

were true, the cross-correlation could dominate over the
isocurvature two-point function in the observables since
the latter vanishes in the long wavelength limit for a
massive field. By an explicit rigorous computation, we
show that the cross-correlator vanishes in the long wave-
length in such a way that the cross-correlation induced by
gravity never dominates over the isocurvature two-point
function, given that the curvature inhomogeneity perturba-
tion is characterized by a strength of order 10�5. We
explain this qualitatively as well using a combination of
a soft-� theorem [44–61] and a Ward identity associated
with a spatial dilatation diffeomorphism.We also check the
gauge invariance of our computation using a Ward identity.
Among the possible isocurvature candidates, thermal

dark matter is usually produced copiously by the inflaton
decay products, which typically leads to a large suppres-
sion of isocurvature effects. On the other hand, nonthermal
dark matter that is not produced by the inflaton decay can
easily generate large isocurvature effects that survive until
today. Hence, as an illustration, we apply our computation
of the cross-correlation to two different nonthermal dark
matter models: QCD axions and wimpzillas. In both cases,
we find a cross-correlation characterized by the parameter
j�j �Oð10�5Þ [the parameter definition is given in
Eq. (29)] which is below the boundary value of Oð10�2Þ
when the cross-correlation becomes competitive with the
isocurvature two-point function. In principle, � can be
measured and is a generic prediction of this class of non-
thermal dark matter quadratic isocurvature models. Note
that even though the nonthermal dark matter fields can be
identified with the isocurvature degrees of freedom, this
scenario is consistent with the WIMP dark matter scenario
since the isocurvature perturbations can be as small as an
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order 10�5 fraction of the total dark matter and still leave
an isocurvature imprint on the cosmic microwave back-
ground (CMB) spectrum.

The order of presentation is as follows. In Sec. II, we
present our assumptions about the inflationary cosmology,
review gauge invariant variables in the perturbation theory,
and summarize the observational constraints on the iso-
curvature scenario relevant to our paper. One of the most
important aspects of this section is our review of features of
the � variable that we compute. In Sec. III, we first explain
two naive estimates, one leading to the wrong observatio-
nally large result, and the other leading to the correct
suppressed result. In explaining the correct estimate (which
requires assumptions that cannot be known without the
justification of a full computation), we present the inter-
pretation in terms of a soft-� theorem and a Ward identity.
The rigorous explicit computation at one loop is then
presented, demonstrating how the correct naive estimate
result is achieved. We also present in this section how
gauge invariance is achieved for these quadratic isocurva-
ture computations using a gravitational Ward identity.
Next, we apply these results to the axion and the wimpzilla
scenarios in Sec. IV. This section contains a detailed
explanation for choosing nonthermal dark matter to illus-
trate the computations of our paper instead of thermal
dark matter. Finally, we summarize our results in Sec. V.
In the Appendixes, we collect technical details and also
supplementary computational results: the radiation transfer
functions are derived in Appendix A, a brief review of the
gravitational Ward identity used for the gauge invariance
computation is given in Appendix B, the Arnowitt-Deser-
Misner (ADM) formalism is reviewed in Appendix C, the
details about the Pauli-Villars regulator is explained in
Appendix D, and the two-point function computation in
the uniform curvature gauge is presented in Appendix E.

II. A CLASS OF CURVATURE AND
ISOCURVATURE PERTURBATIONS

Inflation through quantum correlator dynamics gener-
ates ‘‘classical’’ initial conditions for superhorizon cosmo-
logical fluid perturbations [62–65]. The resulting initial
conditions for the classical equations governing classical
fluid variables (which are set during radiation domination
before the CMB last scattering time) are categorized into
two types: adiabatic and isocurvature [66–69]. An adia-
batic initial condition is intuitively characterized by all
species composing the fluid having the same initial number
overdensities. In the context of inflation, if there is a single
dynamical degree of freedom � during inflation such that
after a few e-folds of inflation, the quantum vacuum
boundary can be approximated as Bunch-Davies initial
conditions (for a discussion of the number of e-folds
requirement see, e.g., [70]), and if all the degrees of free-
dom during radiation domination come from the inflaton
decay, then this adiabatic condition is the resulting

approximate classical boundary condition during the ra-
diation domination era of the Universe. An isocurvature
initial condition intuitively corresponds to setting nonzero
the initial difference of the number overdensities of at least
one pair of fluid element species while setting to zero the
total energy density inhomogeneity on long wavelength
scales. Because these two types of initial conditions are
linearly independent, a generic initial condition to the
linearized perturbation equations can be written as a linear
combination of them.
In this paper, we are concerned with the following

physical system which is generic for isocurvature scenar-
ios. One real scalar slow-roll inflaton degree of freedom �
dominates the energy density during inflation. During
this time period, there exists also another light degree of
freedom � which has no coupling to � stronger than
gravity. We assume that this system carries an approxi-
mately conserved discrete charge (such as Z2 broken at
most by a model dependent nonrenormalizable operator)
such that the one particle states are stable and can act as
dark matter. Note that since we do not require all of the
dark matter to come from �, this system is consistent with
the existence of the weakly interacting massive particle
(WIMP) dark matter. If WIMP dark matter exists, the
parameter !� � ��=�CDM < 1 will play a role, and this
scenario can yield interesting isocurvature signatures for
!� as small as 10�5 [30]. The action of this system can
thus be written as

S½�;�;fc g�¼
Z
ðdxÞ

�
1

2
M2

pRþ
�
�1

2
g��@��@���Vð�Þ

�
þ
�
�1

2
g��@��@���Uð�Þ

��
þSrh½�;fc g�; (1)

where R is the Ricci scalar, M2
p ¼ 1

8�G , ðdxÞ ¼
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðg��Þj

q
, and Srh corresponds to the action of the

reheating degrees of freedom fc g. We assume that fc g is
heavy during inflation such that it can be integrated out or
if fc g are light, they are conformal such that they are not
excited during inflation. After inflation ends, we assume
fc g fields are light, leading to a successful reheating
scenario. The only special initial condition dependent
assumption that we make in this isocurvature scenario is
that h�i � H=ð2�Þ during inflation even when @2Uð�Þ=
@�2 � H.1 Because h�i ¼ 0 during inflation, � by itself

1Note that even with Gaussian distributed values of h�i on an
inflationary patch with a Gaussian width H=ð2�Þ, there is about
a 2=3 probability that such initial condition configurations can be
found. Also, an unbroken discrete symmetry such as Z2: � !
�� can stabilize the VEV. In the context of supergravity, generic
terms in the effective potential however can appear leading to
h�i � 0 during inflation. In the end, whether or not h�i ¼ 0 is
model dependent, it is not fine-tuned.
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does not spontaneously break time translation invariance
and therefore does not mix with �� in forming the gauged
time translation Nambu-Goldstone boson � . Hence, we can
treat the scalar fluid variable �ð�g��; ��Þ as the curvature
degree of freedom and �Sð�; �Þ as the isocurvature degree
of freedom. (As we will show in detail below, the isocur-
vature degree of freedom �S will be quadratic in� and will
involve � as a difference).

Thus, the basic physics picture of the classical fluid that
we are concerned with in this paper is the following.
To predict CMB temperature fluctuation h�T�Ti, we
must compute the cross-correlation h�S�i since at the
linearized level, Einstein-Boltzmann equations give the
relationship �T=T � c1� þ c2�S for computable order
unity (for long wavelengths) coefficients ci. Up until this
paper, there has never been an explicit computation of the

h�S�i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih��ih�S�Si

p
coming from irreducible gravitational

interactions.2 What will emerge is a clean universal result
that applies to a wide range of isocurvature models
including those of the QCD axions (in a particular initial
condition regime) and wimpzillas. We find that h�S�i
contribution is generically subdominant to h�S�Si in the
case of pure gravitational interactions.

In the following, we establish our conventions in
describing this isocurvature degree of freedom carrying
the nonadiabatic initial condition information. In the
process, we review the gauge invariant construction of
these cosmological perturbations and the current CMB
observational constraint, which represents the strongest
constraint on the isocurvature initial condition derived
from inflation.

A. Gauge invariant construction

The cosmological inhomogeneity perturbation variables
are generally spacetime coordinate gauge dependent be-
cause of the coordinate dependent definition of fictitious
background metric slices. From the perspective of match-
ing classical equation initial conditions to inflationary
quantum correlator computations, identifying gauge in-
variant combinations is helpful [71–73]. On the other
hand, the gauge freedom involved in computing gauge
invariant quantities facilitates the quantum computation.
Hence, understanding the gauge dependences of the cor-
relation computations is helpful. In this subsection, we
review the gauge invariant variable construction and estab-
lish our notation. For a more general discussion, see for
example [71,72,74–84].

In ðt; ~xÞ coordinates, we parametrize the metric as g�� ¼
�g�� þ �gðSÞ�� where the scalar metric perturbation is

�gðSÞ�� ¼ �E aF;i

aF;i a2½A�ij þ B;ij�

 !
; (2)

the background metric is �g���diagf�1;a2ðtÞ;a2ðtÞ;a2ðtÞg,
and derivatives are denoted as usual as X;i � @X=@xi.
Under the diffeomorphism x ! xþ 	 where

	� ¼ ð	0; a�2@ið	SÞÞ; (3)

the scalar metric perturbation components transform as

�A ¼ �2H	0; �B ¼ � 2

a2
	S; (4)

�E ¼ �2 _	0; �F ¼ 1

a
ð	0 � _	S þ 2H	SÞ; (5)

which is obtained from �gðSÞ�� ! �gðSÞ�� þ�ð�gðSÞ��Þ with

�ð�gðSÞ��Þ ¼ �L	�@� �g��.

Similarly, we parametrize the perfect fluid stress tensor
for a fluid element a as

TðaÞ
�� ¼ �TðaÞ

�� þ �TðaÞ
��; (6)

where �TðaÞ
�� � diagf �
a; �Pa; �Pa; �Pag contains the average

energy density and pressure seen by a comoving

observer, �TðaÞ
ij ¼ �Pa�g

ðSÞ
ij þa2�ij�Pa, �T

ðaÞ
i0 ¼ �PðaÞ�g

ðSÞ
i0 �

ð �
aþ �PaÞ�UðaÞ
i [where �UðaÞ

i is the velocity perturbation],

and �TðaÞ
00 ¼ � �
a�g

ðSÞ
00 þ �
a. Under the diffeomorphism

of Eq. (3), the energy density perturbation transforms as

��
a ¼ �	0 _�
a: (7)

In practice, gauge invariant variables are constructed by
combining metric perturbations and other perturbations,
such as densities. A popular choice is

�a � A

2
�H

�
a

_�
a

: (8)

For example, the first-order gauge invariant perturbation
associated with the inflaton � is usually defined as

�� � A

2
�H

�
�

_�
�

(9)

(see for example Ref. [73] and references therein). Now,
one can form a quantity that is conserved through reheating
by defining

�tot �
X
i

ri�i; (10)

where

ri � �
i þ �PiP
n �
n þ �Pn

: (11)

Because there must be reheating dynamical degrees of
freedom, �tot must involve at least two degrees of freedom
by the end of inflation of any single field slow-roll model.

2As we will later explain, we do not compute h�S�i analyti-
cally fully beyond the time of the end of inflation. However, the
importance of the isocurvature cross-correlation can be generi-
cally predicted by h�S�i=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih��ih�S�Si
p

which is insensitive to the
postinflationary evolution for superhorizon modes.
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In single field slow-roll scenarios, what is done in practice
is to argue that the reheating degrees of freedom are
integrated out during inflation and then integrated back in
at the end of inflation due to the different location of the
inflaton VEV at the end of inflation. Alternatively, another
often-used assumption is that the main reheating degrees of
freedom are conformal such that no isocurvature fluctua-
tions are appreciably excited during inflation. This means
that in single field models, we have

�tot � �� (12)

up to ambiguities in how one hides the reheating degrees
of freedom.

One reason why the combination of Eq. (10) is conve-
nient is because the superhorizon mode of this is approxi-
mately conserved through reheating if this mode object can
be shown to obtain initial conditions of what is sometimes
referred to as the adiabatic solution [45,73] and there are
no nonadiabatic processes that mix superhorizon modes of
isocurvature degrees of freedom with �tot. Such classical
adiabatic solution initial conditions are generated by the
Bunch-Davies quantum fluctuations for ��, and we will

restrict the couplings of the isocurvature degrees of
freedom (discussed below) such as to avoid nonadiabatic
mixing. This means that Eq. (12) ensures that �tot is ap-
proximately conserved if �
� þ �P� dominates over others.

More explicitly, as discussed in the introduction to this
section, suppose there exists only one isocurvature field
degree of freedom which we call � during the inflationary
period.3 The total curvature perturbation can be written as

�tot ¼ �� þ r�ð�� � ��Þ (13)

with the sum over n runs over � and � (assuming that c
has been integrated out during inflation). However, one can
estimate that the coefficient of �� during inflation is

r� &
1

ð2�Þ2 �
2
� � 10�11; (14)

which makes the approximation of �tot � �� accurate,

just as in the single field case of Eq. (12). Thus just as in
the single field scenarios without �, �tot acquires an
approximately adiabatic boundary condition from the
Bunch-Davies vacuum field fluctuations.

To complete the examination of how �tot is used in the
scenario of concern in this paper, let us look at the time
period surrounding the reheating transition when the
Universe reaches radiation domination. Near the time
of the completion of the reheating, the variable �tot is
approximately

�tot � r��� þX
i

rc i
�c i

(15)

such that after the inflaton decays, we have r� ¼ 0 and4

�tot �
X
i

rc i
�c i

: (16)

[The approximation used in Eq. (15) neglects the r�
contribution because of Eq. (14).] It is also a standard
assumption that

�c i
¼ �tot; (17)

which is rigorously true if one relativistic species domi-
nates the fluid (e.g., rc 1

� 1) or if the decay process does

not redistribute the spatial inhomogeneities of c i in a
distinct configuration from that of �.5 This justifies the
usual statement in the literature that �tot defined in Eq. (10)
is primarily useful for arguing how a combination of
quantities involving the inflaton and the reheating decay
products remain unchanged through the reheating phase
transition. Here, we have merely described how this argu-
ment is not changed by the presence of � because of the
smallness of r� in Eq. (14) during the primordial periods
of interest.
In summary, as long as boundary conditions for the

classical fluid equation are evaluated at a time when r� is
small (compared to the accuracy desired), we can neglect
the r� contribution from �tot both through reheating and
until the time that boundary conditions for the classical
fluid equations are imposed. Hence, if �tot remains constant
on long wavelengths (due to the initial conditions set by the
Bunch-Davies vacuum), Eqs. (13) and (14) imply that the
effective curvature perturbation during this early primor-
dial epoch is given by Eq. (12). Hence, in the discussion
below, we will drop the � subscript and write

� � �� � �tot: (18)

During this radiation dominated early primordial time tp,

the relationship between superhorizon Aðtp; ~kÞ and the

value of �ðte; ~kÞ evaluated at the end of inflation time te is

Aðtp; ~kÞ
2

� 2

3
�ðte; ~kÞ (19)

in the Newtonian gauge (B ¼ F ¼ 0) and the presence of
�� gives a small error controlled by r�.
At the same radiation dominated era6 when the initial

condition is set by �tot � � , the inhomogeneity of the small
mixture of dark matter component � can be related to the
isocurvature perturbation ��. Conventionally, this informa-
tion is parametrized by the gauge invariant isocurvature
perturbation [67,69,76]

3The species � will later be identified as dark matter candi-
dates such as the axions and wimpzillas.

4In the case that c i is integrated back in at the end of inflation,
we have made the assumption that this does not change �tot:

5However this need not be true for more general reheating
scenarios.

6During this time period, there is possibly a population of
thermal dark matter components such as thermal WIMPs.
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�Sðt; ~kÞ � 3ð��ðt; ~kÞ � �totðt; ~kÞÞ: (20)

The physical interpretation of this quantity can be see by
noting that when � particles are dominantly nonrelativistic
and the Universe is radiation dominated, this expression
becomes

�Sðt; ~kÞ ¼ �
�ðt; ~kÞ
�
�

� 3

4

�
�ðt; ~kÞ
�
�

; (21)

where 
� represents the photon energy densities. This

clearly represents the difference in number densities of �
and �.7 Assuming that the radiation inhomogeneity is
characterized by � as explained in Eqs. (17) and (18)
during radiation domination, we have

�Sðt; ~kÞ � 3ð��ðt; ~kÞ � �ðte; ~kÞÞ: (22)

Similarly to the case of �tot, long wavelength limits of ��
generated from Bunch-Davies initial conditions simplify
(partly because of causality) in the absence of nonadiabatic
processes mixing �� with other superhorizon degrees of

freedom. The �� mode for a comoving wave vector ~k

becomes constant once j ~k=aj � H and m� � H because
the mode functions involved in �� are governed by the
Hubble friction once these conditions are satisfied.

Although the key correlator computation result of this
paper involving � evaluated at the end of inflation is
independent of the transfer function evolving the isocurva-
ture degrees of freedom after the end of inflation, because
its immediate phenomenological application to CMB re-
quires a transfer function describing this postinflationary
evolution, we will restrict our illustration in Sec. IV to the
situation when the chemical reaction rates that mix � and
the radiation components are negligible. We will discuss in
more detail the cross section constraint for this condition
in Appendix D 1.

B. Observational constraints on
isocurvature perturbation

The current observational data show that the CMB power
spectrum is consistent with the adiabatic initial conditions.
However, it does not rule out mixed boundary condition
contributions from cold dark matter (CDM) isocurvature
perturbations. Schematically, the temperature fluctuations
depend linearly on � and �S initial conditions as

�T

T
¼ c1� þ c2�S; (23)

where ci �Oð1Þ. Hence, the CMB temperature correlation
data constrain8

k3

2�2

Z d3p

ð2�Þ3
�
�Tð ~pÞ

T

�T�ð ~kÞ
T

�
¼ �2

� ðkÞ
�
jc1j2 þ jc2j2 �

1� �
� 2<

�
c�1c2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�

1� �

r 	�
;

(24)

where [2] Z d3p

ð2�Þ3 h�ð ~pÞ�
�ð ~kÞi ¼ �2

� ðkÞ
2�2

k3
(25)

Z d3p

ð2�Þ3 h�Sð ~pÞ��
Sð ~kÞi ¼ �2

�S
ðkÞ 2�

2

k3
(26)

Z d3p

ð2�Þ3 h�Sð ~pÞ��ð ~kÞi ¼ �2
��S

ðkÞ 2�
2

k3
(27)

� � �2
�S
ðkÞ

�2
� ðkÞ þ�2

�S
ðkÞ ; (28)

� � � �2
��S

ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

� ðkÞ�2
�S
ðkÞ

q ; (29)

which are customarily evaluated in the primordial epoch
when k corresponds to a far superhorizon scale such that the
�2

XðkÞ objects are constant in time.9 Typically the data
constraints are parametrized by evaluating � and � at a
pivot scale k ¼ k0 [3,6]. An important utility of this pa-
rametrization is the following fact: a necessary and suffi-
cient condition for the cross-correlation to be a significant
part of the isocurvature contribution is to have j�j *
jc2=c1j

ffiffiffiffi
�

p
for �< 1. For example, in order to have

approximately the same level of the angular power spectra
from both pure isocurvature correlation and cross-

correlation at the intermediate scale l� 200, i.e.,Cpure iso
l �

Ccross cor
l , the fractional cross-correlation should satisfy

j�j * 4� 10�2. Another utility of the � variable comes
from the fact that when there are nontrivial transfer func-
tions governing �2

��S
and �2

�S
after the end of inflation, the

transfer function factors can cancel in the expression for �.
We will use this feature later to compute� based on just the
(quasi-)dS mode function behavior.

7It is interesting to note that since number densities can
diverge while gravitational physics does not care about number
densities (in favor of energy densities), this choice of variables is
unfortunate in situations when there are IR divergences. In this
paper, we stick to this convention which is prevalent in literature.

8Our sign conventions are such that negative values for �
correspond to a positive contribution of the cross-correlation
term to the Sachs-Wolfe (SW) component of the total tempera-
ture spectrum. See, e.g., [3,6].

9We will use the exact dS approximation for the massive � and
use the quasi-dS approximation for only the massless scenario.
The corrections coming from the deviations away from the exact
dS background in principle can be absorbed into the transfer
function multiplying the superhorizon mode functions which
cancel out in � due to a common appearance in the numerator
and the denominator.
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As far as the experimental numbers are concerned, the
isocurvature contribution to the CMB temperature pertur-
bation is expected to be roughly less than 10% compared to
the curvature contribution. More precisely, the Planckþ
WP limits [6–8] are

�j�¼0 < 0:016ð95%C:L:Þ and

�j�¼�1 < 0:0011ð95%C:L:Þ; (30)

where the isocurvature power spectrum is assumed to be
scale invariant, i.e., niso ¼ 1. The significant difference in
the upper bound of � between uncorrelated and totally
(anti)correlated cases can be explained by the ratio �=

ffiffiffiffi
�

p
already discussed above. The difficulty in improving the
current isocurvature bound with data on short wavelengths
can be seen in Fig. 1, where one sees a falloff of the
isocurvature spectrum on short scales (l * 100). This fall-
off is generic and can be attributed to the transfer function
effect encoded by c1ðkÞ=c2ðkÞ in Eq. (24) for k * keq
(where keq=a0 � 10�2 Mpc�1 is the wave vector associated

with matter radiation equality). To understand why
c1ðkÞ=c2ðkÞ generically becomes large for k * keq, note

that isocurvature modes with k * keq enter the horizon

during radiation domination. Because the isocurvature effect
on the temperature spectrum is gravitational, the value of
c1ðkÞ=c2ðkÞ is proportional to the ratio 
RðtðkÞÞ=
�ðtðkÞÞ of
the radiation energy density to the energy density in the
isocurvature degree of freedom at the time tðkÞ when mode
k * keq enters the horizon. Since shorter wavelengths enter

the horizon earlier, 
RðtðkÞÞ=
�ðtðkÞÞ is larger for shorter
wavelengths, making c1ðkÞ=c2ðkÞ larger. For those readers
not familiar with this physics, some of the details of the
transfer function are reviewed in Appendix A.
Because of the large differences in the constraints be-

tween� ¼ 0 and� ¼ �1, estimating the cross-correlation
is crucial to restrict parameters and give observable pre-
dictions of isocurvature models. In particular, the axion
scenario with a negligible homogeneous vacuum misalign-
ment angle (and similarly the wimpzilla scenario with a
negligible homogenous background field value) predicts
detectable non-Gaussianity [24,30,85]

fNL � 30

�
�

0:067

	
3=2

(31)

provided the assumption that the cross-correlation is zero,
i.e., � ¼ 0. However, as we will explain, this assumption
is not obvious for massive field quadratic isocurvature
scenarios, and the reexamination of this assumption is
one of the goals of this paper.

III. COMPUTATION OF CORRELATORS

In order to provide the initial condition of the classical
fluid equations, it is standard to compute the quantum
equal time correlators with the inflationary background
approximated as a Bunch-Davies vacuum. In this section,
we compute the correlators using the ‘‘in-in’’ formalism
(e.g., see Weinberg [86]). More specifically, in the context
of canonical quantization, we perturbatively compute the

expectation value of an operator Q̂ðtÞ

hQ̂ðtÞi ¼ X
n

ð�iÞn
Z t

�1
dt1

Z t1

�1
dt2 	 	 	

Z tn�1

�1
dtnh½½½Q̂IðtÞ; ĤIðtnÞ�; ĤIðtn�1Þ�; 	 	 	 ĤIðt1Þ�i; (32)

where the superscript I stands for the interaction picture
and Q̂ðtÞ represents a product of canonically quantized
operators.

In the scenario explained in Sec. II, we consider the
gravitational coupling whose interaction Hamiltonian is
derived from the ADM formalism with a given choice
of gauge. For the computation of the cross-correlation to
leading order in gravitational coupling, we need at least

up to the cubic coupling HI
���, where � is a spectator field

during inflation. The interaction Hamiltonian is diffeomor-
phism gauge dependent. For two commonly used gauges,
the comoving gauge ð�� ¼ 0Þ and the uniform curvature
gauge ðA ¼ 0Þ, we have

HI
���ðtÞ ¼ � 1

2

Z
d3xa3ðtÞT��

� ðt; ~xÞ�g��ðt; ~xÞ; (33)

1 5 10 50 100 500 1000
0.01

0.1

1

10

100

1000

FIG. 1 (color online). Angular power spectra Cl from pure
adiabatic (dotted), pure isocurvature (dashed) contributions.
The solid red line corresponds to be qualitatively the contribu-
tion of the absolute magnitude of the third term in Eq. (24).
The plotted pure adiabatic perturbation has the spectral index
ns ¼ 0:96. For isocurvature perturbations, the spectral index niso
is 1 and the isocurvature fraction � ¼ 0:067 defined at
k0 ¼ 0:002 Mpc�1, and the fractional cross-correlation j�j is 1.
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�gðCÞ�� ¼
�2

_�
H

�
� �

H þ 	 a2

r2
_�

	
;i�

� �
H þ 	 a2

r2
_�

	
;i

a2�ij2�

0BBB@
1CCCA; (34)

�gðUÞ
�� ¼ 2	� 	 a2

r2
_�;i

	 a2

r2
_�;i 0

 !
; (35)

where T��
� is the stress energy tensor of the field �, and

�g�� is the metric perturbation and the superscripts ðCÞ
and ðUÞ denote the comoving gauge and uniform curvature
gauge, respectively. A detailed derivation of the interaction
Hamiltonian using the ADM formalism is presented in
Appendix C.

The isocurvature perturbation �S should be also written
in terms of quantum operators associated with the energy
density 
� of the particle �. Since the energy density 
� is
written in bilinear form of � and since the energy density
of CDM are often those of nonrelativistic particles at the
time of matching to classical equations, we may approxi-
mate the energy density 
� � m2

��
2. We then promote

field � to a quantum operator:

�� � �
�


�

� �2 � ��2

��2
! �̂� ¼ �̂2 � h�̂2i

h�̂2i : (36)

The field �̂ can be decomposed into the classical homoge-
neous background and the quantized perturbation, i.e.,
�̂ ¼ ��þ ��̂. Unlike the inflaton � whose classical back-
ground is nonzero, because we consider the field �̂ without
classical background, the leading density perturbation
starts with the quadratic in the operator ��̂2. As with any
quantum composite operator, we renormalize it with coun-
terterms invariant under the underlying gauge symmetry
(here, it is diffeomorphism):

ð�̂2Þr ¼
�
��̂þX

i

̂i

	
2 þ �Z0 þ �Z1R; (37)

where the subscript r denotes that the operator is a
renormalized composite operator, R is the Ricci scalar,
and ̂i are Pauli-Villars fields, which are described in
Appendix D. We apply this to gauge invariant isocurvature
variable �S defined in Sec. II A. Then we have

�̂S
ðCÞ ¼ � 3H

@thð�̂2Þri
½ð�̂2Þr � hð�̂2Þri�; (38)

�̂S
ðUÞ ¼ � 3H

@thð�̂2Þri
½ð�̂2Þr � hð�̂2Þri� � 3�̂ : (39)

We will not write the hat explicitly from now on.
In the next subsection, we present how a non-

diffeomorphism-invariant estimation of the cross-
correlation leads to an observationally attractive but grossly
incorrect result. In subsections after that, we identify the

problems with the wrong estimate and calculate the cross-
correlation properly.

A. Plausible but wrong estimation
of the cross-correlation

In this subsection, we present a plausible estimation
of the cross-correlation that leads to a large value that is
observationally interesting. Unfortunately, we will see in
later subsections that the estimate presented in this sub-
section can be many orders of magnitude off due to the
explicit breaking of diffeomorphism invariance in the treat-
ment of the UV physics. Nonetheless, what is presented in
this subsection is interesting both as a lesson in field theory
and as a motivation for the careful correct computation that
follows later.
The isocurvature cross-correlation in the comoving

gauge is written as

h�ðCÞ
S �i � hð�2Þr�i

hð�2Þri
; (40)

where we have used @thð�2Þri þ 3Hhð�2Þri � 0 for the
isocurvature field number density. For an order of magni-
tude estimation, we consider a nonderivatively coupled

part of the gravitational interaction, 2�a2�ijT
ij
� 2 HI

���.

Then the two-point function, shown diagrammatically in
Fig. 2, is written in the Fourier space as

ghð�2Þr�iCp �
Z

d3xe�i ~p	 ~x Z t
d4za3ðtzÞ

�
��

�2ðt; ~xÞ�ðt; ~0Þ; i
2
ð2�a2�ijT

ij
� Þz

��
(41)

��4
Z d3k1
ð2�Þ3d

3k2�
3ð ~k1þ ~k2� ~pÞ

�
Z t

�1
dtza

3
zIm

�
�pðtÞ��pðtzÞuk1ðtÞuk2ðtÞ

�
1

2

~k1	 ~k2
a2

þ3

�
1

2
@ð1Þt @ð2Þt �1

2
m2

�

	�
u�k1ðtzÞu�k2ðtzÞ

�
; (42)

where

FIG. 2. Two-point function at one-loop order.
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ghABip �
Z

d3xe�i ~p	 ~xhAðt; ~xÞBðt; 0Þi; (43)

�p and uk are mode functions for � and�, respectively, and

@ðiÞt means the time derivative with respect to u�kiðtzÞ.10 This
integral is UV divergent, and thus we introduce the horizon
scale UV cutoff

�UV � aHinf : (44)

Moreover, we neglect the contribution from the time range
t < tp, where tp is the time when the scale p exits the

horizon since �p is oscillatory before the horizon exit.

Using the superhorizon approximation for mode functions
during inflation

�kðtÞ ¼ 1ffiffiffiffiffiffi
4	

p
Mp

H

k
3
2

ei
k
aH

�
1� i

k

aH

	
; (45)

ukðtÞ � a�3
2H�1

2

�
2��1�ð�Þ

�
1
2

�
k

aH

	��

þ i
�

1
2

2�þ1�ð1þ �Þ
�
k

aH

	
�
�
; (46)

where � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4�m2=H2

p
, the cross-correlation at the

end of inflation time te is approximately

ghð�2Þr�iCp � �1

8�2
j�opj2 H

4

m2
�

�
1�

�
p

aeH

	2m2
�

3H2

�
; (47)

where we used the relations m2
� � H2 and j�opj2p3 ¼

H2=4M2
p	 is the mode function behavior in the long

wavelength limit. To understand the magnitude of this
expression, note that for physical CMB scale comoving
momenta, we have

p

ae
¼ e�NðpÞH (48)

for NðpÞ �Oð50Þ. As long as

1 
 m2
�=H

2 * 1=NðpÞ; (49)

we can estimate

ghð�2Þr�iCp � �1

8�2
j�opj2 H

4

m2
�

; (50)

which is an expression that is valid when the p is
far outside of the horizon and a constant H is a good
approximation. Note that this does not vanish in the limit
p ! 0. We will soon see that this nonvanishing behavior is
incorrect and is a signal of explicit breaking diffeomor-
phism invariance coming from Eq. (44). Note that if
Eq. (49) is not satisfied because m� ¼ 0, we have

ghð�2Þr�iCp � H2

12�2
j�opj2 ln p

aeH
(51)

��NðpÞ H2

12�2
j�opj2; (52)

which again does not vanish and is negative.
As explained around Eq. (24), the importance of the

cross-correlation in the isocurvature bound depends on
whether � is of order 10�2 or larger and not by whether
the cross-correlation by itself is of the order of curvature
perturbations. To compute � defined in Eq. (29), we
need an estimate of ð�2Þr correlator which we can take
from [30]:

ghð�2Þrð�2ÞriCp � 1

2�2

H4

p3
fðm�=H;p=aeHÞ; (53)

where f is a function which can have an exponentially
small value owing to the functional behavior

f� H2

m2
�

�
p

aeH

	4
3

m2
�

H2

: (54)

Combining Eqs. (29), (47), and (53), we find

�wrong �
ffiffiffiffiffiffi
�2

�

q H

4m�

�
p

aeH

	�2
3

m2
�

H2

(55)

� H

4m�

e
2
3

m2
�

H2N�12
; (56)

which, after recalling Eq. (49) and that N �Oð50Þ, gives
some hope that a proper computation would give a large
value for � withm�=H satisfying Eq. (49).11 For example,
if j�j ¼ Oð1Þ, then any appreciable isocurvature perturba-
tion would be ruled out with the current data, affecting
predictions of [24,30,85].
Recall from Eq. (24) that the role of the cross-correlation

can become important if � can become sizable while
keeping � also sizable. One may worry that the enhance-
ment factor in � of Eq. (53) which is approximately
proportional to � may make � negligible in the parameter

10It is also helpful to remember that in terms of Fourier space
operators/fields, the tilde notation is equivalent to

ghABip ¼
Z d3p2

ð2�Þ3 hAðt; ~pÞBðt; ~p2Þi;
where

Aðt; ~pÞ �
Z

d3xe�i ~p	 ~xAðt; ~xÞ
for generic operators/fields A and B.

11It is important to keep in mind that we are making an
assumption here about the isocurvature evolution when identify-
ing the primordial computations of Eqs. (47) and (53) with the
CMB observables of Eq. (29) where ci are computed according
to the simple transfer treatment of Appendix A. We will discuss
this assumption in more detail in Sec. IVA.
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regime in which � is enhanced. However, note that � is
controlled not just by Eq. (53) but by

gh�S�Sip ¼
ghð�2Þrð�2ÞriCp

½hð�2Þri�2
; (57)

which has a one-point function squared in the denominator
proportional to the energy density squared of �. One can
straightforwardly check from Ref. [30] that the denomina-
tor of Eq. (57) can be tuned such that � can remain

constant while ghð�2Þrð�2ÞriCp is sufficiently small as to

enhance � as described in Eq. (56).
Given this generic possibility of ruling out a large class

of isocurvature perturbation models, we consider below the
leading gravitational interaction contribution to � care-
fully. We find that unlike the naive estimate given in
Eq. (47), there is a suppression in the limit p=ðaHÞ ! 0
for the mass in the range of Eq. (49). The suppression in
the numerator of � precisely cancels the denominator
suppression factor coming from f in Eq. (54) such that
no enhancement is obtained, contrary to the naive expec-
tation of Eq. (56). This suppression of the numerator in the
proper computation not seen in the naive estimate can be
attributed to a Ward identity associated with the diffeo-
morphism group element of constant scaling of the spatial
coordinates. Furthermore, a careful computation that we
give below will show that the sign of the cross-correlation
will be opposite to the naive estimate, owing to the fact
that the cross-correlation here is tied to particle production
instead of volume dilution.

The detailed computation will address also explicitly
how the same answer to the gauge invariant correlator
results in two different gauges of comoving gauge and
uniform curvature gauge (one can verify this is not obvious
from the naive estimate presented in this subsection).
Another technical care that is taken in the computations
below is to explicitly specify how diffeomorphism
invariant counterterms are introduced to renormalize the
composite operators intrinsic to �S. Since the correct
answer relies on a gravitational Ward identity, identifying
proper diffeomorphism invariant regulator and counter-
terms is important for a trustworthy computation. On the
other hand, note that the finite parts of the counterterms
that remain after the divergences are canceled will not
affect the results to the leading ℏ expansion that we are
concerned with.12

B. Plausible and correct estimation
using a soft-� theorem

Before we describe the actual computation, we give in
this subsection a method akin to the soft-� theorem used by
[44,47–52,54–60] to estimate the correct answer without a
detailed computation. We will also point out what ad hoc

assumptions are needed to make this estimate using this
theorem. A rigorous computation will be given in
Sec. III D.
In the soft-� theorem application to the correlators

in inflation, one factorizes an N-point function including
at least one soft external � into an ðN � 1Þ-point function
times the two-point function h��i. The well-known
example is the three-point function h���i in the squeezed
limit in quasi-dS space:Z d3q

ð2�Þ3 h� ~q� ~k� ~pi 


!p!0 � j�opj2 1

k3
@

@ ln k
½k3 gh��ik�

� �ðns � 1Þj�opj2j�ok j2; (58)

where the superscript on the � mode functions denote
long wavelength parts. To use this, note that if we neglect
renormalization of the composite operators, we can writeZ d3q

ð2�Þ3 h� ~p�
2ð ~qÞi ¼

Z d3k2
ð2�Þ3

Z d3k1
ð2�Þ3 h� ~p�ð ~k1Þ�ð ~k2Þi:

(59)

Using Eq. (58) and replacing two � fields with � fields, we
can estimateZ d3q

ð2�Þ3 h� ~p�
2ð ~qÞi 


!p!0�j�opj2

Z
p

d3k2
ð2�Þ3

1

k32

@

@lnk2
½k32 gh��ik2�;

(60)

where the comoving IR cutoff p is required to treat �op as a

constant background field. This effective lower cutoff p
cannot be justified without explicit computation, but this is
physically plausible because h��i does not have any IR
divergence as long as m2

� > 0. One can rewrite the integral
in Eq. (60) asZ d3q

ð2�Þ3 h� ~p�
2ð ~qÞi 


!p!0j�opj2 @

@ ln a
h�2ðt; ~xÞip; (61)

where the �2 on the right-hand side corresponds to space-
time field (and not its Fourier transform), the p subscript
on the bracket corresponds to the IR cutoff in the mode
function integral, and we assume that there is no contribu-
tion from the UV cutoff. It is easy to prove that if p ! 0 is
well defined and a UV cutoff is not required, then the right-
hand side of Eq. (61) vanishes in the limit p ! 0. This is in
contrast with Eq. (47).
The vanishing of this function in the p ! 0 limit for

m2
� > 0 is intuitively understood from the fact that in that

limit, �op acts as a spatial diffeomorphism

~x ! ~xð1þ �0pÞ (62)

(which in turn effectively rescales the scale factor a by a
constant factor if we neglect spatial derivatives on long
wavelengths) which cannot change h�2ðt; ~xÞi ¼ h�2ðt; 0Þi.
More explicitly, one can show that the explicit computation
can be rewritten as12Note that particle production is nonperturbative in ℏ.
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Z d3q

ð2�Þ3 h� ~p�
2ð ~qÞi 


!p!0j�pj2

Z
p

d3k

ð2�Þ3

�
Z

d3xih½Q̂ðtÞ; �̂ðt; ~xÞ�̂ðt; 0Þ�iei ~k	 ~x; (63)

where

Q̂ðtÞ �
Z t

d4za3ðtzÞT̂ij
�ðzÞ�ija

2ðtzÞ (64)

is the generator of the diffeomorphism associated with
Eq. (62). Note that the right-hand side formally vanishes
when the IR cutoff is removed (i.e., p ¼ 0) because in that
limit, we find the commutator

h½Q̂ðtÞ; �̂2ðt; 0Þ�i ¼ 0: (65)

This can be interpreted also as a Ward identity. On the
flip side, as long as p � 0, h�2ðt; ~xÞip is not invariant under
the diffeomorphism Eq. (62). The crucial point from this
perspective is that diffeomorphism invariance is extremely
important to see that the cross-correlation vanishes for
p ! 0 for a massive scalar field. It is this that one failed
to preserve in Eq. (44).

As we will show in detail, Eq. (61) is consistent with the
explicit computation. Note that a couple of assumptions
that we already mentioned in deriving Eq. (61) can only be
justified by an explicit computation: namely, the effective
lower cutoff p in Eq. (60) and UV cutoff details associated
with renormalizing the composite operator �2. Such com-
plications do not arise in isocurvature scenarios without
composite operators. Hence, one of the main technical
merits of this paper is to provide an explicit justification
of Eq. (61). Note that because the diffeomorphism gauge
invariance plays a crucial role in obtaining the correct p
dependence in Eq. (61) as explained around Eq. (65), we
choose a UV regulator that preserves diffeomorphism
invariance in the computation below.

C. Gauge invariance of correlators

Before we begin our explicit computation, we will check
the setup of our computation by demonstrating that the
manifestly gauge invariant quantities h�S�i and h�S�Si
yield the same values in comoving and in the uniform
curvature gauges. To accomplish this, we use a gravita-
tional Ward identity.

We first note that the � dependent metric perturbations

�gðCÞ and �gðUÞ differ by a gauge transformation, i.e.,

�g�� ¼ �gðUÞ
�� � �gðCÞ�� ¼

2 d
dt

�
�
H

� �
� �

H

�
;i�

� �
H

�
;i

�a2�ij2�

0B@
1CA

¼ �½LX �g���; (66)

where

X0 ¼ � �

H
; Xi ¼ 0: (67)

Their interaction actions differ by

�S��� ¼ SðUÞ
��� � SðCÞ��� ¼ �

Z tf
dtd3xa3xT

��ð �g;�Þr�X�:

(68)

Their interaction Hamiltonians differ by

�H���ðtÞ ¼ HðUÞ
���ðtÞ �HðCÞ

���ðtÞ

¼
Z

d3xa3ðtÞT��ð �g; �; t; ~xÞr�X�ðt; ~xÞ: (69)

Then we compare h�2
x�yi in the two gauges:

h�2ðtf; ~xÞ�ðtf; ~yÞiU � h�2ðtf; ~xÞ�ðtf; ~yÞiC

¼ �i
Z tf

dth½�2
x�y;�H���ðtÞ�i (70)

¼ �i
Z tf

dtd3zh½�2
x�y;r�ða3ðtÞT��

� ð �g; �; t; ~xÞX�ðt; ~xÞÞ�i; (71)

where we have integrated by parts and used the quantum
version of r�T

��
� ¼ 0, i.e., in-in formalism gravitational

Ward identities

ir�hinjT��þ
z �þ

x �
þ
y jinig

¼ 1ffiffiffiffiffi
gx

p �4ðx� zÞg��x @

@x�
hinj�þ

x �
þ
y jinig

þ 1ffiffiffiffiffi
gy

p �4ðy� zÞg��y @

@y�
hinj�þ

x �
þ
y jinig (72)

ir�hinjT���
z �þ

x �
þ
y jinig ¼ 0; (73)

whose notation is explained in Appendix B. Note that the
remaining term in Eq. (71) is a total derivative. Hence, we
are left with the boundary contribution

h�2ðtf; ~xÞ�ðtf; ~yÞiU � h�2ðtf; ~xÞ�ðtf; ~yÞiC

¼ �i
Z

d3za3ðtfÞ 1H h½�2
x; T

00
�;z�ih�z�yi (74)

¼ � @th�2
xi

H
h�x�yi: (75)

To make these composite operator correlators well defined
while maintaining diffeomorphism invariance [see the dis-
cussion surrounding Eq. (65)], we need a proper covariant
regulator, such as the Pauli-Villars (PV) regulator. It is
straightforward to use the PV regulator here because the
above identity holds for PV fields as well. See Appendix D
for a more detailed discussion of the prescription of the PV
regulator.
Using Eq. (75), it is now trivial to show that h�S�iU ¼

h�S�iC and h�S�SiU ¼ h�S�SiC. Because �S 3 �2
x=h�2

xi,
the denominator of this expression also transforms:
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��S 3 ��h�2
xi

h�2
xi

�2
x

h�2
xi

¼ �x
H

@th�2
xi

h�2
xi

�2
x

h�2
xi
; (76)

which leads to a cancellation of Eq. (75) consistently
to leading ℏ ! 0 approximation. Hence, we have a non-
trivial consistency check of the computation that we are
setting up.

D. Two-point functions

In this subsection, we present a rigorous computation
of � defined in (29). To this end, we need to calculate the
two-point functions hð�2Þr�i and hð�2Þrð�2Þri where the
renormalized composite operator [67,87–98] is

ð�2Þr �
�
�þX

n

n

	
2 þ �Z0ð�; m�Þ þ �Z1ð�; m�ÞR;

(77)

which is discussed in greater detail in Appendix D 2. Here
we are going to use the comoving gauge for the computa-
tion because of its advantages that we state below.13 As
shown in Eqs. (33) and (34), the gravitational interactions
in the comoving gauge are derivatively (i.e., p2=a2) sup-
pressed except the (ðijÞ-components. In other words, the

contributions from T00
� �gðCÞ00 and T0i

� �g
ðCÞ
0i interactions are

Oðp2=a2Þ, where ~p is an external 3-momentum.
Furthermore, all counterterm contributions are also deriv-
atively suppressed in the comoving gauge: �Z0h�i ¼ 0 and

�Z1
ghR�iCp ¼ Oðp2=a2Þ. Therefore, we do not need the

counterterms to compute the nonderivatively suppressed
contributions, but we still need a regulator for UV diver-
gences in the computation. The regulator dependences and
the UV divergences will automatically disappear together
in our final result.

Now we compute the two-point function shown in
Fig. 2, which is written in the Fourier space as

ghð�2Þr�iCp ¼
Z

d3xe�i ~p	 ~xhð�2ðt; ~xÞÞr�ðt; ~0ÞiC (78)

¼
Z

d3xe�i ~p	 ~x Z t
d4za3ðtzÞ

� Xs
N¼0

��
�2

Nðt; ~xÞ�ðt; ~0Þ;
i

2
ð2�a2�ijT

ij
� Þz

��
þO

�
p2

a2

	
;

(79)

where we have introduced the PV regulator (see
Appendix D for more details) and

a2�ijT
ij
� ¼ �3L� þ Xs

N¼0

CN

�r
a
�N

	
2
; (80)

where �0 and �n are the physical field � and the PV field
n (here, n 2 f1; 2; . . . ; sg), respectively, and s is the num-
ber of introduced PV fields.
Interestingly, this integral can be computed in any

Friedmann-Robertson-Walker space-time. We first com-
pute the second term contribution in Eq. (80) defined as

Ið2ÞN ðpÞ�
Z
d3xe�i ~p	 ~xZ t

d4z
ffiffiffiffiffiffiffiffiffi�gz

p

�
��

�2
Nðt; ~xÞ�ðt; ~0Þ;i�zCN

�r
a
�N

	
2

z

��
: (81)

Expanding in mode functions, this becomes

Ið2ÞN ðpÞ ¼ �4C�1
N

Z d3k1
ð2�Þ3 d

3k2�
3ð ~k1 þ ~k2 � ~pÞ

�
Z t

�1
dtza

3
z

�
�

~k1 	 ~k2
a2z

	
� Im½�pðtÞ��pðtzÞuN;k1ðtÞu�N;k1

ðtzÞuN;k2ðtÞu�N;k2
ðtzÞ�;
(82)

where uN are the mode functions for fields �N . Because �
oscillates before and freezes after the horizon exit, we
neglect the contribution before the horizon exit.
Furthermore, we can neglect the Oðp2=a2Þ term and factor
�p out of the time integral. We thus find

Ið2ÞðpÞ � 4j�opðtÞj2
Z d3k1

ð2�Þ3 d
3k2�

3ð ~k1 þ ~k2 � ~pÞ

�
Z t

tp

dtza
3
z

� ~k1 	 ~k2
a2z

	
Im½uk1ðtÞu�k1ðtzÞuk2ðtÞu�k2ðtzÞ�

þO

�
p2

a2

	
; (83)

where tp is the time at which scale p exits the horizon.

Note that we drop subscript N and field normalization CN

for convenience, but we will put it back later in the final
result. Moreover, we neglect the low momentum phase
space, i.e., min fk1; k2g<p, because of jukj2 & Oðk�3Þ
and the spatial gradient factor ~k1 	 ~k2=a2:Z

k1<p

d3k1
ð2�Þ3 d

3k2�
3ð ~k1 þ ~k2 � ~pÞ

�
Z t

tp

dtza
3
z

� ~k1 	 ~k2
a2z

	
Im½uk1ðtÞu�k1ðtzÞuk2ðtÞu�k2ðtzÞ�

& O

�
p2

a2

	
: (84)

Then the main contribution of the integral comes from the
phase space k1, k2 > p, and thus p behaves as an IR cutoff

13This computation has been done also in the uniform curvature
gauge, which is presented in Appendix E. Particularly, in the
massless limit, we explicitly calculate up to the next leading term
including all gravitational couplings. This shows that the next
leading terms are indeed suppressed by the factor p2=a2.
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[see the importance of this IR cutoff in the discussion
surrounding Eq. (61)].

Since k1, k2 >p, we Taylor-expand the integrand with
respect to p and take the leading term. Then we have

Ið2ÞðpÞ � 4j�opðtÞj2
Z
p

d3k1
ð2�Þ3

�
Z t

tp

dtza
3
z

�
� k21
a2z

	
Im½u2k1ðtÞu�2k1 ðtzÞ� þO

�
p2

a2

	
:

(85)

Now we are going to compute the time integral. Recall that
the differential equation for mode function uk is

€u k þ 3Huk þ
�
k2

a2
þm2

	
uk ¼ 0: (86)

Applying @
@ ln k to the equation, we obtain

€y k þ 3Hyk þ
�
k2

a2
þm2

	
yk ¼ �2

k2

a2
uk; (87)

where yk � @
@ ln k uk. Note that the homogeneous solutions

for yk are uk and u�k. Thus, we use the Green’s function

method to find a solution

ykðtÞ ¼
Z t

dt0
a3ðt0Þ
i

ðu�kðtÞukðt0Þ � ukðtÞu�kðt0ÞÞ

�
�
�2

k2

a2

	
ukðt0Þ: (88)

From this, we find

d

d ln k
jukðtÞj2 ¼ 2Re½u�kðtÞykðtÞ� (89)

¼ 4
Z t

�1
dtza

3
z

k2

a2z
Im½u2kðtÞu�2k ðtzÞ� (90)

¼
�Z t

tp

dtz þ
Z tp

�1
dtz

�
4a3z

k2

a2z

� Im½u2kðtÞu�2k ðtzÞ�: (91)

The second term is oscillatory with respect to k so that we
can safely neglect it after the momentum integral. Inserting
this back into the integral (85), we obtain

Ið2ÞN ðpÞ � �C�1
N j�opðtÞj2

Z
p

d3k

ð2�Þ3
d

d ln k
juN;kðtÞj2 þO

�
p2

a2

	
(92)

¼ �C�1
N j�opðtÞj2

�
� k3

2�2
juN;kðtÞj2j�UV

p þ 3hð�2
NÞpi

�
þO

�
p2

a2

	
; (93)

where we have put the subscript N and the field normal-
ization CN back, and

hð�2
NÞpi �

Z
p

d3k

ð2�Þ3 juN;kðtÞj2; (94)

where the subscript p stands for the comoving IR cutoff of
momentum. One can then compute the contribution of the
first term in Eq. (80) in a similar manner:

Ið1ÞN �
Z

d3xe�i ~p	 ~x

�
Z t

d4z
ffiffiffiffiffiffiffiffiffi�gz

p h½�2
Nðt; ~xÞ�ðt; ~0Þ; ið�3ÞL�ðzÞ�ðzÞ�i

(95)

¼ 3C�1
N j�opj2hð�2

NÞpi þO

�
p2

a2

	
: (96)

Hence, we obtain

ghð�2Þr�iCp ¼ Xs
N¼0

Ið1ÞN þ Ið2ÞN þO

�
p2

a2

	
(97)

¼ j�opj2 p3

2�2
jupðtÞj2 þO

�
p2

a2

	
; (98)

where up is the mode function for physical field �.

Comparing the computation of Eq. (98) with the esti-
mate in Sec. III A, we see two crucial differences:
(1) There is a cancellation of the 3C�1

N j�opj2hð�2
NÞpi

term that is sensitive to mode summation that ex-
tends to subhorizon modes.

(2) The �UV dependent term in Eq. (93) in the present
computation disappears after accounting for the
PV regulator fields. In contrast, the estimate in
Sec. III A leaves behind a �UV ¼ aHinf dependent
contribution due to the ad hoc nature of the UV
cutoff which does not preserve diffeomorphism.

Finally, putting the results (93) and (96) together, the two-
point function becomes

ghð�2Þr�iCp jte ¼ j�opj2 �

8>>><>>>:
�2ð�ÞH2

�3

�
p

2aðteÞH

	
3�2�

massive scalar indS

H2
p

4�2 massless during quasi-dS

þO

�
p2

a2

	
; (99)
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where Hp denotes the Hubble scale at which scale p exits
the horizon, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9=4�m2=H2
p

, and te reminds us that
we are evaluating this at the end of inflation. We have
applied the (quasi-)dS mode function in evaluating
(99).14 One can easily check that Eq. (47) is consistent
with Eq. (60).

As explained near Eq. (65), the vanishing of the cross-
correlation in the limit p ! 0 is expected from the diffeo-
morphism Ward identity. For a nonvanishing p, one might
expect the cross-correlation should beOðp2=a2Þ by Taylor-
expanding the cross-correlation at p ¼ 0. However,
Eq. (99) interestingly shows that the leading term of the
cross-correlation is not analytic at p ¼ 0 and thus not
p2=a2-suppressed. Indeed, for any small p=aðteÞ, we can
diminish the suppression by making 3� 2� ! 0þ through
the limit m=H ! 0.

To finish the computation of �, we also consider the
two-point correlator hð�2Þrð�2Þri showing up in the de-
nominator. Again, the comoving gauge is convenient for
this computation. Although the correlator is UV divergent,
because the counterterms associated with the divergence
are derivatively suppressed, we do not need to include the
counterterms in computing the IR contributions and the
nonderivative contribution of the correlator is insensitive to
renormalization. Furthermore, the IR contribution using
the superhorizon approximation is not UV divergent.
That means the UV contribution and the IR contribution

are cleanly separated. Thus, we can estimate ghð�2Þrð�2Þri
using only the superhorizon approximation unlike in the

computation of ghð�2Þr�i. We find

ghð�2Þrð�2ÞriCp ¼ 2
Z
�IR

d3k1
ð2�Þ3 d

3k2�
3ð ~k1 þ ~k2 � ~pÞ

� juk1ðtÞj2juk2ðtÞj2 þO

�
p2

a2

	
; (100)

where�IR is a comoving IR cutoff. Evaluating this with dS
superhorizon modes and assuming m< 3H=2, we find the
value at the end of inflation to be

ghð�2Þrð�2ÞriCp jte � 2
Z
�IR

d3k1
ð2�Þ3 d

3k2�
3ð ~k1 þ ~k2 � ~pÞ

� 2�4þ4�j�ð�Þj4
�2

1

a6ðteÞH2

�
�

k1
aðteÞH

	�2�
�

k2
aðteÞH

	�2�
(101)

� 1

2�2

H4

p3

1

3� 2�

�
p

aðteÞH
	
6�4�

�
�
1�

�
�IR

p

	
3�2�

�
: (102)

In Eq. (100), we have introduced a comoving IR cutoff
�IR which corresponds to the statement that the inflation-
ary era had a beginning in the finite past. Explicitly, we
cannot use the Bunch-Davies vacuum boundary condition
for modes that left the horizon before the beginning of
inflation. This means that

�IR

p
� e�ðNtot�NðpÞÞ; (103)

where Ntot is the total number of e-folds of inflation, NðpÞ
is the number of e-folds before the end of inflation at which
the mode p left the horizon, i.e., p=aðNÞ ¼ H. This cutoff
is related to the box cutoff introduced in [85,99,100].
Numerically, �IR � p is irrelevant when

m2
�

H2

 1

Ntot � NðpÞ : (104)

For situations in which this condition is violated, IR effects
are important, and our computation is only qualitatively
suggestive since�IR has to be resolved using more detailed
description of the beginning of inflation. In particular,
since we do not physically expect Ntot ¼ 1, the m� ¼ 0
situation is not accurately captured by our computation.
Of course, the IR sensitivity here is not important as far as
the importance of the cross-correlation is concerned
since the qualitative behavior of having p=�IR ! 1 is to
make the correlation even larger making the � parameter
even smaller. Finally, note that Eq. (104) can easily be
more stringent than Eq. (49).
Hence, we conclude

� �

8>>><>>>:
� m�

H

ffiffiffiffiffi
�2

�

6

r
massive scalar in dS

�
ffiffiffiffiffi
�2

�

p
2

�
ln p

�IR

��1=2
massless during quasi-dS

;

(105)

which for the massive scalar case is assumed to satisfy
Eq. (49). Although this in principle is a generic prediction
of an isocurvature scenario, the magnitude of around 10�5

is difficult to probe experimentally since the current sensi-
tivity is at the level of 10�2.

14After inflation ends at time te, the cross-correlation is ex-
pressed as

ghð�2Þr�iCp ¼ fT
ghð�2Þr�iCp jte ;

where fT accounts for the change in the mode-function behavior
after the end of inflation. As alluded to in the discussion near
Eq. (24), the factor fT cancels out of the expression in � due to

its appearance in the denominator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

��
2
�S

q
. The factor fT can

also account for the corrections in the superhorizon mode
function behavior during inflation due to deviations away from
the exact dS background.

QUADRATIC ISOCURVATURE CROSS-CORRELATION, . . . PHYSICAL REVIEW D 87, 123502 (2013)

123502-13



IV. APPLICATION

The � computation presented in Eq. (105) is not sensi-
tive to _�
� that is involved in the definition of the isocurva-
ture perturbation �S. Instead, it is a property of quadratic
nature of the scalar composite operator during inflation.
Since Eq. (105) does depend on the masses, in this section,
we motivate a couple of the mass parameters from well-
motivated nonthermal dark matter models: wimpzillas
[101–120] and axions [121–123]. Although these two par-
ticles have different physical origins, they share some
common properties as a cosmological component. Firstly,
since they are massive (at the CMB time at least) and
weakly interacting, they both are good CDM candidates.
Also, they can be gravitationally produced during or after
inflation, and this gives rise to isocurvature from their
density perturbations. Furthermore, when their background
field values are negligibly small, the isocurvature pertur-
bation from these particles is approximated by quadratic
form �2. In that case, they would present detectable
non-Gaussianties [24,30,85] and their cross-correlation is
characterized by Eq. (105).

A. Weakness of � interactions with c

To connect our computation of � to observables, a
postinflationary isocurvature scenario is necessary. For
the illustrative situations of axions and wimpzillas, it is
sufficient to assume that � has an extremely weak interac-
tion with the reheating degrees of freedom c and the
inflaton � such that the transfer function of � is trivial
after inflation: with sufficiently small interactions, � and �
of Eqs. (28) and (29) computed during inflation can be
directly matched without any further transfer function
computations to the isocurvature initial condition for
CMB codes such as CMBFAST. In this section, we quantify
the requisite weakness of the interactions and qualitatively
discuss the situation when the weakness assumption is
invalid. For example, we will show below that ordinary
WIMPs are too strongly interacting with the reheating
degrees of freedom for this assumption to be valid while
axions and wimpzillas are sufficiently weakly interacting.
We also qualitatively describe what extra work needs to be
done to apply this paper for observations in situations in
which the dark matter particles are not extremely weakly
interacting.15

At the linearized classical equation of motion level, we
have the gauge invariant perturbations f�jg being governed
by a linear time evolution operator

O½f�jg� ¼ 0; (106)

where the initial condition for the isocurvature species
j ¼ �16 is given by

��ðtiÞ ¼ fðtiÞ (107)

which in turn is set by the inflationary physics. For ex-
ample, the initial time ti can be set to be the time of the end
of inflation. The final ��ðtfÞ will contain a contribution

which does not vanish in the limit f ! 0. Hence, one can
write

��ðtfÞ ¼ G�
tf ½fðtiÞ; 0� þG�

tf ½0; �j��ðtiÞ�; (108)

where G�
tf ½D� is the � component of the Green’s function

derived from the linear operator O which takes the initial
data D and maps it to the final value of ��ðtfÞ. Note that

we have implicitly assumed the boundary condition such
that G�

tf ½0; 0� ¼ 0 which means that G�
tf ½fðtiÞ; 0� vanishes

as fðtiÞ ! 0.
Now, we will consider two situations which bound the

picture of super-weakly-interacting scenarios. In the first
scenario, the thermal plasma generated by the inflaton
decay will interact with � sufficiently strongly to make
�S mix strongly with � . In the second scenario, the inflaton
decay to � directly will realign � fluctuations during
radiation domination to those of � , even though � and
reheating products are not interacting appreciably.
First, consider the effects of radiation dominated thermal

plasma on �. The mixing rate governing G�
tf ½0; �j��ðtiÞ� is

the production rate of � particles from the thermal plasma.
Typically a single channel involving particle y dominates
the production of the � particle from the plasma. (If there
are more channels, the discussion below can easily be
generalized.) We thus expect a qualitative behavior of

G�
tf ½0; �j��ðtiÞ� �

�
1þ tanh

�
�ðyy ! ��; tmax Þ

Hðtmax Þ
�	

�y;

(109)

where �ðyy ! ��; tmax Þ is the reaction rate for this
process at the time that the production rate is maximum
(in �ðyy ! ��; tÞ is maximum at t ¼ tmax where tmax 2
½ti; tf�), H is the expansion rate, and �y ¼ Oð�totÞ.
Hence, one sees that the information about the isocurva-

ture perturbations depends not only on

�ðyy ! ��; tmax Þ=Hðtmax Þ
but on tf since tmax is restricted to be in the range tmax 2
½ti; tf�. For example, the usual CMB code is run starting

with an initial condition at T � TBBN. This means that
tf 
 tBBN is required to use the inflationary correlator

computations in the CMB code. A general computation

15Because the cross-correlation result in this paper is small, the
discussion here is a bit academic if this discussion applied only
to the cross-correlation result. However, the discussion here
applies to the isocurvature two-point function found in the
literature [9,30,41–43,99,124,125] which has a realistic chance
of being observable in near future experiments.

16In our scenario, the isocurvature species stand for the degrees
of freedom in contrast with the radiation degrees of freedom.
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of G�
tf needed for the prediction of the isocurvature pertur-

bation effect on CMB temperature is beyond the scope
of current work. To be able to trust the trivial transfer
function of

G�
tf ½fðtiÞ; 0� � fðtiÞ 
 G�

tf ½0; �j��ðtiÞ�; (110)

for superhorizon modes (where ti is, say, at the end of
inflation17), we can require

�ðyy ! ��; tmaxÞ
HðtmaxÞ

� ��ðtiÞ
�tot

; (111)

where tmax can be at any time between inflation and the
time at which boundary conditions are set for the CMB
code. This sets a bound on the cross section h�vi for
yy ! �� to be

h�vi � ��ðtiÞ
�totðtiÞ

g3=4�
gy

�
TRH

106 GeV

	�1
4:2� 10�25 GeV�2;

(112)

where the bound becomes more stringent for higher reheat-
ing temperatures.

This number should be compared to the typical thermal
WIMP DM candidate annihilation cross section of
10�9 GeV�2 and a high energy s-channel scattering at
TRH mediated through a vector boson with a dimensionless

coupling g ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
4��g

p
:

h�vyy!A�!light statesi �
�2
g

T2
RH

(113)

¼
�

�

10�1

	
2
�

TRH

106 GeV

	�2
10�14 GeV�2: (114)

Hence, one sees that WIMP dark matter cannot play the
role of the isocurvature perturbations. That is why if we are
to identify our computation of � and � directly to physical
observables, we have to choose the isocurvature degree of
freedom to be nonthermal.18

Even though the current work applies most immediately
without changes to nonthermal dark matter scenarios hav-
ing extremely weak interactions, Eq. (112) is still much
bigger than gravity mediated s-channel interactions

h�vyy!g��!��i � 1

16�2

T2
RH

M4
p

(115)

�
�

TRH

106 GeV

	
2
10�64 GeV�2: (116)

For example, axion cross sections for gluon coannihilation
behave as [127]

h�vag!Xi � �2
s

8�2

1

f2a
(117)

�
�

fa
1012 GeV

	�2
10�28 GeV�2; (118)

where fa is the Peccei-Quinn (PQ) breaking VEV. Hence,
there is a large class of weakly interacting models for
which this work directly applies without modification.
For models for which Eq. (112) is not satisfied, one needs
to compute the transfer function associated with the mix-
ing. Nonetheless, this work will still be useful in setting the
initial conditions for such computations.
Let us see qualitatively what happens when Eq. (112)

is not satisfied. In that case, we expect mixing between
isocurvature and curvature perturbations

��ðtfÞ ¼ G�
tf ½fðtiÞ; 0� þG�

tf ½0; �j��ðtiÞ� �Oð��Þ
þOð�totÞ: (119)

Since the curvature perturbations will analogously be

�ðtfÞ ¼ GR
tf ½fðtiÞ; 0� þGR

tf ½0; �j��ðtiÞ�; (120)

we would then have

�S ¼ 3ðfG�
tf ½fðtiÞ; 0� �GR

tf ½fðtiÞ; 0�g
þ fG�

tf ½0; �j��ðtiÞ� �GR
tf ½0; �j��ðtiÞ�gÞ: (121)

Up to the accuracy that all species are equipartitioned, this
quantity may vanish since there is cancellation in each of
the terms in the bracket. Since it is beyond the scope of the
current work to compute more precisely this cancellation,
we are focusing on scenarios which satisfy Eq. (112).
Suppose there is a direct decay of the inflaton to �, and

suppose there is no other appreciable interaction between
� and other decay products of the inflaton. In that case, it is
better to set the initial time ti to be at the time of inflaton
decay completion such that G�

tf ½fðtiÞ; 0� is still trivial.

In that case, we have

�� � �A

2
þ �


ðgravÞ
� þ �


ðdecayÞ
�

3ð �
ðgravÞ
� þ �
ðdecayÞ

� þ �PðgravÞ
� þ �PðdecayÞ

� Þ
(122)

¼ r
ðgravÞ
� �

ðgravÞ
� þ r

ðdecayÞ
� �

ðdecayÞ
� ; (123)

where ri has been defined in Eq. (11). Hence, we have

�S ¼ 3ð�� � �RÞ (124)

¼ 3ðrðgravÞ� � ðgravÞ� þ rðdecayÞ� � ðdecayÞ� � �RÞ: (125)

If � ðdecayÞ� ¼ �R is assumed, then

17Note that as discussed in footnote 14, � can also receive
corrections from the departures from the ideal dS mode function
evolution as well as from the time when m=H becomes larger
than unity. As discussed there, the quantity � is not as sensitive
to these corrections.
18Similar arguments can also be made from unitarity [126].
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�S ¼ 3½1� rðdecayÞ� �ð� ðgravÞ� � �RÞ: (126)

This equation says that if most of the inflaton energy
density goes to �, then the isocurvature is negligible.

In the next two subsections, we now consider a couple of
mass motivations for nonthermal dark matter isocurvature
candidates.

B. WIMPZILLA

The wimpzilla was originally proposed to avoid the
restriction from the assumption that the dark matter is a
thermal relic. Thus, the wimpzilla is supposed to be either
very heavy and/or very weakly interacting. In particular,
we consider the possibility that the wimpzilla is gravita-
tionally produced during the phase transition out of the
quasi—de Sitter phase of inflation. In that case, the model
is controlled by two parameters: the ratio of mass to the
Hubble scale of inflation mX=Hinf , and the reheating
temperature TRH, where X denotes a massive scalar field.
Since the energy density is approximated as 
X �m2

XX
2

the relic density of X is estimated as

�Xh
2 � 10�1

�
He

1012 GeV

	
2
�

TRH

106 GeV

	
; (127)

where we have assumed thatmX �He, because a prioriwe
know that we can find proper isocurvature and relic density
in this mass range. (For a more detailed discussion of the
relic abundance, see for example [30].) The isocurvature
power spectrum depends on the details of the evolution of
the background during inflation because the mode function
of massive particle decays as a�3þ2� (see a related dis-
cussion in footnote 17). However, we can generally obtain
�� 0:067 if mX & Hinf , where Hinf is the Hubble expan-
sion rate when the CMB scale crosses the horizon [30]. The
wimpzilla isocurvature has also the quadratic form like the
axion. It thus generates the observable non-Gaussianities
estimated as Eq. (31). Equation (105) translates to the
fractional cross-correlation of

�WIMPZILLA � �0:4
mX

Hinf

ffiffiffiffiffiffi
�2

�

q
; (128)

which justifies the constraint used in [30]. Since the naive
estimate of Eq. (56) gives a gross overestimate �, one of

the merits of this paper is to put such worries to rest
through the proper computation.

C. Axion

In this subsection we assess the relevance of Eq. (105) to
the axion scenario. Firstly, we review the axion scenario.
In 1997, Peccei and Quinn proposed the global Uð1ÞPQ
symmetry in order to solve to the strong CP problem in
QCD. The axion is the Nambu-Goldstone boson associated
with the symmetry after it is broken spontaneously. Many
mechanisms have been proposed to produce axions in the
early Universe. We focus only on the ‘‘vacuum misalign-
ment’’ mechanism here following Refs. [43,125,128–134].
In the early Universe, the axions are effectively massless
and gain their mass when the QCD anomaly term (which
explicitly breaks PQ symmetry) becomes physical after the
chiral symmetry breaking QCD phase transition. After the
Universe cools down and the Hubble friction drops below
the axion mass, the axions begin to coherently oscillate and
they contribute to the CDM component of the Universe
because of their long lifetime.
Let us denote the PQ symmetry breaking scale by fa:

Because na / �2 where � is the axion angle, the relic axion
density is estimated as

�ah
2 �

8><>:
2� 104

�
fa=N

1016 GeV

	
7=6h�2i for Tosc * �QCD

5� 103
�

fa=N
1016 GeV

	
3=2h�2i for Tosc & �QCD;

(129)

where we have neglected Oð1Þ factors due to diffusion,
anharmonic correction, and temperature dependent mass
correction, and Tosc is the temperature at which the axion
starts to oscillate. The axion isocurvature in comoving
gauge is written as

�ðCÞ
s ¼ !a

�2 � h�2i
h�2i ¼ !a

2�i��þ ��2 � h��2i
h�2i ; (130)

where !a � �a=�CDM, �i is the average of initial QCD
vacuum angle � over the observable Universe, and �� is
the inhomogeneity of �, i.e., �ðt; ~xÞ ¼ �iðtÞ þ ��ðt; ~xÞ.
Then the isocurvature power spectrum becomes

gh�s�si�!2
a

8><>:
3:5�1010

�
fa=N

1016 GeV

	
7=3

~F for fa=N*6�1017 GeV

2�109
�

fa=N
1016 GeV

	
3
~F for fa=N&6�1017 GeV;

(131)

where

eF ¼ 4�2i
gh����i þ gh��2��2i þ �i½h����2i þ h��2��i�: (132)

Since our primary interest is in the cross-correlation with �i � 0, we set it to zero.
Therefore, the adiabaticity parameter � defined in Eq. (28) is estimated as
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��!2
a

8><>:
1:3�1019

�
fa=N

1016 GeV

	
7=3

�2
� for fa=N*6�1017 GeV

8:1�1017
�

fa=N
1016 GeV

	
3
�2

� for fa=N&6�1017 GeV;

(133)

�2
�ðpÞ ¼

p3

2�2
gh��2��2i ¼

�
fa
N

	�4
�
H2

p

2�2

	
2
ln

p

�IR

; (134)

whereHp is the Hubble scale at the horizon exit of mode p,
and �IR is an IR cutoff. Here we have used Eq. (102) with
the assumption that the axion is effectively massless during
inflation. In the case that �i � ��, the isocurvature has
the quadratic form of Gaussian variable ��, and it naturally
becomes non-Gaussian perturbation. The isocurvature
non-Gaussianity is estimated as Eq. (31).

These parameter constraints and predictions (129), (133),
and (31) already have been investigated in the literature
[24,43,85,125] with the assumption that the axion isocur-
vature and the curvature is uncorrelated. Our result from
Eq. (105) is

�axion ¼ �
ffiffiffiffiffiffi
�2

�

q
2

�
ln

p

�IR

	�1=2
& 2:5� 10�5 (135)

which is consistent with the assumptions made in the
literature.

V. SUMMARY

In this paper, we have presented the first explicit
computation of the gravitational interaction contribution
to the cross-correlation between the curvature and qua-
dratic isocurvature perturbations (which include dark mat-
ter isocurvature candidates such as axions and wimpzillas).
Since the necessary and sufficient condition for the cross-
correlation to dominate over the isocurvature perturbations
in the temperature two-point function is j�j * 4� 10�2,
we have explicitly computed �, which incidentally is
not sensitive to the background number density of the
isocurvature degrees of freedom and postinflationary mode
function changes on superhorizon scales. Although a
naive estimate of � based on a diffeomorphism violating
UV cutoff leads to the possibility of ��Oð1Þ due to a
large ratio that can appear between the numerator and
the denominator of the expression for �, our explicitly
diffeomorphism invariant computation leads to j�j &
��=2 � 2:5� 10�5 because the numerator has a suppres-

sion as a consequence of a diffeomorphism Ward identity.
Unfortunately, this is far below the current observational
sensitivity of j�j * 10�2.

The smallness of the cross-correlation is explained
by the fact that the superhorizon mode of the curvature
perturbation � can be smoothly connected to the gauge
mode, which is the spatial dilatation, in the zero external
momentum limit. Hence, Eq. (98) vanishes when p ¼ 0

and m � 0. In other words, this can be seen as a suppres-
sion due to a diffeomorphism Ward identity (i.e., uniform
spatial rescaling invariance). A nontrivial structure
revealed through our explicit computation is the suppres-
sion’s nonanalytic structure with respect to p: the cross-
correlation cannot be Taylor-expanded at p ¼ 0, and this
contribution is not p2=a2-suppressed.
Our rigorous result which incorporates UV renormaliza-

tion of the composite operator in the curved background is
also shown to be consistent with an estimate based on a
soft-� theorem, which allows one to factorize h��i from
h�2�i as explained in Eq. (61). However, Eq. (61) requires
two assumptions that can only be justified by an honest
computation such as what is presented in Sec. III D:
(1) There is an effective IR cutoff of p in evaluating

h�2i due to the external momentum p inserted into
the composite operator.

(2) The only UV renormalization property of h�2i that
is relevant to leading ℏ approximation is the preser-
vation of diffeomorphism invariance.

Note that the proper diffeomorphism invariant UV
treatment also allowed us to demonstrate that the
cross-correlation is indeed gauge invariant with one-loop
correction through the gravitational coupling. This gauge
invariance is checked explicitly by computing our cross-
correlation in both the comoving gauge and the uniform
curvature gauge.
Physically, the curvature perturbation � can affect the

particle density 
� and generate correlations only at its
horizon crossing, because � freezes out after its horizon
exit, after which it can be effectively treated as a gauge
mode. Positive cross-correlation corresponds to the situ-
ation in which the 1þ � enhancement in the expansion
enhances the particle production (assuming that this
enhances inhomogeneity) while the negative cross-
correlation corresponds to the situation in which the
1þ � enhancement in the expansion dilutes the particle
inhomogeneity. The latter dilution effect leads to �> 0,
while the particle production enhancement effect corre-
sponds to the quadratic scenario that we explored in this
paper. This explains the sign �< 0 of our result.
Given the robustness of the smallness of �, the gravi-

tational interaction contribution to the cross-correlation
should be negligible in most nonthermal dark matter
isocurvature scenarios. In addition to giving a concrete
computation that supports this statement, our work serves
as an interesting lesson in computing correlators of com-
posite operators in curved spacetime in the context of
inflationary cosmology.
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APPENDIX A: BEHAVIORS OF TRANSFER
FUNCTIONS FOR ADIABATIC AND

ISOCURVATURE INITIAL CONDITION

The CMB temperature fluctuation with the leading order
approximation (the integrated Sachs-Wolfe term is ne-
glected) in the Newtonian gauge (B ¼ F ¼ 0, E ¼ 2�,
A ¼ �2�) is

�T

T
� 1

4
��jr þ�jr; (A1)

where the perturbations on the rhs are evaluated at the
recombination. We can obtain these perturbations by solv-
ing the Einstein and Boltzmann equations with given initial
conditions. A projection from a given initial condition to
the final CMB temperature fluctuation is called transfer
function. In the following subsections, we calculate that the
k-dependence of the transfer functions for the adiabatic
and the isocurvature initial conditions. In particular, we
show that the isocurvature transfer function has the addi-
tional suppression factor keq=k compared to the adiabatic

one for small scale k 
 keq. Here we basically follow the

calculation by Refs. [135,136].

1. Perturbation equations

For explicit computation, we choose the Newtonian
gauge for the scalar metric perturbation (2). For simplicity,
we consider only photon and CDM fluids, which are de-
noted in the following equations by subscripts � and m,
respectively. This assumption is valid for the sake of
identifying the difference between transfer functions for
adiabatic and isocurvature initial conditions, although
baryon and neutrino should be taken into account for
accurate description for transfer functions.

The conservation equations for dark matter and photon
fluids in Fourier space are

�0
m ¼ k2Vm þ 3�; (A2)

V0
m ¼ �HVm ��; (A3)

�0
� ¼ 4

3
k2V� þ 4�0; (A4)

V 0
� ¼ � 1

4
�� ��; (A5)

where 0 denotes the time derivative with respect to confor-
mal time �, H � a0=a, �a � �
a=
a. Note that � ¼ �

since they are perfect fluids. VX is the peculiar velocity for
fluid X. These four equations are combined by eliminating
VX, and we have

ðað�0
m � 3�0ÞÞ0 ¼ ak2�; (A6)

�00
� ¼ 4�00 � k2

3
ð�� þ 4�Þ: (A7)

The evolution of the metric perturbation is encoded in the
Einstein equations. (00) and (ii) components are

k2�þ 3H ð�0 þH�Þ ¼ � 1

2M2
p

a2ð
m�m þ 
���Þ;
(A8)

�00 þ 3H�0 þ
�
2
a00

a
�H 2

	
� ¼ 1

6M2
p

a2
���: (A9)

Combining with other components, we also find the
Poisson equation

�k2� ¼ 3

2
H 2

�
�m�m þ����

� 3H
�
�mVm þ 4

3
��V�

	�
: (A10)

With the definition of isocurvature (20) in Sec. II

�S ¼ �m � 3

4
��; (A11)

where we have used p� ¼ 
�=3 and pm ¼ 0, we rewrite

the differential equations of fluid and metric perturbations
in terms of � and �S

�00 þ3H ð1þc2sÞ�0 þ½2H 0 þH 2ð1þ3c2sÞ��þk2c2s�

¼�2

3

c2s
M2

p

a2
m�S; (A12)

1

3c2s
�00
S þ

a0

a
�0
S þ

k2y

4
�S ¼ � 1

6
y2k4�2eq�; (A13)

where

y � a

aeq
¼ 
m


�

; �eq ¼
ffiffiffi
2

p
aeqHeq

;

c�2
s � 3

�
1þ 3

4
y

	
: (A14)

In the � ! 0 limit, Eqs. (A12) and (A13) admit two
linearly independent solutions �ðk; � ! 0Þ ¼ �iðkÞ,
�Sðk; � ! 0Þ ¼ 0, and �ðk; � ! 0Þ ¼ 0; �Sðk, � ! 0Þ ¼
�i
SðkÞ, which corresponds to adiabatic initial condition and

isocurvature initial condition, respectively.
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2. Adiabatic initial condition

For large scale perturbations, which enter the horizon
later than the recombination, �S remains zero according to
Eq. (A13), and thus Eq. (A12) is rewritten as

d2�

dy2
þ 21y2 þ 54yþ 32

2yðyþ 1Þð3yþ 4Þ
d�

dy
þ �

yðyþ 1Þð3yþ 4Þ ¼ 0;

(A15)

which is called the Kodama-Sasaki equation. This differ-
ential equation can be exactly solved, and we find

�ðkl; y 
 1Þ ¼ 9

10
�iðklÞ; (A16)

where the subscript l stands for ‘‘superhorizon.’’ For pho-
ton energy density ��, Eq. (A4) in the long wavelength

limit yields

1

4
�� �� ¼ const (A17)

and also Eq. (A8) gives

��ðkl;� ! 0Þ ¼ �2�ðkl; �Þ ¼ �2�iðklÞ: (A18)

For small scale perturbation, which enters the horizon
during the radiation dominated (RD) era, in the early RD
limit � � �eq, Eq. (A12) becomes

�00 þ 4

�
�0 þ k2

3
� ¼ 0; (A19)

and its solution with the adiabatic initial condition

�ðks; � < �eqÞ ¼ 3

ðw�Þ3 ðsinw�� w� cosw�Þ�iðksÞ;
(A20)

where w ¼ k=
ffiffiffi
3

p
. After the perturbation enters the

horizon,

�ðks; � < �eqÞ � � 3 cosw�

ðw�Þ2 �iðksÞ; (A21)

��ðks; � < �eqÞ � � 2M2
p


�a
2
�ðks; �Þ ¼ 6�iðksÞ cosw�;

(A22)

where the subscript s means ‘‘subhorizon,’’ and the second
equation is obtained by the Poisson equation (A10).
Plugging this solution into Eq. (A6), we find that

�mðks; � < �eqÞ � �9�iðksÞ
�
lnw�þ �� 1

2

	
; (A23)

where � is the Euler gamma constant. This shows that the
dark matter density perturbation grows logarithmically
during the RD era.

Now we should match this with the solutions in the
matter dominated (MD) era. Because the time derivatives

of � are negligible compared to the spatial derivatives,
Eq. (A6) is approximated as

�00
m þH�0

m � �k2� � 3

2
H 2�m�m; (A24)

where we have used the Poisson equation (A10). Then, it is
rewritten as

yð1þ yÞ d
2�m

d2y
þ
�
1þ 3

2
y

	
d�m

dy
� 3

2
�m ¼ 0; (A25)

and its general solution is

�m ¼ c1

�
1þ 3

2
y

	
þ c2

��
1þ 3

2
y

	
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p � 1

� 3
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p �
: (A26)

Matching this solution with Eq. (A23) at y � 1, we find

�mðks; � > �eqÞ
¼ �9�iðkÞ

�
ln 2w�� þ �� 7

2

	�
1þ 3

2
y

	
þ 9�iðkÞ

��
1þ 3

2
y

	
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p � 1
� 3

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p �
;

! � 27

2
y�iðkÞ

�
ln 2w�� þ �� 7

2

	
when y 
 1;

(A27)

where �� � �eq=ð
ffiffiffi
2

p � 1Þ ¼ 2�eq. Note that we have used

the results from the Friedmann equation

H 2 ¼ a2eqH
2
eq

2

�
1

y
þ 1

y2

	
; (A28)

y ¼ �2

ð2�eqÞ2
þ �

�eq
; (A29)

and Eq. (A27) corresponds to Eq. (150) in Ref. [136].
Then using Eqs. (A10) and (A27), we get

�ðks; � > �eqÞ �
ln ð0:15ks�eqÞ
ð0:27ks�eqÞ2

�iðksÞ: (A30)

This shows that the gravitational potential is frozen after
the matter-radiation equality. Similarly, we first find the
general solution of Eq. (A7) for subhorizon modes

�� ¼ c1 cosw�þ c2 sinw�� 4�; (A31)

where we have neglected the time derivatives of �. Then
matching this with Eq. (A22), we get

��ðks; � > �eqÞ �
�
6 cos ðw�Þ � 4

ln ð0:15ks�eqÞ
ð0:27ks�eqÞ2

�
�iðksÞ:

(A32)
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Now we return factors due to the Silk damping and the
acoustic sound speed

��ðks; � > �eqÞ
�
�
35=4

ffiffiffiffiffiffiffi
4cs

p
cos

�
ks
Z �

csð�0Þd�0
	
e�ðks=kDÞ2

� 4

3c2s

ln ð0:15ks�eqÞ
ð0:27ks�eqÞ2

�
�iðksÞ; (A33)

which is Eq. (153) in Ref. [136]. Notice that the the first
term is dominant for the scales we are interested in.
However, the second term becomes important for very
small scales where the diffusion damping is not negligible,
k * kD.

Finally, the SW term (A1) becomes

�T

T
�
�
6�iðkÞ cosw� if k > keq
3
10�

iðkÞ if k < ��1
r :

(A34)

Note that

�i � �iR ¼ ��i þ 1

4
�i
� ¼ � 3

2
�i: (A35)

3. Isocurvature initial condition

For large scale perturbations, �S remains constant, and
Eq. (A12) has the solution

�ðkl; �Þ ¼ �
�
x

5

	
x2 þ 6xþ 10

ðxþ 2Þ3 �i
SðklÞ; (A36)

where x � �=�eq. In the MD era, Eq. (A36) gives

�ðkl; � 
 �eqÞ ¼ � 1

2
�mðkl; � 
 �eqÞ

¼ 1

4
��ðkl; � 
 �eqÞ

¼ � 1

5
�i
SðklÞ; (A37)

where the last two equations are obtained from Eq. (A8).
Now, we will see how the perturbations evolve during

the RD era, and how they are connected to small scale
perturbations. In the early RD era, the source term and the
last term on the left-hand side of Eq. (A13) are negligible
because they are higher order in y. Thus, the solution �S

remains constant even inside the horizon. In that case,
Eq. (A12) becomes Eq. (A19) with the source term
�S=2y�

2
eq. Then we find its solution that matches with

Eq. (A36)

�ðk; � < �eqÞ

¼ � �

�eq

1

ðw�Þ4
�
1þ ðw�Þ2

2
� ðcosw�þ w� sinw�Þ

�
� �i

SðkÞ: (A38)

Furthermore, in the w� ! 0 limit, we have

�ðkl; � < �eqÞ � � 1

8
�i
SðklÞ

�
1� ðw�Þ2

18

	
y; (A39)

and putting this into Eq. (A8), we find that

��ðkl; � < �eqÞ � � 1

2
�i
SðklÞ

�
1� 7

18
ðw�Þ2

	
y; (A40)

�mðkl; � < �eqÞ � �i
SðklÞ

�
1� 3

8
y

	
þ 7

48
�i
SðkÞyðw�Þ2:

(A41)

As explained in Sec. II B, we have that� and �� grow like

a during the RD era; meanwhile �m decreases.
For subhorizon modes, Eq. (A38) becomes

�ðks; � < �eqÞ � � y

ðw�Þ3
�
w�

2
� sinw�

	
�i
SðksÞ;

(A42)

and again plugging this into Eq. (A8) yields

�mðks; � < �eqÞ � �
�
3

2

sinw�

w�
y� 1

	
�i
SðksÞ; (A43)

��ðks; � < �eqÞ � � 2 sinw�

w�
y�i

SðksÞ: (A44)

Matching these with general solutions of perturbations
(A26) and (A31), and also using Poisson equation (A10)
in the MD era, we get

�mðks; � > �eqÞ �
�
1þ 3

2
y

	
�i
SðksÞ; (A45)

��ðks; � > �eqÞ �
�
� 1

0:35ks�eq

sin ðw�Þ

þ 4
1

ð0:8ks�eqÞ2
�
�i
SðksÞ; (A46)

�ðks; � > �eqÞ � � 1

ð0:8ks�eqÞ2
�i
SðksÞ: (A47)

Then the SW term becomes

�T

T
�
8<:� 1

0:35k�eq
�i
SðkÞ sin ðw�Þ if k > keq

� 2
5�

i
SðkÞ if k < ��1

r :
(A48)

Now we see from Eqs. (A34) and (A48) that the isocurva-
ture transfer function has the additional suppression factor
keq=k compared to the adiabatic one for small scale

k > keq.

APPENDIX B: REVIEW OF DIFFEOMORPHISM
INVARIANCE

A symmetry in a classical field theory is preserved at the
quantum level, if the regulator preserves this symmetry and
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if the functional measure is invariant under the symmetry
transformation. The quantum symmetry is reflected in the
transformation of the correlation functions.

For example, consider a scalar field � on a fixed
manifold ðM; gÞ. The two-point function is

h�ðxÞ�ðyÞig ¼
Z

D�eiSð�;gÞ�ðxÞ�ðyÞ: (B1)

The two-point function only depends on the metric field
g and points x, y. Intuitively, the symmetry says for any
diffeomorphism ’: M � M, the metric field and the
points change as

g� ~g¼ ð’�1Þ�g; x� ~x¼’ðxÞ; y� ~y¼’ðyÞ;
(B2)

then the two-point function should remain invariant, i.e.,

h�ðxÞ�ðyÞig ¼ h�ð~xÞ�ð~yÞi~g: (B3)

The Ward identity is the infinitesimal version of this
relation.

Let ’ ¼ exp ð	XÞ; then
~g ¼ exp ð�	XÞ�g ¼ g� 	LXgþ 	 	 	 (B4)

Sð~g;�Þ ¼ Sðg;�Þ � 	
Z

d4x
ffiffiffi
g

p 1

2
T��
� LXðgÞ�� þ 	 	 	

(B5)

�ð~xÞ ¼ �ðxÞ þ 	LX�ðxÞ þ 	 	 	 : (B6)

Plugging this into Eq. (B3) and Taylor-expanding with
respect to 	, one gets

� i
Z

d4z
ffiffiffi
g

p 1

2
LXðgÞ��ðzÞhT��

z �x�yig þ hLXð�Þx�yig
þ h�xLXð�Þyig ¼ 0: (B7)

Or equivalently, using

L XðgÞ�� ¼ r�X� þr�X� (B8)

and performing integration by part, we obtain

ir�hT��
z �x�yig ¼ 1ffiffiffiffiffi

gx
p �4ðx� zÞg�� @

@x�
h�x�yig

þ 1ffiffiffiffiffi
gy

p �4ðy� zÞg�� @

@y�
h�x�yig

(B9)

which is the Ward identity for the path ordered vacuum
expectation value. We can then write down the in-in
expectation value Ward identity as

ir�hinjT��þ
z �þ

x �
þ
y jinig

¼ 1ffiffiffiffiffi
gx

p �4ðx� zÞg��x @

@x�
hinj�þ

x �
þ
y jinig

þ 1ffiffiffiffiffi
gy

p �4ðy� zÞg��y @

@y�
hinj�þ

x �
þ
y jinig (B10)

ir�hinjT���
z �þ

x �
þ
y jinig ¼ 0; (B11)

where we kept the external operator inserted on the
forward branch. The fact that Eq. (B11) has no contact
term is easy to understand: since T���

z is inserted on the
backward time branch of the manifold, it can never contact
points x and y.

APPENDIX C: ADM FORMALISM AND
INTERACTION HAMILTONIAN

We consider an inflationary model with the inflaton �
and an extra free massive scalar�, where� is only gravita-
tionally coupled with �:

S ¼
Z
ðdxÞ 1

2
M2

pRþ
�
� 1

2
g��@��@��� Vð�Þ

�
þ
�
� 1

2
g��@��@���Uð�Þ

�
; (C1)

where M2
p ¼ 1

8�G ¼ 1 and ðdxÞ ¼ d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðg��Þj

q
. The

metric can be parametrized using ADM formalism [137],19

g�� ¼ �N2 þ hijN
iNj hijN

j

hijN
j hij

 !
;

g�� ¼ �N�2 NiN�2

NiN�2 hij � NiNjN�2

 !
;

(C2)

where hij is the metric tensor on the constant time hyper-

surface, and hij is the inverse metric. We use Latin indices
i; j . . . for objects on the three-dimensional constant time
hypersurface, and we use hij and h

ij to raise and lower the

indices. Then the action (C1) is rewritten as

S ¼ 1

2

Z
ðdxÞ ffiffiffi

h
p ½NRð3Þ � 2NVð�Þ � 2NUð�Þ

þ N�1ðEijE
ij � E2Þ þ N�1ð _�� Ni@i�Þ2

� Nhij@i�@j�þ N�1ð _�� Ni@i�Þ2
� Nhij@i�@j��; (C3)

where Eij and E are given by

Eij ¼ 1

2
ð _hij �rð3Þ

i Nj �rð3Þ
j NiÞ; (C4)

19We use ð� þþþÞ sign convention for the metric, and
physical time t.
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E ¼ Eijh
ij: (C5)

Consider the background solution driven by the inflaton,

�ð0Þ ¼ ��ðtÞ; �ð0Þ ¼ 0; gð0Þ�� ¼ �1 0
0 a2ðtÞ�ij

� 	
;

(C6)

where they satisfy the background equations of motion

3H2 ¼ 1

2
_��
2 þ Vð ��Þ (C7)

_H ¼ � 1

2
_��
2

(C8)

€��þ 3H _��þ V0ð ��Þ ¼ 0: (C9)

The action for the perturbations can be obtained by
Taylor-expanding the full action around the background
solution. However, we may reduce the number of variables
by imposing the ADM constraints:

0 ¼ 1

N

�
Rð3Þ � 1

N2
ðEijE

ij � E2Þ
�
� 2NT00 (C10)

0 ¼ 2

N
rð3Þ

i

�
1

N
ðEij � EhijÞ

�
þ 2NjT00 þ 2T0j; (C11)

where

T�� ¼ T
��
� þ T

��
� ; (C12)

T��
� ¼ �g��

�
1

2
ð@�Þ2 þ Vð�Þ

�
þ @��@��; (C13)

T��
� ¼ �g��

�
1

2
ð@�Þ2 þUð�Þ

�
þ @��@��; (C14)

and choose a gauge.
One commonly used gauge is the comoving gauge,

defined by20

�� ¼ 0; �ii ¼ 0; @i�ij ¼ 0; (C15)

where

hij ¼ a2ðtÞ½e��ij; �ij ¼ 2��ij þ �ij: (C16)

The solution of N and Ni is

Nð1;CÞ ¼
_�

H
; Nð1;CÞ

i ¼ @i

�
� �

H
þ 	

a2

r2
_�

�
: (C17)

We find the scalar metric perturbations are

�gðCÞ�� ¼
�2

_�
H

�
� �

H þ 	 a2

r2
_�

	
;i�

� �
H þ 	 a2

r2
_�

	
;i

a2�ij2�

0BBB@
1CCCA; (C18)

where 	 � _H=H2. Plugging in the linear metric perturba-
tion back to the action (C3), we can get the perturbed
action action up to cubic order

SðCÞ ¼ SðCÞ�� þ SðCÞ�� þ SðCÞ�� þ SðCÞ��� þ SðCÞ��� þ 	 	 	 ; (C19)

where

SðCÞ�� ¼
Z

dtd3xa3x	

�
_�2 �

�r
a
�

	
2
	

(C20)

SðCÞ���¼
Z
d4xa3x

�
Tij
�a2�ij�

þT0i
�

�
� �

H
þ	

a2

r2
_�

	
;i
�T00

�

_�

H

�
: (C21)

The � cubic interaction and graviton actions can be found
in [44].
Another commonly used gauge is the uniform curvature

gauge, in which

hij ¼ a2ðtÞ½e��ij; �ii ¼ 0; @i�ij ¼ 0: (C22)

In this gauge, the inflaton degree of freedom is in ��.
However, this degree of freedom can be represented using
the gauge invariant variable

� ¼ �H
_��
��ðUÞ: (C23)

In this gauge, the ADM constraint renders

Nð1;UÞ ¼ �	�; Nð1;UÞ
i ¼ @i

�
	
a2

r2
_�

�
: (C24)

We get the linear metric perturbation as

�gðUÞ
�� ¼ 2	� 	 a2

r2
_�;i

	 a2

r2
_�;i 0

0@ 1A: (C25)

The free action is the same as in Eq. (C20), and the �-�
cubic interaction action is

SðUÞ
��� ¼

Z
d4xa3x

�
T00
� 	� þ T0i

� 	
a2

r2
_�;i

�
: (C26)

From these perturbed actions, we can obtain the interaction
Hamiltonian. Particularly, note that up to the cubic inter-
action, Lint ¼ �H int. Thus S��� ¼ �R

dtH���ðtÞ:

APPENDIX D: RENORMALIZATION OF
COMPOSITE OPERATORS

In renormalized perturbation theory, one requires a
regulator and renormalization condition. In order to pre-
serve the diffeomorphism invariance, we need to adopt a

20In this section, latin indices i, j are raised and lowered by �ij,
and repeated indices are contracted.
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covariant regulator. Here we choose the PV regulator,
following [138,139]. Wewill first review PV regularization
in Appendix D 1, and renormalize �2 in Appendix D 2.
For correlators involving time integrals, we describe the
adiabatic expansion of time integral in Appendix D 3.

1. Pauli-Villars regularization

We introduce a set of scalar regulator fields n for
n ¼ 1; 	 	 	 ; s with the following free Lagrangian:

L PV ¼ Xs
n¼1

Cn

�
� 1

2
g��@�n@�n � 1

2
M2

n
2
n

	
: (D1)

The number of regulator fields s depends on how many
independent divergences one needs to remove. In order to
eliminate UV divergences up to some even order 2D, we
must take the Cn and regulator masses Mn to satisfyXs

N¼0

C�1
N ¼ 0;

Xs
N¼0

C�1
N M2

N ¼ 0; 	 	 	 (D2)

Xs
n

C�1
n M2D

n ¼ �m2D
� ; (D3)

where we used the notation M2
0 ¼ m2

� and C0 ¼ 1, and let

�0 ¼ � and�n ¼ n. We use� to represent the set ofMn,
and the regulator dependence should be removed by coun-
terterms when M1;M2; . . . ;Ms go to 1 together.

On a homogeneous Friedmann-Robertson-Walker back-
ground, the physical and regulator scalar field can be
quantized as

½�N; _�M� ¼ ia�3ðtÞ�3ð ~x� ~yÞ�NMC
�1
N (D4)

with the following mode decomposition:

�Nð ~x; tÞ ¼
Z d3k

ð2�Þ3 ðaN; ~kuN; ~kðtÞ þ c:cÞ (D5)

½aN; ~p; a
y
M; ~k

� ¼ ð2�Þ3C�1
N �NM�

3ð ~k� ~pÞ; (D6)

where uN; ~pðtÞ satisfies the usual equation of motion

€u N;k þ 3H _uN;k þ
�
k2

a2
þM2

N

	
uN;k ¼ 0 (D7)

with the Bunch-Davies initial condition

uN;kðtÞ ! 1ffiffiffiffiffi
2k

p
aðtÞ exp

�
�i

Z t k

aðt0Þdt
0
	

for t ! �1
(D8)

and Wronskian conditions21

uN;k _u
�
N;k � _uN;ku

�
N;k ¼ i=a3: (D9)

Because Mn 
 H, Eq. (D7) possesses the WKB-type
solution

un;kðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!kðtÞa3ðtÞ

p exp

�
�i

Z t
!kðt0Þdt0

	�
1þ f1ðtÞ

!kðtÞ

þ f2ðtÞ
!2

kðtÞ
þOð!�3

k Þ
�
; (D10)

where !k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2 þM2

n

p
and fi are of zeroth order in

!k. Since we have to regulate up to quadratic divergence in
correlator computations, we need to know

jun;kðtÞj2 ¼ 1

2!kðtÞa3ðtÞ
�
1þ 2Ref1ðtÞ

!kðtÞ

þ jf1ðtÞj2 þ 2Ref2ðtÞ
!2

kðtÞ
þOð!�3

k Þ
�

(D11)

up to second order. Due to the equation of motion (D7), f1
should satisfy

d

dt

�
f1
!k

	
¼ i

2!k

�
_Hþ 2H2 þ 1

2

ð _Hþ 3H2ÞM2
n

!2
k

� 5

4

H2M4
n

!4
k

	
:

(D12)

Also, the Wronskian condition (D9) yields

Re f1 ¼ 0; jf1j2 þ 2Ref2 ¼ !k

d

dt

�
Imf1
!k

	
: (D13)

Then plugging these two results into Eq. (D11) gives

jun;kj2 ¼ 1

2!ka
3

�
1þ _H þ 2H2

2!2
k

þ ð _H þ 3H2ÞM2
n

4!4
k

� 5H2M4
n

8!6
k

þOð!�3Þ
�
: (D14)

2. Renormalization of composite operator

The renormalization of composite operators in curved
space-time is the same as in flat space-time (see, e.g.,
[87,88,139]), just with new possible counterterms made
from the curvature tensor. For an operator of dimension n,
one needs to consider all possible counterterms of dimen-
sion n or less. In our example model with free massive
scalar �, we renormalize �2 as

ð�2Þr ¼
�
�þX

n

n

	
2 þ �Z0ð�; m�Þ þ �Z1ð�; m�ÞR;

(D15)

where R is the Ricci scalar.
Next, we compute �Zi’s divergent part. For example, let

us consider the one-point function

21Our treatment here differs from [138] in that the physical
scalar field � here has no background solution, and the regulator
field n does not mix with � by the mass term.
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hð�2Þri ¼
Xs
N¼0

C�1
N

Z d3k

ð2�Þ3 juN;kj2 þ �Z0 þ �Z1R:

(D16)

In order to determine the counterterms �Z0 and �Z1, we
introduce a comoving scale Q such that H � Q=a � Mn

to break the Fourier space into the UV and the IR sector.
Then we use the WKB solution (D14) for k 
 Q.
Furthermore, the contribution from the PV fields for
k � Q vanishes since it is suppressed by 1=Mn:

X
N

C�1
N

Z d3k

ð2�Þ3 juN;kj2

¼
Z Q d3k

ð2�Þ3 ju0;kj
2 þ Xs

N¼0

C�1
N

Z �UV

Q

d3k

ð2�Þ3 jui;kj
2

¼
Z Q d3k

ð2�Þ3 ju0;kj
2 þ 1

48�2
R

�
ln

a

2Q
þ 10

12

	
� 1

96�2
R
Xs
N¼0

C�1
N lnM2

N

þ 1

16�2

Xs
N¼0

C�1
N M2

N lnM2
N: (D17)

Note that the arbitrary comoving scales Q in the first two
terms should cancel each other.

In order to absorb the PV regulator dependence, we need

�Z0 ¼ 1

16�2

�
�X

N

C�1
N M2

N lnM2
N þ�2

0

�
; (D18)

�Z1 ¼ 1

96�2

�X
N

C�1
N ln

M2
N

�2
1

�
; (D19)

where �0 and �1are unknown mass scales determined
by renormalization conditions. We set �0 ¼ 0 to have
hð�Þ2ri ¼ 0 for flat space-time.

3. Adiabatic expansion of time integral

In order to compute some correlators using the in-in
formalism (32), such as two-point function h�2�i, we
need to integrate PV field contributions over time. In this
subsection, we present how to calculate the time integral of
PV fields by adiabatically expanding the integral.

For simplicity, consider a diagram with one internal
vertex. Using the WKB solution (D14) of a PV field, the
general form of the time integral is

Iðk1; k2; 	 	 	 ; tfÞ ¼
Z tf

�1
dtGðk1; k2; 	 	 	 ; tf; tÞe�i

R
tf
t
!ðt0Þdt0 ;

(D20)

where!ðtÞ¼!k1ðtÞþ!k2ðtÞþ			 andGðk1;k2;			;tf;tÞ¼
Oð!nÞ. Because the integrand is a rapidly oscillatory

function, the dominant contribution comes near the final
time tf. Thus, using integration by parts we expand the

integral with respect to !:

Iðk1; k2; 	 	 	 ; tfÞ

¼ Gðk1; k2; 	 	 	 ; tf; tfÞ
i!ðtfÞ

�
Z tf

�1
dt

�
d

dt

Gðk1; k2; 	 	 	 ; tf; tÞ
i!ðtÞ

	
e�i

R
tf
t
!ðt0Þdt0 (D21)

¼Gðk1;k2; 	 	 	 ; tf; tfÞ
i!ðtfÞ �

�
1

i!ðtÞ
d

dt

Gðk1;k2; 	 	 	 ; tf; tÞ
i!ðtÞ

	t¼tf

þ
�

1

i!ðtÞ
d

dt

�
1

i!ðtÞ
d

dt

Gðk1;k2; 	 	 	 ; tf; tÞ
i!ðtÞ

	�t¼tf

þOð!n�4Þ: (D22)

Note that the mode functions un;k and u�n;k appear in pairs

because of Wick contraction. Hence, the final result should
be written in terms of jun;kðtfÞj2 and their time derivatives,

and we can compute the time integral up to an arbitrary
order of !. It is straightforward to generalize this to the
cases with any number of internal vertices.

APPENDIX E: TWO-POINT FUNCTION hð�2Þr� i
IN THE UNIFORM CURVATURE GAUGE

In this section, we compute hð�2Þr�i using the uniform
curvature gauge in the quasi-dS background, where the
slow-roll factor 	 is constant. Then we will show that the
results in both gauges are consistent with each other.
Particularly, for the massless limit, the next leading
order term in the uniform curvature gauge indeed decays
as p2=a2.
The two-point function is the same as in the comoving

gauge except that the counterterm contribution appears in
the leading order:

ghð�2Þr�iUp ¼
Z

d3xe�i ~p	 ~x Z t
d4za3ðtzÞ

� Xn
N¼0

��
�2

Nðt; ~xÞ�ðt; ~0Þ;
i

2
ðT��

� �gðUÞ
�� Þz

��
þ �Z1

ghR�ip; (E1)

where R is the Ricci scalar. After taking nonderivative

interaction term T00
� �gðUÞ

00 only, factoring 	 and � out

from the integral, we get

ghð�2Þr�iUp ¼ ij�opj2	
Z t

d4za3ðtzÞ
Xn
N¼0

h½�2
Nðt; ~xÞ; ðT00

� Þz�i

þ 24	H2j�opj2�Z1 þO

�
_	; 	2;

p2

a2

	
; (E2)
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where we have used the perturbed curvature in the uniform
curvature gauge

R ¼ 12H2 � 6	H2 þ 24	H2� þ 4	H _� þ 	 	 	 ; (E3)

where 	 	 	 denotes Oð _	; 	2Þ terms or terms proportional to
the equation of motion of � .

Since T00
� ¼ L� þP

N½ðra �NÞ2 þM2
N�

2
N�, together

with the identities (93) and (96), and

i
Z t

d4za3ðtzÞh½�2
Nðt; ~xÞ; �2

NðzÞ�i ¼ �2
@

@M2
N

hð�2
NÞpi;

(E4)

with T00
� ¼ L� þP

N½ðra �NÞ2 þM2
N�

2
N�, we have

ghð�2ÞR�iUp þ 1

H

d

dt
hð�2ÞRi gh��ip

¼X
N

FNðtÞ þO

�
_	; 	2;

p2

a2

	
; (E5)

FNðtÞ ¼ 	

�
2hð�2

NÞpi � Z�1
N

k3

2�2
juN;kj2j�UV

p

� 2M2
N

@

@M2
N

hð�2
NÞpi

	
þ 1

H

d

dt
h�2

Ni: (E6)

Although the rhs of Eq. (E1) is well defined and regulator
independent, individual terms are not. Thus, we insert
counterterms to have each term regulator independent:

X
N

FNðtÞ¼	

�
2hð�2ðtÞÞr;piþ p3

2�2
jupðtÞj2

�2m2
�

@

@m2
�

hð�2ðtÞÞr;pi
	
þ 1

H

d

dt
hð�2Þri; (E7)

where we have put the counterterms �Z0 and �Z1R into
each one-point function, and the PV field contribution from
the third term cancels with those from the other terms.
Then, using the relation (75) one can find that the rhs of
Eq. (E7) is consistent with the result (99) in the comoving
gauge in the quasi-dS background after explicitly comput-
ing renormalized one-point function hð�2ðtÞÞr;pi. On the

other hand, the rhs does not depend on the renormalization
as all counterterms cancel. Hence, we can arrive at the
same conclusion using the one-point function using super-
horizon approximation in the dS space-time,

hð�2ðtÞÞr;pi �
Z caH

p

d3k

ð2�Þ3 jukðtÞj
2

�
Z caH

p

d3k

ð2�Þ3
j�ð�Þj2
4�Ha3

�
k

2aH

	�2�
; (E8)

where the arbitrary constant c & Oð1Þ. Note that the UV
boundary of the integral should be a comoving scale in
order to keep the spatial dilatation symmetry.

1. Massless limit

For the massless limitm2
�=H

2 � lnp=aH, we can com-
pute the two-point function explicitly without neglecting
any gravitational couplings. We calculate up to the next
leading term here. We decompose Eq. (E1) as

ghð�2Þr�iUp ¼ I0ðp; tÞ þ
Xs
n¼1

Inðp; tÞ þ Ic:t:ðp; tÞ; (E9)

where I0, In, and Ic:t: are the contributions from the
physical field �, the PV field i and the counterterms,
respectively. Since all the gravitational couplings are
Oð	Þ [see Eq. (C26)], we may use the mode functions �p
and uk in the pure dS for Oð	Þ correction to the two-point
function. Then a long but straightforward calculation gives

I0ðp; tÞ ¼
Z

d3xe�i ~p	 ~x Z t
d4za3ðtzÞ

� Xn
N¼0

��
�2ðt; ~xÞ�ðt; ~0Þ; i

2
ðT��

� �gðUÞ
�� Þz

��
(E10)

¼ 1

4�2
	H2j�opj2

�
� 1

3

p3

a3H3

�

aH
þ 2 log

�

p

þ 5

3

p2

a2H2
log

�

p
þ 1� p2

a2H2
þO

�
p4

a4H4

	�
þOð	2; _	Þ: (E11)

The PV field contribution In requires some more technical
explanation. If we write the WKB solution (D11) as

un;kðtÞ ¼ �kðtÞe�i
R

t
wkðt0Þdt0 ; (E12)

the PV field contribution In is written as

Inðp;tÞ¼C�1
n

Z
Q

d3k1
ð2�Þ3d

3k2�
ð3Þð ~k1þ ~k2� ~pÞ

� Im

�Z t
dtze

i
R

tz

t
ð!k1

ðt0Þþ!k2
ðt0ÞÞdt0Gnðk1;k2;t;tzÞ

�
;

(E13)

where

Gnðk1; k2; t; tzÞ ¼ �2a3z�pðtÞ�k1ðtÞ�k2ðtÞ

�
�X

i

cOi

	
��pðtzÞ��

k1
ðtzÞ��

k2
ðtzÞ; (E14)

ðcO1Þ ¼ 1

2

�
ði!k1ðtzÞ þ @ð1Þtz Þði!k2ðtzÞ þ @ð2Þtz Þ

�
~k1 	 ~k2
a2z

þM2
n

�
ð2	Þ; (E15)

ðcO2Þ ¼
� ~k2 	 ~p

a2z
ði!k1ðtzÞ þ @ð1Þtz Þ þ

~k3 	 ~p
a2z

ði!k2ðtzÞ þ @ð2Þtz Þ
�

�
�
	
a2z
p2

@�tz

	
; (E16)
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where @ðiÞtz and @�tz denote the time derivative with respect to

��
ki
ðtzÞ and ��pðtzÞ, respectively, and ðcO1Þ and ðcO1Þ corre-

spond to the (00) and the (i0) components of the gravita-

tional couplings, respectively. Notice that �k ¼ Oð!�1=2Þ
and Gðk1; k2; t; tzÞ ¼ Oð!0Þ, and thus In has quadratic
divergences superficially. However, the quadratic diver-

gences arising from ðcO1Þ vanish in the Mn ! 1 limit.
Effectively, the integral (E13) is linearly divergent. That
means we have to adiabatically expand the integral to the
second order. Similarly, the integral of the two-point
function in the comoving gauge is quadratic divergent,
and thus one needs to expand the integral to the third order.
This makes the computation easier in the uniform curva-
ture gauge. Using

j�kðtÞj2 ¼ 1

2!ka
3
½1þ �2ðk; tÞ þOð!�3

k Þ�; (E17)

�kðtÞ _��
kðtÞ ¼

1

2!ka
3
½�0ðk; tÞ � i!k�2ðk; tÞ þOð!�2

k Þ�;
(E18)

�kðtÞ €��
kðtÞ ¼

1

2!ka
3

�
�3iH � 2i�0ðk; tÞ þ i

k2=a2

!2
k

H

þOð!�1
k Þ

�
; (E19)

where

�0ðk; tÞ ¼ � 3

2
H þ 1

2

k2=a2

!2
k

H; (E20)

�2ðk; tÞ ¼
_H þ 2H2

2!2
k

þ ð _H þ 3H2ÞM2
n

4!4
k

� 5H2M4
n

8!4
k

; (E21)

which are obtained by combining Eq. (D14) with Eq. (E12),
the integral (E13) becomes

Inðp; tÞ ¼ C�1
n

4�2
	H2j�opj2

�
� 1

3

p3

a3H3

�

aH
þ 2 log

2�

aMn

þ 5

3

p2

a2H2
log

2�

aMn

� 5

3
� 25

18

p2

a2H2

þO

�
p4

a4H4

	�
þOð	2; _	Þ: (E22)

Note that all � dependent terms in I0 þ
P

nIn vanishes by
the PV field normalization conditions (D3).

Putting Eqs. (E11) and (E22) together into Eq. (E9), we
have

ghð�2ÞR�iUp ¼ 1

4�2
	H2j�opj2

�
2 log

a�1

2p
þ 5

3

p2

a2H2
log

a�1

2p

þ 8

3
þ 7

18

p2

a2H2
þO

�
p4

a4H4

	�
þOð	2; _	Þ:

(E23)

We still need to compute one-point function d
dt hð�2Þri up to

Oð	Þ in order to compare the results in both gauges.
Because mode functions for a massless scalar field are
Oð	0Þ, we need Oð	Þ correction on it. In a quasi-dS back-
ground, we take an ansatz for the mode function

ukðtÞ ¼
�

1ffiffiffiffiffi
2k

p
aðtÞ þ i

HðtÞffiffiffiffiffiffiffiffi
2k3

p
	
ei

k
aðtÞHðtÞ þ 	ðtÞffiffiffiffiffi

2k
p

aðtÞ fkðtÞe
i k
aðtÞHðtÞ;

(E24)

where fkðtÞ ¼ Oð	0Þ so that it recovers the dS solution in
the 	 ! 0 limit. Applying this to the differential equation

€u kðtÞ þ 3H _ukðtÞ þ k2

a2
ukðtÞ ¼ 0; (E25)

we get

€fk þ
�
HðtÞ � 2i

k

aðtÞ
	
_fk �HðtÞ2fk

¼ 3HðtÞ2 � 2i
k

aðtÞHðtÞ � 2
k2

aðtÞ2 þOð	Þ; (E26)

whose solution is

fkðtÞ ¼ � 3

2
þ iqþ i

2

1

q
þ
�
1� i

q

	
e�2iqEið2iqÞ (E27)

þ c1

�
1þ i

q

	
þ c2

�
1� i

q

	
e�2iq; (E28)

where q ¼ k
aðtÞHðtÞ , and Ei is the exponential integral

function

EiðzÞ ¼ �
Z 1

�z

e�t

t
dt (E29)

Eið�ix ! 1Þ
! �i�þ e�ix

�
0!

ð�ixÞ þ
1!

ð�ixÞ2 þ
2!

ð�ixÞ3 þ 	 	 	
	
:

(E30)

Matching this solution with the Bunch-Davies initial
condition (D8) and the Wronskian condition (D9), respec-
tively, gives

c2 ¼ �i� and c1 ¼ 1

2
: (E31)

Then the mode function withOð	Þ correction in a quasi-dS
space-time becomes

ukðtÞ ¼
�

1ffiffiffiffiffi
2k

p
a
þ i

Hffiffiffiffiffiffiffiffi
2k3

p
	
ei

k
aH (E32)

þ 	ffiffiffiffiffi
2k

p
a

�
�1þ i

k

aH
þ i

aH

k

þ
�
1� i

aH

k

	�
�i�þ Ei

�
2i

k

aH

		
e�2i k

aH

�
ei

k
aH

þOð	2; _	Þ: (E33)
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Now we calculate the one-point function using this mode
function as shown in Appendix D 2, and we get

d

dt
hð�2Þri ¼ H3

4�2
þ 	H3

2�2

�
log

H

�1

þ 1

6
� �

	
þOð	2; _	Þ:

(E34)

Finally, we find

1

H

d

dt
hð�2Þri gh��ip þ ghð�2Þr�iUp

¼ H2ðtÞ
4�2

j�pðtÞj2 þ 	H2

2�2
j�opj2

�
log

aH

2p
þ 3

2
� �

�
þ 	H2

4�2
j�opj2 p2

a2H2

�
13

18
� 2�þ 5

3
log

a�1

2p
þ 2 log

H

�1

�
þO

�
	2; _	;

p4

a4H4

	
: (E35)

The non-p2=a2-suppressed terms are rewritten as

H2ðtÞ
4�2

j�opj2 þ 	H2

2�2
j�opj2

�
log

aH

2p
þ 3

2
� �

�
� H2ðtÞ

4�2
j�opj2 �

�
1þ 2	 log

aH

p

	
(E36)

� H2ðtÞ
4�2

j�opj2
�
p

aH

	�2	
(E37)

� H2�
4�2

j�opj2: (E38)

As expected, this is the result (99) in the comoving gauge.
The other terms are suppressed by the factor p2=a2.
This explicitly proves that the next leading terms for the
two-point function hð�2Þr�i are Oðp2=a2Þ.
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