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We construct boson stars in global anti–de Sitter (AdS) space and study their stability. Linear

perturbation results suggest that the ground state along with the first three excited state boson stars are

stable. We evolve some of these solutions and study their nonlinear stability in light of recent work [9],

arguing that a weakly turbulent instability drives scalar perturbations of AdS to black hole formation.

However, evolutions suggest that boson stars are nonlinearly stable and immune to the instability for

sufficiently small perturbation. Furthermore, these studies find other families of initial data which

similarly avoid the instability for sufficiently weak parameters. Heuristically, we argue that initial data

families with widely distributed mass energy distort the spacetime sufficiently to oppose the coherent

amplification favored by the instability. From the dual CFT perspective our findings suggest that there

exist families of rather generic initial conditions in strongly coupled CFT (with large number of degrees of

freedom) that do not thermalize in the infinite future.
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I. INTRODUCTION

Understanding the gravitational behavior of spacetimes
which asymptotically behave as anti–de Sitter (AdS) has,
since holography [1], attracted significant interest. The
AdS/CFT correspondence conjecture implies that such
understanding is critically important for a plethora of
phenomena described by field theories. Remarkably, how-
ever, relatively little is known about dynamical scenarios,
especially in comparison to spacetimes that are asymptoti-
cally flat (AF) or asymptotically deSitter (dS). An impor-
tant reason behind this difference is that the boundary of
AdS is in causal contact with the interior of the spacetime,
in stark contrast to the boundaries of AF and asymptoti-
cally dS spacetimes. That the boundary affects the interior
prevents a straightforward extension of standard singular-
ity theorems to asymptotically AdS (aAdS) spacetimes [2].

Significant advances have recently been achieved via
different approaches, including strictly analytic [3–6], per-
turbative [7,8] and numerical [9–15] (to name a few rep-
resentative) efforts. Particularly intriguing is the evidence
first presented in [9] that pure AdS is unstable to scalar
collapse to black hole (BH), regardless of how small a
scalar perturbation is considered. The effect of the AdS
boundary allows for the reflection of scalar pulses. Hence,
a weak scalar pulse bounces off the boundary at infinity,
returning to concentrate again at the origin. The weakly
turbulent instability of [9] results in the sharpening of the
pulse so that, eventually, it achieves sufficient concentra-
tion to form a black hole. The black hole critical behavior
discovered by Choptuik [16] in AF spacetimes appears
here repeatedly. In particular, after each reflection off the
AdS boundary, there is yet another threshold for prompt
BH formation (before the next bounce).

To explain this behavior, a study of the normal modes of
scalar [9] and tensor [8] perturbations revealed a nonlinear
mode coupling at third order, shifting energy to higher
frequencies. Consequently, this shift in frequency would
eventually lead to the formation of a black hole and so
generic instability of AdS was conjectured. Interestingly,
though, further studies suggested the existence of nonli-
nearly stable solutions [7,13,15,17]. These observations
hint that a straightforward application of the resonance
picture can only partially capture the dynamical behavior.
We consider the dynamics of boson stars in AdS, moti-

vated towards better understanding of this instability and
its implications for holographic scenarios. Horizon forma-
tion in gravitational collapse from the holographic perspec-
tive implies thermalization of the dual conformal theory.
When the gravitational problem is formulated in global
dþ 1 spacetime dimensional asymptotically AdSdþ1, the
dynamics of the dual d spacetime dimensional CFTd oc-
curs on a Sd�1 sphere. Furthermore, the holographic dual-
ity arises as a correspondence between a string theory and a
CFT—it can be truncated to a gravity/CFT duality when a
CFT has a large number of strongly interacting degrees of
freedom.1 A natural expectation from the field theory
perspective is that a large number of strongly interacting
degrees of freedom in a finite volume thermalize from
generic initial conditions; thus, one does expect no-
threshold BH formation as advocated in [9]. Early work
on boson stars in AdS [18] demonstrated that such sta-
tionary configurations are linearly stable. Thus, initializing

1This can be quantified as a large central charge for even d, or
more generically, the large number of excited degrees of freedom
at thermal equilibrium.
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a CFT state as a dual to an AdS boson star might result in a
slow thermalization of the latter.

In this paper we show, rather, that boson stars in AdS are
non-linearly stable. This nonlinear stability is unaffected
by boson star perturbations, as long as these perturbations
are sufficiently small. Even more surprising, we find that
families of initial conditions with widely distributed mass
energy are nonlinearly stable for sufficiently small mass as
well. This suggests that nonlinear stability is not a feature
of states carrying a global charge (as dual to boson stars).
As a result, it appears that there exist large sets of initial
configurations in CFT which never thermalize in their
evolution.

The paper is organized as follows. In Sec. II we set up
the gravitational dual of the generic, spatially isotropic
CFT3, initial condition specified by a pair of dimension-
three operators with a global Uð1Þ symmetry: an Einstein
gravity with a negative cosmological constant and a mass-
less, minimally coupled bulk complex scalar field. In
Sec. III we construct stationary configurations of the
coupled scalar-gravity system, charged under the global
Uð1Þ symmetry—boson stars. We show that boson stars are
stable under linearized fluctuations. In Sec. IV we present
results of fully nonlinear simulations of genuine boson
stars, perturbed boson stars, and Uð1Þ-neutral initial con-
figurations with widely distributed, bulk mass energy. We
conclude in Sec. V and outline future directions.

II. EFFECTIVE ACTION AND
EQUATIONS OF MOTION

In this section, following [13], we review the formula-
tion of the problem of the gravitational collapse of a
complex scalar in asymptotically anti–de Sitter spacetime.
We focus on asymptotically AdS4 collapse, dual to CFT3

(we choose d ¼ 3 in the notation of [13]).
The effective four-dimensional action is given by2

S4 ¼ 1

16�G4

Z
M4

d4�
ffiffiffiffiffiffiffi�g

p ðR4 þ 6� 2@��@���Þ; (2.1)

where � � �1 þ i�2 is a complex scalar field and

M4 ¼@M3�I ; @M3 ¼Rt�S2; I ¼
�
x2

�
0;
�

2

��
:

(2.2)

Adopting the line element as in [19],

ds2 ¼ 1

cos 2x

�
�Ae�2�dt2 þ dx2

A
þ sin 2xd�2

2

�
; (2.3)

where d�2
2 is the metric of unit radius S2, and Aðx; tÞ and

�ðx; tÞ are scalar functions describing the metric. Rescaling
the matter fields as in [13]

�̂i � �i

cos 2x
; (2.4)

�̂i � e�

A

@t�i

cos 2x
; (2.5)

�̂i � @x�i

cos x
; (2.6)

we find the following equations of motion (we drop the
caret from here forward):

_�i ¼ Ae���i; _�i ¼ 1

cos x
ðcos 2xAe���iÞ;x;

_�i ¼ 1

sin 2x

�
sin 2x

cos x
Ae���i

�
;x
:

(2.7)

A;x ¼ 1þ 2sin 2x

sin x cos x
ð1� AÞ � sin xcos 5xA

�
�2

i

cos 2x
þ�2

i

�
;

�;x ¼ � sin xcos 5x

�
�2

i

cos 2x
þ�2

i

�
; (2.8)

together with one constraint equation,

A;t þ 2 sin xcos 4xA2e��ð�i�iÞ ¼ 0; (2.9)

where a sum over i ¼ f1; 2g is implied. We are interested in
studying the solution to (2.7), (2.8), and (2.9) subject to the
following boundary conditions:
(i) regularity at the origin implies these quantities

behave as

�iðt; xÞ ¼ �ðiÞ
0 ðtÞ þOðx2Þ; Aðt; xÞ ¼ 1þOðx2Þ;
�ðt; xÞ ¼ �0ðtÞ þOðx2Þ (2.10)

(ii) at the outer boundary, x ¼ �=2, we introduce � �
�=2� x so that we have

�iðt; �Þ ¼ �ðiÞ
3 ðtÞ�þOð�3Þ;

Aðt; �Þ ¼ 1�M
sin 3�

cos�
þOð�6Þ;

�ðt; �Þ ¼ 0þOð�6Þ:

(2.11)

The asymptotic behavior (2.11) determines the follow-
ing boundary CFT observables: the expectation values of

the stress-energy tensor Tkl, and the operators OðiÞ
3 , dual

to �i:

8�G4hTtti ¼ M; hT��i ¼
g��
2

hTtti;
16�Gdþ1hOðiÞ

3 i ¼ 12�ðiÞ
3 ðtÞ; (2.12)

where g�� is a metric on a round S2. Additionally note that

the conserved Uð1Þ charge is given by2We set the radius of AdS to one.
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Q ¼ 8�
Z �=2

0
dxsin 2xcos 2xð�2ð0; xÞ�1ð0; xÞ

��1ð0; xÞ�2ð0; xÞÞ; (2.13)

and that since @tQ ¼ 0, the integral in (2.13) can be
evaluated at t ¼ 0.

The constraint (2.9) implies that M in (2.11) is time
independent, ensuring energy conservation,

@thTtti ¼ 0: (2.14)

It is convenient to introduce the mass aspect function
Mðt; xÞ as

Aðt; xÞ ¼ 1�Mðt; xÞ cos
3x

sin x
: (2.15)

Following (2.8) we find

Mðt; xÞ ¼
Z x

0
dztan 2zcos 4zAðt; zÞ

�
�2

i ðt; zÞ
cos 2z

þ�2
i ðt; zÞ

�
:

(2.16)

Comparing (2.16) and (2.11) we see that

M ¼ Mðt; xÞjx¼�
2
: (2.17)

III. BOSON STARS IN AdS4

There is an interesting class of stationary, perturbatively
stable, fully nonlinear solutions to (2.7), (2.8), (2.9), (2.10),
and (2.11) with nonzero Q, referred to as boson stars
[18,20]. Such solutions are characterized by a discrete
integer n ¼ 0; 1; . . . , denoting the number of nodes of the
complex scalar radial wave function and a continuous
value of the global charge Q. In this section we discuss
the numerical construction of such solutions, their pertur-
bative properties, linearized stability, and their relation (for
small Q) to linearized AdS4 massless, minimally coupled,
scalar modes—the oscillons. Oscillons were reviewed in
detail in [13]. These stationary solutions are uniquely
characterized by an excitation level j ¼ f0; 1; . . .g,

ejðxÞ ¼ djcos
3x2F1

�
�j; 3þ j;

3

2
; sin 2x

�
;

wðjÞ ¼ 3þ 2j; dj ¼
�
16ðjþ 1Þðjþ 2Þ

�

�
1=2

;
(3.1)

where wðjÞ is an oscillon frequency and dj is a constant

enforcing their orthonormality,

Z �=2

0
dxeiðxÞejðxÞtan 2x ¼ �ij: (3.2)

A. Stationary boson stars

Assuming a stationary solution in which the complex
field varies harmonically,

�1ðx; tÞ þ i�2ðx; tÞ ¼ �ðxÞ
cos 2x

ei!t; Aðt; xÞ ¼ aðxÞ;
�ðt; xÞ ¼ dðxÞ; (3.3)

we find a system of ordinary differential equations from
(2.7) and (2.8),

0 ¼ �00 þ
�

2

cos x sin x
þ a0

a
� d0

�
�0 þ!2e2da�2�;

0 ¼ d0 þ sin x cos xa�2ðð�0Þ2a2 þ�2!2e2dÞ;

0 ¼ a0 þ 2cos 2x� 3

cos x sin x
ð1� aÞ

þ sin x cos xa�1ðð�0Þ2a2 þ�2!2e2dÞ:

(3.4)

The charge and the mass determined by these solutions are
given by

Q ¼ 8�
Z �=2

0
dx

!sin 2x�ðxÞ2edðxÞ
aðxÞcos 2x ;

M ¼
Z �=2

0
dx

sin 2x

aðxÞcos 2x ðaðxÞ
2ð�0ðxÞÞ2 þ e2dðxÞ!2�ðxÞ2Þ:

(3.5)

A physically relevant solution to Eq. (3.4) must satisfy
(i) at the origin of AdS, i.e., x ! 0,

a ¼ 1� 1

3
ðph

0Þ2!2e2d
h
0x2 þOðx4Þ;

d ¼ dh0 �
1

2
ðph

0Þ2!2e2d
h
0x2 þOðx4Þ;

� ¼ ph
0 �

1

6
ph
0!

2e2d
h
0x2 þOðx4Þ:

(3.6)

Note that besides !, the general solution is charac-
terized by

fph
0 ; d

h
0g: (3.7)

(ii) and asymptotically (at the AdS boundary,
i.e., � ! 0),

a¼ 1þ ab3�
3 þOð�6Þ;

d¼ 3

2
ðpb

3Þ2�6 þ
�
3

4
ðpb

3Þ2 �
1

4
ðpb

3Þ2!2

�
�8 þOð�9Þ;

�¼ pb
3�

3 þ
�
2

5
pb
3 �

1

10
pb
3!

2

�
�5 þOð�6Þ: (3.8)

Note that besides !, the general solution is charac-
terized by

fpb
3 ; a

b
3g: (3.9)

From (3.7) and (3.9) we have precisely the correct
number of coefficients to find an isolated solution3 for a
given !.

3As we discuss in Sec. III B, solutions of a fixed charge are
labeled by an integer, specifying the ‘‘level’’ of a boson star.
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B. Small charge boson stars as oscillons

In this section we discuss analytic results for the spec-
trum of boson stars perturbatively in the amplitude �. To
this end we introduce

�¼	�1þOð	3Þ; a¼1þ	2a2þOð	4Þ;
ed¼1þ	2d2þOð	4Þ; !¼!0þ!2	

2þOð	4Þ;
(3.10)

where 	 is an expansion parameter. Substituting (3.10) into
(3.4), we find that the equation for �1 decouples to leading
order,

0 ¼ �00
1 þ

2

sin x cos x
�0

1 þ!2
0�1: (3.11)

Normalizing �1 as

�1jx!0þ ¼ 1; (3.12)

the general solution of (3.11), subject to the boundary
conditions (3.6) and (3.8), is given by

�ðjÞ
1 ¼ 1

dj
ejðxÞ; !ðjÞ

0 ¼ wðjÞ ¼ 3þ 2j; (3.13)

where the integer j ¼ 0; 1; 2 . . . parametrizes the
‘‘excitation level’’ of the boson star. Notice that the asymp-
totic expansion for � [in Eq. (3.6)] implies ph

0 ¼ 	. Given
(3.13), we find from (3.5),

M ¼ 	2 �ð3þ 2jÞ2
8ðjþ 1Þðjþ 2Þ þOð	4Þ;

Q ¼ 	2 �2ð3þ 2jÞ
2ðjþ 1Þðjþ 2Þ þOð	4Þ;

M ¼ 3þ 2j

4�
QþOðQ2Þ ¼ !ðjÞ

0

4�
QþOðQ2Þ:

(3.14)

Note from (3.14) that for a fixed chargeQ, excited levels of
boson stars are more massive.

It is straightforward to compute the leading-order back-
ground warp factors fa2; d2g, as well as subleading fre-
quency correction !2. In what follows we present explicit
expressions for the first four levels of a boson star:

(i) j ¼ 0 level,

að0Þ2 ¼ 9cos 3x

8 sin x

�
1

4
sin ð4xÞ � x

�
; (3.15)

dð0Þ2 ¼ 3

2
cos 6x; (3.16)

!ð0Þ
2 ¼ � 63

32
(3.17)

(ii) j ¼ 1 level,

að1Þ2 ¼ 25cos 3x

72 sin x

�
1

4
sin ð4xÞð2 cos ð4xÞ þ 1Þ � 3x

�
;

(3.18)

dð1Þ2 ¼ 5

18
cos 6xð32cos 4x� 40cos 2xþ 15Þ; (3.19)

!ð1Þ
2 ¼ � 3025

864
(3.20)

(iii) j ¼ 2 level,

að2Þ2 ¼ 49cos 3x

144 sin x

�
1

8
sin ð8xÞð2 cos ð4xÞ þ 1Þ � 3x

�
;

(3.21)

dð2Þ2 ¼ 7

90
cos 6xð960cos 8x� 2240cos 6x

þ 1904cos 4x� 700cos 2xþ 105Þ; (3.22)

wð2Þ
2 ¼ � 89327

17280
(3.23)

(iv) j ¼ 3 level,

að3Þ2 ¼ 81cos 3x

400 sin x

�
1

8
sin ð8xÞð2 cos ð8xÞ

þ 2 cos ð4xÞ þ 1Þ � 5x

�
; (3.24)

dð3Þ2 ¼ 9

350
cos6xð28672cos12x�96768cos10x

þ130752cos8x�90048cos6xþ33264cos4x

�6300cos2xþ525Þ; (3.25)

!ð3Þ
2 ¼ � 154143

22400
: (3.26)

Further comparing the above with (3.6) and (3.8), we
identify the condensates perturbatively in ph

0 ¼ 	 (see

Table I).

C. Numerical boson stars

In the previous section we identified the first four levels
of a boson star perturbatively in the amplitude ph

0 . Here we

report results for f!; dh0 ; p
b
3 ; d

b
3g, as well as fM;Qg, for

generic ph
0 from the numerical solution of (3.4). These

results are collected in Figs. 1 and 2.

TABLE I. Condensate values (3.6) and (3.8) of boson stars,
perturbatively in ph

0 ¼ 	.

j !�!ðjÞ
0

	2 þOð	2Þ dh
0

	2 þOð	2Þ pb
3

	 þOð	2Þ ab
3

	2 þOð	2Þ
0 � 63

32
3
2

1 � 9
16�

1 � 3025
864

35
18 � 5

3 � 25
48�

2 � 89327
17280

203
90

7
3 � 49

96�

3 � 154143
22400

873
350

�3 � 81
160�
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The top-left panel of Fig. 1 presents the frequency !ðjÞ
of a level-j boson star rescaled to that of a level-j oscillon

frequency !ðjÞ
0 [see (3.13)]. We use purple/green/blue/

orange color coding to denote j ¼ 0 . . . 3. As ph
0 (and

correspondingly the mass and the charge—see Fig. 2) of
a boson star grows, its frequency decreases. The remaining
panels in Fig. 1 present the dependence of fdh0 ; pb

3 ; d
b
3g as a

function of ph
0 . Notice that pb

3 saturates; this saturation is

the main obstacle in generating boson stars with ever
increasing values of ph

0 (or mass). The red curves indicate

perturbative approximations in ph
0 as collected in Table I,

(Fig. 1), and perturbative approximation (3.14) in Q (right
panel of Fig. 2).
In the limit of vanishing chargeQ, the level-j boson star

radial profile�ðjÞ is a single level-j oscillon [see (3.13) and
(3.14)],

�ðjÞðxÞ / ffiffiffiffi
Q

p
ejðxÞ: (3.27)

For finite Q all the oscillons are excited. In Fig. 3 we
present the spectral decomposition in the oscillon basis
of the most massive level-j boson stars that we were able
to construct,

FIG. 1 (color online). Condensate values (3.6) and (3.8) for level j ¼ f0; 1; 2; 3g (dashed purple, dotted green, dot-dashed blue, solid
orange curves) boson stars. The red lines represent perturbative in ph

0 approximations, see Table I.

FIG. 2 (color online). Mass vs ph
0 (left panel) and vs charge (right panel) for level j ¼ f0; 1; 2; 3g (dashed purple, dotted green, dot-

dashed blue, solid orange curves) boson stars. The red lines represent perturbative in Q approximations, see (3.14).
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cðjÞi �
��������
Z �=2

0
dx�ðjÞðxÞeiðxÞtan 2x

��������: (3.28)

Note that the maxima of cðjÞi are achieved for i ¼ j, much

like in the small-Q limit. For all levels considered, cðjÞi

approach a universal fall-off:

cðjÞi / ð1þ iÞ�6; i � j; (3.29)

represented by a dashed black curve in Fig. 3.

D. Perturbative stability of boson stars

In this section we explore the linearized stability of
boson stars. Consider the following perturbations of
stationary solutions (3.3) to leading order in 
:

�1ðx; tÞ þ i�2ðx; tÞ ¼ cos�2xð�ðxÞ
þ 
ðf1ðt; xÞ � i�ðxÞg1ðt; xÞÞÞei!t;

Aðt; xÞ ¼ aðxÞ þ 
a1ðt; xÞ;
�ðt; xÞ ¼ dðxÞ þ 
�1ðt; xÞ: (3.30)

Further introducing

f1ðt; xÞ ¼ F1ðxÞ cos ð�tÞ; g1ðt; xÞ ¼ �G1ðxÞ sin ð�tÞ;
(3.31)

the equations for a1ðt; xÞ and �1ðt; xÞ can be solved
explicitly,

a1ðt; xÞ ¼ sin ð2xÞaðxÞð!�ðxÞ2G0
1ðxÞ ��0ðxÞF1ðxÞÞ cos ð�tÞ; (3.32)

�1ðt; xÞ ¼ � e�2dðxÞ

cos ðxÞ�ðxÞ! sin ðxÞ ðaðxÞ
2 cos ðxÞ�ðxÞG00

1 ðxÞ sin ðxÞ þ ð�2 cos ðxÞ2�ðxÞ3e2dðxÞ sin ðxÞ2!2

þ aðxÞð2aðxÞ cos ðxÞ�0ðxÞ sin ðxÞ þ 2aðxÞ cos ðxÞ2�ðxÞ � aðxÞ�ðxÞ � 2 cos ðxÞ2�ðxÞ þ 3�ðxÞÞÞG0
1ðxÞ

þ cos ðxÞ�ðxÞe2dðxÞG1ðxÞ�2 sin ðxÞ � 2 cos ðxÞFðxÞðcos ðxÞ3�ðxÞ�0ðxÞ � cos ðxÞ�ðxÞ�0ðxÞ
� sin ðxÞÞ!e2dðxÞÞ cos ð�tÞ; (3.33)

where F1ðxÞ and G1ðxÞ satisfy a coupled system of equations

0 ¼ F00
1 þ

�2 cos ðxÞ2 þ 2 cos ðxÞ2aþ 3� a

a sin ðxÞ cos ðxÞ F0
1 � 2�!G00

1 þ
2!

a sin ðxÞ cos ðxÞ ð2 sin ðxÞ�
2�0 cos ðxÞ3 þ 2 cos ðxÞ2�

� 2a� cos ðxÞ2 � 2 sin ðxÞa�0 cos ðxÞ � 3 sin ðxÞ�2�0 cos ðxÞ þ a�� 3�ÞG0
1

� ð4a cos ðxÞ2ð�0Þ2 � e2d�2 � 6ð�0Þ2aþ 3e2d!2Þa�2F1; (3.34)

0¼G000
1 þð�6cosðxÞ2�þ6a�cosðxÞ2þ2sin ðxÞa�0 cosðxÞþ9��7a�Þða�sinðxÞcosðxÞÞ�1G00

1

þð5a3�2þ4a3 sinðxÞ�0�cosðxÞ3�10a3 sinðxÞ�0�cosðxÞ�4a2 sinðxÞ�0�cosðxÞ3
þ6a2 sinðxÞ�0�cos ðxÞþ2e2da�2!2 cos ðxÞ4�e2dacosðxÞ4�2�2�2e2da�2!2 cosðxÞ2
þe2dacosðxÞ2�2�2þ2a2ð�0Þ2 cos ðxÞ6�2�5a2ð�0Þ2 cosðxÞ4�2þ3a2ð�0Þ2 cosðxÞ2�2þ9e2d cosðxÞ2�4!2

þ6e2d cos ðxÞ6�4!2�15e2d cosðxÞ4�4!2�16a3�2 cosðxÞ2þ8a3�2 cosðxÞ4þ9a�2�12a2�2

þ24a2 cosðxÞ2�2�12a2 cosðxÞ4�2�12acosðxÞ2�2þ4acosðxÞ4�2þ2a3ð�0Þ2 cosðxÞ4

�2a3ð�0Þ2 cos ðxÞ2Þða3�2 sinðxÞ2 cosðxÞ2Þ�1G0
1þ

2e2d!

a2�
F0
1þð4�2 cos ðxÞ2�2a�6�2Þe2d!�0ða3�2Þ�1F1: (3.35)

FIG. 3 (color online). Spectral decomposition of level j ¼
f0; 1; 2; 3g (purple circles, green triangles, blue squares, orange
diamonds boson stars in oscillon basis, see (3.29). For large i all

the curves approach a universal falloff cðjÞi / ð1þ iÞ�6 (the black

dashed curve).
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Notice that (3.34) and (3.35) are left invariant under the
shift

G1 ! G1 þ G; (3.36)

whereG is an arbitrary constant. From (3.33) is it clear that
this constant is fixed uniquely requiring that

lim
x!�=2

�1ðt; xÞ ¼ 0; (3.37)

i.e., we keep the time coordinate at the boundary fixed. We
do not have to worry about the shift symmetry (3.36),
provided we rewrite (3.34) and (3.35) using

dG1ðxÞ � G0
1ðxÞ: (3.38)

Equations (3.34) and (3.35) must be solved subject to
constraints that F1ðxÞ and G1ðxÞ�ðxÞ are regular for x 2
½0; �=2Þ and have only normalizable modes as x ! �=2,
i.e.,

F1 / �3; G1 / const; as � ! 0: (3.39)

The latter regularity condition implies that G1 can have a
simple pole (or dG1 can have a double pole) precisely
where �ðxÞ has a zero.4 These poles represent a technical
difficulty in identifying the fluctuations about excited bo-
son stars—specifically, a straightforward shooting method:
integrating from both boundaries with suitable boundary
conditions and demanding continuity at an arbitrary radial
location will invariably encounter these poles rendering
this method delicate to apply.

Here we discuss the fluctuations about the lowest-level
(ground state) boson stars and also present analytic results
for fluctuations about perturbatively light excited boson
stars.5

Finally, since the system of equations (3.34) and (3.35) is
linear, we can further fix the normalizable mode F1,

lim
�!0

F1

�3
¼ 1: (3.40)

Given (3.39) and (3.40), we can specify the following
boundary conditions for fdG1; F1g:

(i) at the origin of AdS, i.e., as x ! 0,

dG1 ¼ 2gh1xþOðx3Þ; F1 ¼ fh0 þOðx2Þ (3.41)

(ii) at the AdS boundary, i.e., as � ! 0

dG1¼2gb2�þOð�3Þ; F1¼�3þOð�5Þ: (3.42)

Note that along with �, the physical solution fdG1; F1g is
characterized by fgh1 ; fh0 ; gb2g, which is the correct number

of coefficients necessary to determine a unique (or iso-
lated) solution for a pair of coupled second-order ordinary
differential equations (3.34) and (3.35).
Using the boundary conditions (3.41) and (3.42), it is

easy to see that the charge of a fluctuating boson star does
not change to leading order in 
,

�Q /
Z �=2

0
dx

d

dx

�
sin ðxÞ2�ðxÞ2aðxÞG0

1ðxÞ
edðxÞ cos ðxÞ2

�
¼ 0: (3.43)

1. Linearized fluctuations about light boson stars

We report here the results for solving (3.34) and (3.35)
for light boson stars, i.e., perturbatively in 	, see Sec. III B.
In general, we search solutions to the above equations as a
series,

dGðjÞ
1 ðxÞ ¼ 	dGðjÞ

1;1 þ 	3dGðjÞ
1;3 þOð	5Þ;

FðjÞ
1 ¼ FðjÞ

1:0 þ 	2FðjÞ
1;2 þ 	4FðjÞ

1;4 þOð	6Þ;
�ðjÞ ¼ �ðjÞ

0 þ 	2�ðjÞ
1 þ 	4�ðjÞ

2 þOð	6Þ;
(3.44)

where j is the excitation level of a boson star.
We find6

(i) j ¼ 0 level,

�ð0Þ
0 ¼ 6; �ð0Þ

1 ¼ � 135

32
;

�ð0Þ
2 ¼ 1215

128
�2 � 113892831

1254400
;

(3.45)

Fð0Þ
1;0 ¼ cos 3x; (3.46)

Fð0Þ
1;2¼

cosðxÞ3
4480sinðxÞð5760cosðxÞ

8 sinðxÞ
�14896cosðxÞ6 sinðxÞþ18738cosðxÞ4 sinðxÞ
þ7560cosðxÞ3x�9153cosðxÞ2 sinðxÞ
�15120xcosðxÞþ1890sinðxÞ�2�7560x2 sinðxÞÞ
�2cosðxÞ5ð32cosðxÞ4�54cosðxÞ2þ27ÞC1;1;

(3.47)

4Recall that excited level stationary boson stars are charac-
terized by the number of nodes in the radial profile �ðxÞ, see
(3.3).

5We verified explicitly that while dGð1Þ
1 to order Oð	3Þ has a

double pole at the location of the zero of �ð1Þ [constructed
perturbatively in 	 to order Oð	5Þ inclusive, see (3.10)], the
full radial profile of physical fluctuations, Gð1Þ

1 �ð1Þ, is smooth for
x 2 ½0; �=2�.

6For excited levels we present only the coefficients f�ðjÞ
i g, i ¼

0, 1, j ¼ 1 � � � 3.
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dGð0Þ
1;1 ¼ � 1

4480
sin ðxÞ cos ðxÞð5760 cos ðxÞ6

� 9376 cos ðxÞ4 þ 9900 cos ðxÞ2 � 2799Þ
þ 2 sin ðxÞ cos ðxÞð8 cos ðxÞ2 � 3Þ
� ð4 cos ðxÞ2 � 3ÞC1;1: (3.48)

The integration constant C1;1 is not fixed at order

Oð	2Þ, but is uniquely determined7 at order Oð	4Þ,

C1;1 ¼ 3163

421120
: (3.49)

(ii) j ¼ 1 level,

�ð1Þ
0 ¼ 10; �ð1Þ

1 ¼ � 2075

288
: (3.50)

(iii) j ¼ 2 level,

�ð2Þ
0 ¼ 14; �ð2Þ

1 ¼ � 60613

5760
: (3.51)

(iv) j ¼ 3 level,

�ð3Þ
0 ¼ 18; �ð3Þ

1 ¼ � 62451

4480
: (3.52)

E. Linearized fluctuations about j ¼ 0 boson stars

The spectrum of linearized fluctuations about j ¼ 0
boson stars is presented in Fig. 4. We find that over the
whole range of charges Q, we were able to construct j ¼ 0
boson stars, the frequency of their fluctuations squared (�2)
is positive. This strongly suggests that the ground state
boson stars are perturbatively stable.

As discussed in the previous section [see (3.50), (3.51),
and (3.52)], excited boson stars are perturbatively stable for
small charge. Our numerical simulations suggest that both
the j ¼ 0 and the excited boson stars are nonlinearly
stable.

IV. NONLINEAR RESULTS

We take the constructed boson star solutions described
above f�ðxÞ; dðxÞ; aðxÞ; !g and employ them to provide
initial data for our dynamical studies via

�i ¼ �

cos 2x
�1
i ; (4.1)

�i ¼ �0

cos x
�1
i ; (4.2)

�i ¼ !�ed

a
�2
i ; (4.3)

where the metric functions are obtained by solving the
constraints. We confirm convergence of the obtained solu-
tions (by monitoring the constraint residuals, charge
and mass conservation and self-convergence vs time) as
resolution is increased (see also [13]).

A. Perturbed, genuine boson stars

We concentrate on studying the behavior of these solu-
tions when perturbed, and have considered various forms
of perturbation with qualitatively similar results. For con-
creteness, we here present results obtained with Gaussian

perturbations parametrized as GðxÞ ¼ 
e�ðr�R0Þ2=�2
and

add it to the boson star solution via

�i ¼ ½�=cos 2xþGðxÞ��1
i ; (4.4)

�i ¼ ½�0= cos xþG0ðxÞ��1
i ; (4.5)

�i ¼ ½!�ðed=aÞ þG0��2
i : (4.6)

In analogy with previous studies, we set the amplitude of
the Gaussian perturbation to 
. We note that because the
constraints are solved numerically at the initial time for
aðx; 0Þ and �ðx; 0Þ, this perturbed initial data together with
the obtained metric variables is fully consistent with the
equations of motion. Because our numerical implementa-
tion is fully non-linear, it naturally probes the nonlinear
behavior of this system, and we are particularly interested
in the stability of these boson star solutions.
Recall that Ref. [9] found that pulses of scalar field in

AdS are unstable to black hole formation, and subsequent
arguments in [8] supported this view of generic instability.
A reasonable expectation in light of those works is that any
perturbation of the boson star will behave in a similar way;
that is, one expects such a perturbation to travel back and
forth between origin and AdS boundary, sharpening with

FIG. 4 (color online). Spectrum of linearized fluctuations
about j ¼ 0 boson stars as a function of ph

0 (black dots). The

dashed orange/solid red curves are successive approximations to
�2 ¼ ð�ðph

0 � 	ÞÞ2 in 	2, see (3.44).

7This pattern extends to higher orders in 	: a solution at order
	2n, fF1;2n; G1;2n�1g, is determined up to a constant C1;n, which is
being uniquely fixed at order Oð	2ðnþ1ÞÞ.
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each pass, leading eventually to BH formation. However,
our early studies suggested quite the opposite (for suffi-
ciently small perturbations); that instead boson stars were
stable [17] prompting us to study this system more broadly
and deeply.

For small perturbations, very long-lived, regular solu-
tions were obtained describing perturbed boson stars. For
such long-lived solutions, we monitored the metric func-
tions (e.g. max j1� Aðx; tÞj and �ð0; tÞ) and they showed
no signs of instability to BH formation. These observations
prompted a thorough study of the instability in AdS; inde-
pendent work via perturbative studies also pointed out that
AdS should be stable for several families of solutions [7].

A variety of boson star solutions were studied, including
members of levels 0, 1, and 3 (level 2 solutions presented
regularity issues near the AdS boundary and we defer such
analysis for future work). All examples appeared stable.
Interestingly, in asymptotically flat scenarios, excited bo-
son stars are generally unstable, radiating energy and set-
tling into a ground state solution [20]. In AdS, however,
there is no way to rid itself of excess charge, which
presumably explains their stability. Nevertheless, this
property of AdS does not explain how the boson star can
be immune to the weakly turbulent instability. Below, we
present an argument to this end, but first we discuss the
behavior of a different family that lends support to our
argument.

B. Fake boson stars

Of course numerical evolutions are limited to finite
times, and so one cannot rule out that instability will
manifest after the code has been stopped or beyond the
time for which one trusts the results. To better assess the
observed behavior, we compare these long-lived solutions
to a different family which can be considered ‘‘nearby’’ in
some sense. This family, which we refer to as fake boson
stars, represents purely real initial data with the same mass
and profile as their counterpart genuine boson stars. A fake
counterpart of some boson star solution of (4.3) is achieved
via the transformation,

�fake
1 ¼ �BS

1 ; �fake
1 ¼ �BS

2 ; �fake
2 ¼ 0: (4.7)

Remarkably, the evolution of this family also yields
regular, long-lived solutions for small perturbations that
do not collapse to a black hole. Figs. 5 and 6 illustrate the
time of collapse as a function of 
 both for genuine and
fake boson stars. As indicated in the figures, successively
higher resolutions largely coincide with differences only
apparent at the latest times. In all cases, the results indicate
collapse times increasing quickly as 
 decreases with no
signs of collapse for smaller amplitudes of perturbation.

Notice that these fake solutions are not stationary and
have no charge, two seemingly essential features of genu-
ine boson stars, and so their apparent immunity to this
weakly turbulent instability is surprising. This ‘‘stability’’

is apparently not tied to special features (e.g. charge or
stationarity) but instead suggests that the dynamics under-
goes something akin to a frustrated resonance in which
amplitudes increase at times but then disperse. In particu-
lar, one essential aspect common to both genuine and fake
boson stars appears to be their noncompact, long-
wavelength nature. Because they have energy distributed

FIG. 5 (color online). Collapse times for Gaussian perturba-
tions of a ground state boson star (�1ð0; 0Þ ¼ 0:253) and its
corresponding fake star. Increasing resolutions are shown. For
short collapse times, resolutions agree. However, for the longest
evolutions, higher resolutions are needed. Even with very high
resolutions, small 
 evolutions show no sign of collapse.

FIG. 6 (color online). Collapse times for Gaussian perturba-
tions of a first excited state boson star (�1ð0; 0Þ ¼ �0:272) and
its corresponding fake star. As in Fig. 5, higher resolutions are
also shown with differences among the resolution appearing only
at very late times.
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throughout the domain, modes no longer propagate coher-
ently. Instead there is a continuing competition between
dispersion and gravitational contraction; collapse to a
black hole or not is then determined by the outcome of
this competition.

C. Large �

Admittedly, this argument is far from rigorous. But if it
holds, then it would imply many other forms of stable
initial data. In particular, perhaps other forms of initial
data may be immune to this weakly turbulent instability
when its extent is large. To explore this conjecture, we
adopt the same form of data considered in many previous
studies of this instability (such as those in [9,13,19,21,22]).
We thus consider this family again, which takes the follow-
ing form in our rescaled variables:

�ið0; xÞ ¼ 0; �ið0; xÞ ¼ 2


�
e
�4tan 2x

�2�2 cos 1�dx�1
i : (4.8)

To test the possibility of regular development of this
data, we considered the time development of Eq. (4.8) with
varying values of �. The results are plotted in Figs. 7 and 8
which show the time of collapse as a function of 
 for
various values of �. As is evident from the figures, for
small values of � (�< 0:3) the collapse time increases
monotonically as 
 decreases; however for larger values of � the collapse time increases abruptly as 
 is decreased.

Notice that this abrupt growth in collapse time behaves
quite similarly to that seen for boson stars and fake stars,
suggesting that for sufficiently large �, the behavior would
be regular. Furthermore, an analysis of the Fourier power
spectra of cases below � � 0:3 reveals that the spectra
monotonically shift to higher frequencies as time pro-
gresses. In contrast, for cases above � � 0:4, they do not
do so. Instead the shift saturates and the spectral content
oscillates within a narrow window of frequencies.
That large-� initial data are immune to the weakly

turbulent instability is consistent with the argument that
widely distributed mass energy prevents the coherent am-
plification typical of the instability. It is interesting to
consider what would happen in the semilinear wave equa-
tion on a fixed AdS background as studied in [22]. That
model shows many of the same characteristics as the
gravitating scalar collapse, but the nonlinear potential
plays the role of the attractive, focusing effect that gravity
plays here. However, numerical evidence from that model
suggests that there is no large-� effect, lending support to
the idea that the distributed mass energy affects the space-
time in a way that disturbs the coherent amplification.
A change in behavior such as this merits a closer exami-

nation of the ‘‘transition region’’ between apparent stabil-
ity and black hole collapse. Figure 9 illustrates this region
0:3 	 � 	 0:4 in more detail. Interestingly, in this transi-
tion region, the time-to-collapse exhibits a seemingly os-
cillatory behavior prior to displaying the characteristic
rapid growth as 
 is decreased.

FIG. 7 (color online). Collapse times for initial data of the
form Eq. (4.8) with varying width values, �. Because changes to
� affect the amount of mass, the natural parameter against which
to plot is �
 not just 
 (also see Fig. 8 for this data plotted versus

). Note that for � & 0:3 the standard behavior is observed
where collapse eventually occurs for any 
. In contrast for � *
0:3, there appears to exist a threshold 
� below which collapse
does not occur. For initial data above the transition, �> 0:3,
evolutions with smaller 
 than shown reached at least t � 2000
with no signs of eventually collapse.

FIG. 8 (color online). Same data as Fig. 7 but with an unre-
scaled abscissa. As one’s eye moves from upper right down to
lower left, the initial data parameter � increases and the behavior
of the time of collapse, tc, changes dramatically from the
‘‘usual’’ stair-step to something else entirely with a very sharp
transition. Note that the spacing between runs is very nonuni-
form and that tuning is necessary to resolve the transition.
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From Figs. 7 and 9, it is clear that for � 
 0:4 there is
some 
min below which initial data does not form a black
hole. The idea of this function 
min ð�Þ is similar to

min ðxmax Þ studied in [22]. Preliminary study of 
min ð�Þ
shows it to be a roughly exponentially decreasing function
(after the apparent discontinuity at � � 0:4 in which

min ¼ 0 ! 5:6). The behavior below 
min is demon-
strated in Fig. 11. In particular, for this weak initial data
when the metric is frozen at its initial profile, the evolution
demonstrates dispersion.
It is instructive to study the spectral decomposition of

the initial data (4.8) in the oscillon basis for different �. To
relate with the analysis in Fig. 7, we keep �
 ¼ 1 fixed.
For a select set, i.e., � ¼ f0:0625; 0:1; 0:2; . . . 0:7g, we
compute the spectral coefficients cið�Þ, see (2.5),

FIG. 9 (color online). Collapse times for a range of � that
demonstrates the transition from turbulent BH formation to
frustrated resonance. For � ¼ 0:3, collapse appears inevitable
for any value of 
 in contrast to the results for � ¼ 0:4.
Interestingly, a ‘‘bump’’ appears for these values of � in which
the collapse times demonstrate a lack of monotonicity.
Beginning with � ¼ 0:3 (magenta, solid squares) around 
 �
8, one sees a small bump that, as one looks to higher �, sharpens
and occurs at smaller 
 values.

FIG. 10 (color online). Spectral decomposition of the initial
data (4.8) with � ¼ f0:0625; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7g
(yellow circles, blue squares, cyan triangles, magenta
squares, black triangles, red stars, green squares, orange
circles) and �
 ¼ 1 in the oscillon basis. Spectral coeffi-
cients cið�Þ [see (4.9)] start relatively large at high oscillon
numbers for � ¼ 1

16 (circles); they decrease for � ¼ 0:1

(squares), and achieve a minimum profile around � ¼ 0:2
(triangles) or � ¼ 0:3 (squares); then they increase for � ¼
0:4 (triangles), � ¼ 0:5 (stars), � ¼ 0:6 (squares) and � ¼
0:7 (circles). The minimum of the spectral coefficient profile
roughly coincides with the critical value of �� 0:2–0:4,
which separates stable and unstable regions in the parameter
space of the initial data (4.8).

FIG. 11 (color online). Demonstration of dispersion intro-
duced by widely distributed mass energy. Shown is the behavior
of � at the origin during the evolution of 
 ¼ 1, � ¼ 1 initial
data. By keeping A ¼ 1 and � ¼ 0, we evolve the scalar field in
a pure AdS background, and this results in a periodic solution
(dashed, red line). Instead, by solving for the initial metric
Aðx; 0Þ and �ðx; 0Þ, we evolve the scalar field on a fixed back-
ground (solid, blue line). This fixed-background evolution dis-
plays the dispersion introduced by the fixed metric. The fully
dynamical evolution (dotted magenta) is also shown. In the
intervening time (see inset), this solution shows the periods of
focussing and dispersal typical of what we call frustrated reso-
nance. Finally, at late times, we copy the pure AdS solution from
the period 0< t < � and display it shifted in time (dot-dashed
black); that it overlays the pure AdS solution shows that scalar
solutions on a background of AdS are periodic. This figure is
similar to Fig. 5 of [22] which shows the dispersion introduced
by a restricted domain.
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ci ¼
��������

1

!ðiÞ
Z �=2

0
dxtan 2xAð0; xÞe��ð0;xÞ�1ð0; xÞeiðxÞ

��������;
(4.9)

where Að0; xÞ and �ð0; xÞ are obtained from integrating
(2.8) with initial data (4.8). The resulting spectral decom-
positions are collected in Fig. 10. Comparing with the
spectral decomposition of boson stars (see Fig. 3), here,
the large-j decay of the spectra is approximately exponen-
tial, instead of a power law as in (3.29). The spectral profile
achieves a minimum around�� 0:2–0:4, which is roughly
the critical value of � separating the stable and unstable
regions in the parameter space of the initial data (4.8).

D. Restricted domain

The last nonlinear effect presented in this section con-
cerns evolutions conducted in a restricted domain. In par-
ticular, an artificial, reflecting boundary condition is
applied at some xmax <�=2, restricting the propagating
pulse to some subdomain of AdS. The motivation for this is
to study whether this turbulent instability is itself just the
manifestation of the nonlinear attraction of gravity occur-
ring in a bounded domain, or instead some particular
property of the full AdS (and hence would be destroyed
by this restriction).

As found in [13], the imposition of such a reflecting
boundary condition does not eliminate black hole forma-
tion after multiple bounces. However, a minimum value of

 was found, below which no such black hole formation
occurred. In the semilinear model, it was found that the

boundary condition resulted in dispersion not seen with the
full AdS domain.
Here, we revisit this problem, showing the customary

time of collapse plot in Fig. 12. As mentioned, there is
some similarity with the large-� effect in the existence of
some 
min . However, in contrast, one does observe the
‘‘stair-step’’ decrease in collapse time for 
 increasing
above 
min , characteristic of successive bounces.
It is also possible that such restricted-domain evolutions

result from the following two effects: (i) the imposition of
the reflecting wall introduces dispersion as in the semi-
linear model, and (ii) as the domain shrinks, there may be
some effect due to the fact that, for fixed �, the fractional
support of the initial data is increasing.

V. CONCLUSIONS

We have constructed boson star solutions in global AdS
and shown that they are stable at linear order. Numerical
studies of their dynamics strongly suggest that these boson
stars, both ground state and the first few excited states, are
nonlinearly stable. Along with solutions presented in [15],
there is now considerable evidence that the instability of
AdS to scalar perturbations reported in [9] is limited in
scope, that there exist nontrivial, dynamical examples of
stable solutions in AdS. These results are consistent with
the perturbative arguments of [7] for the stability of boson
stars, geons and solitons.
Comparison of the lifetimes of perturbed boson stars

with other, nonstationary solutions, our fake boson stars,
reveals an even wider class of initial data which appears to
frustrate the resonance and thereby avoid collapse for
sufficiently small amplitude. Indeed, using the very same
family of the seminal work of [9], numerical evolutions
suggest that for initial data with � * 0:4, the instability
can be avoided. More generally, initial data with widely
distributed mass energy appears to be similarly immune to
the turbulent instability. This behavior is in contrast to what
is observed in solutions to the semilinear wave equation in
(flat) AdS. There, a singularity always forms [22], even for
large-�, indicating that gravity plays a key role in the
dynamics. In particular, a heuristic argument suggests
that the widely distributed mass energy distorts the space
sufficiently to introduce dispersion and thereby oppose the
concentrating effect of the instability.
The picture that emerges is a phase space with (at least)

two regions. One region is subject to the weakly turbulent
instability and therefore collapses for any initial
‘‘amplitude.’’ The other region can avoid the turbulent
instability and contains oscillons, boson stars, geons, and
similar symmetric solutions. However, it appears this sec-
ond ‘‘stable’’ region contains a wider class of solutions
with no periodicity or stationarity, namely fake boson stars,
large-� and similarly distributed families of initial data.
To be clear, this second region need not be strictly stable
and can certainly possess collapsing solutions. What is

FIG. 12 (color online). Collapse times of the initial data in
Eq. (4.8) with � ¼ 1=16 with an artificial, reflecting wall at a
various positions, xmax . Also shown (solid black) are the results
for the full domain with no reflecting wall. Note that the finite
domain evolutions demonstrate a threshold 
min below which
collapse does not occur.
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important is that in this second region, one can choose a
sufficiently small amplitude such that the weakly turbulent
instability is avoided.

We do not know at this stage the precise criterion that
separates the parameter region of scalar field initial data
resulting in BH formation from the region of nonlinear
stability. It can be argued that such a criterion is encoded in
the spectral decomposition of the initial data in the oscillon
basis. Indeed, consider the region (assuming it exists8)
where collapse occurs for arbitrarily small amplitude of
the scalar field. In this limit, the full initial data is the
oscillon spectrum, as the backreaction can be safely
ignored. In this paper we presented strong evidence for
initial configurations that do not collapse in the limit of
vanishingly small amplitude. Thus, the distinction between
stable and nonstable configurations (at least for small
amplitudes) must be hidden in the initial scalar field spec-
tral data. We have seen that initial profiles of [9] (4.8)
become stable for small 
 as� increases; the latter increase
results in softening the decay of the asymptotic oscillon
spectral coefficients (see Fig. 10). Likewise, boson stars
have an asymptotic power-law oscillon spectral decompo-
sition, in contrast to the exponential-decay profile for
initial data (4.8) (see Fig. 3).

It is important to further investigate the nonlinear stabil-
ity of AdS. The issue has profound implications for a dual

boundary conformal field theory, as it identifies CFT initial
configurations that fail to thermalize. There is no obvious
symmetry criterion ‘‘protecting’’ such configurations.
A possible future direction is to investigate the collapse
of initial configurations specified by their oscillon spectral
decompositions with various trial profiles ci. The primary
goal, of course, is the identification of the stability
criteria—it is possible that the latter can be established
from analysis of the weakly nonlinear regime only. Finally,
it is interesting to analyze the stability of more general
configurations, such as boson stars with local bulk charge,
as recently discussed in [23–25].
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