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Second and third generation gravitational wave interferometric detectors will be limited in their

sensitivity by thermal noise of the core optics. One way to reduce this contribution is to use an input

laser beam with a more uniform distribution of the power: for this reason the use of the Laguerre-Gauss

LG3;3 mode as interferometer input has been suggested. The main issue with this approach is the fact that

in resonant cavities with spherical mirrors the input mode will be degenerate with nine other modes. This

implies very stringent requirements on the mirror surface quality, beyond the present polishing technology

capabilities: it is not possible to obtain mirrors with low enough surface roughness to meet the require-

ments for the operation of a gravitational wave detector. In a previous paper an approach to apply in situ

thermal corrections to the main surface of the mirrors was proposed. In this paper we develop further the

technique, showing that it is possible to compute the optimal correction using only the information that

can be extracted from the intensity images in reflection of the resonant cavity, without any a priori

knowledge of the mirror surface maps. We test our proposal using optical simulations and we are able to

considerably improve the quality of the beam reflected from a cavity with realistic mirror surface maps:

without any correction the purity of the reflected beam was degraded to below 90%; with the proposed

adaptive optics system we could recover a purity of 99.96%. The implementation of the proposed system

would allow the use of a LG3;3 input mode with the mirror qualities available today. In addition we show

that it is possible to correct the aberrations introduced by both mirrors acting only on one of the two.

In this way it is possible to avoid introducing unwanted thermal lensing in the input mirrors.
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I. INTRODUCTION

Advanced [1–3] and third generation [4] gravitational
wave detectors will use long baseline resonant cavities, in a
Michelson configuration, to monitor the distance variation
between test masses, composed of high quality mirrors.
Any spurious motion of the surfaces will mimic a gravita-
tion wave (GW) signal, thus reducing the detector sensi-
tivity. In particular one important limitation will come
from Brownian motion of the coated surface of the mirrors
[5]. In order to reduce this contribution, the use of
Laguerre-Gauss (LG) high order modes has been proposed
[6]: the LG3;3 beam will average the Brownian motion over

a larger effective surface with respect to a fundamental
Gaussian mode, resulting in a significant improvement in
the detector sensitivity.

To use a LG3;3 beam in gravitational wave detectors it is

necessary to solve three main issues: generation of a pure
mode; good matching of the mode with the resonant
cavities of the interferometer; achievement of proper
resonance conditions inside the cavities.

For what concerns the first issue, generation of a mode
with a purity as high as 99% has been demonstrated [7,8]

using a linear mode cleaner. We are not addressing the
LG3;3 mode generation in this paper: we assume that high

purity is achievable. We might note that the technique we
propose in this paper can be used also to improve the
filtering capabilities of linear mode cleaner cavities.
Recent work [9] showed that the matching on the

resonant cavity is not a trivial problem. However, the use
of adaptive optics techniques has already been shown as a
viable solution to obtain matching as good as 99% in
Advanced Detectors [10,11]. We will discuss the effect
of residual mismatch in Sec. V, showing that the technique
we are proposing is robust against it.
Finally, resonance of a LG3;3 mode in cavities with

spherical mirrors has already been demonstrated [8].
However, the LG3;3 mode (called from now on the funda-

mental mode) is degenerate with nine other 9th order LG
modes (modes LGp;l with 2pþ jlj ¼ 9, called from now

on degenerate modes). Any deviation of the mirror surface
from the ideal one will introduce a coupling from the
fundamental mode to the degenerate modes. This in turn
will introduce additional losses inside the resonant cavity
and it will create a significant amount of unwanted modes
in reflection of the interferometer arm cavities [12,13].
These modes will be different in the two arm cavities and
therefore will seriously limit the contrast defect of the*gabriele.vajente@pi.infn.it
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interferometer and as a consequence they will spoil the
detector sensitivity.

For this reason the surface figure requirement for the
mirrors to be used with a LG3;3 input mode are very

stringent [12], at the level of 0.01 nm root-mean-square
(RMS), which is beyond present polishing and metrology
capabilities. With the best available mirror quality, the
beam reflected by a second generation GW detector
Fabry-Perot cavity would only have a purity of the order
of 90% [12]. The goal is to increase the purity to the
99.97% level that one would obtain, using the same
maps, for a fundamental Gaussian mode in input [14].

In this paper we tackle the last issue, proposing a sensing
and control technique to improve the resonance of LG3;3

modes inside Fabry-Perot cavities, allowing a significant
increase in the quality of the reflected beam and therefore
making it possible to obtain a good interferometer contrast.

In [14] the use of a thermal correction pattern imaged
onto the mirrors has been proposed as a viable technique to
correct in-situ the mirror surface with great accuracy. The
CHRAC system (Central Heating for Residual Aberration
Correction) consists of an array of heating elements, each
one with a size of the order of 1 cm. Each element’s
temperature can be controlled with high precision tuning
of the driving current. An infrared (thermal) image of the
array is then projected onto the mirror surface to be cor-
rected, using an optical telescope. The resolution of the
CHRAC system is set by the interplay between the size of
the projected image of each element and the thermal
diffusion length of the mirror. The paper [14] demonstrated
the feasibility of applying a thermal correction pattern in
order to reduce the degeneracy of high order modes in
advanced detectors. It also showed that the same approach
is applicable in the case of the LG3;3 input mode. In both

cases knowledge of the mirror surface map was assumed.
This is a significant limitation in the case of the LG3;3 mode

since, as already pointed out, the level needed for surface
accuracy is beyond present metrology capabilities.
Moreover, additional deformations are expected due to
stresses induced by the suspension system. Therefore it
will not be possible to have reliable maps of the mirror
surfaces to compute the optimal correction to be applied.

In this paper we are not addressing the technological
aspects of the CHRAC system that were already discussed
in [14]. We assume to have a correction system capable of
projecting any desired heat pattern onto the mirror, with a
maximum spatial frequency of the order of 1 cm�1.
Indeed, for what concerns this paper, the way the correc-
tion is applied is not important, provided it can be done in-
situ. Therefore, other techniques, such as scanning CO2

lasers [15], can be employed. We moreover assume that the
correction map is reproduced perfectly. For what concerns
the CHRAC system, it was shown in [14] that the error
introduced by the correction system has a very small effect
on the efficiency of the system. In addition, as described in

Sec. IV, we propose to implement an iterative loop that is
capable of compensating for small residual errors in the
correction pattern.
In this paper we propose and demonstrate with simula-

tions [16] an adaptive optics sensing and control technique
in which the surface correction map to be applied is
computed without any a priori knowledge of the mirror
maps, but using only information extracted from the am-
plitude image of the beam reflected by the cavity. We
consider the application of this technique to a cavity with
realistic mirror maps and show that it is possible to recover
a very good purity of the LG3;3 mode in reflection.

In Sec. II we show how to derive a small set of maps that
form a basis for all the surface corrections to be applied to
the mirrors that are relevant to reduce the coupling between
the fundamental and the degenerate modes. In Sec. III we
develop an image processing technique that allows us to
extract a complete mode decomposition of the cavity re-
flection from just the amplitude image. In Sec. IV we show
how to use this mode decomposition to implement the
complete control system and to correct for any mirror
surface defects. Finally, in Sec. V we discuss the robust-
ness of the proposed algorithm against sensing errors.

II. MODE-GENERATING CORRECTION MAPS

The correction system will be composed of quite a large
number of pixels (N � 100). The most general actuation
scheme for the correction of one mirror could be to imple-
ment a search [17] over the N-dimensional space, trying to
optimize a suitable merit function, like for example the
purity of the cavity reflection in terms of the fundamental
mode. However, the efficiency of this optimization, mainly
in terms of time needed, depends strongly on the number of
parameters involved. This consideration motivates the in-
vestigation of strategies to reduce the number of actuation
parameters.
The goal of the correction is to minimize the amount of

degenerate modes in reflection of the cavity, thus simulta-
neously improving the fundamental mode purity. We start
the investigation by considering how these modes are
created in reflection from a single mirror. More in detail,
we ask ourselves what is the surface map needed to create a
coupling from the fundamental mode to a LGp;l mode.

More formally, in the short distance approximation [16],
we describe the field reflected by a mirror by

Erðx; yÞ ¼ exp

�
� 4i�

�
zðx; yÞ

�
LG3;3ðx; yÞ

’ LG3;3ðx; yÞ þ i
4i�

�
zðx; yÞLG3;3ðx; yÞ; (1)

where z is the mirror map expressed as the surface dis-
placement with respect to the ideal reference, � is the laser
wave-length and Er is the reflected field. We have assumed
the reflectivity of the mirror equal to one. All fields and the
mirror map are functions of the transverse coordinates
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ðx; yÞ. The approximate equality in the above equation
comes from the consideration that only small corrections
of the mirror surfaces will be needed. We want to create a
field composed of the fundamental mode plus a small
contribution from another mode (we are clearly interested
only in small values j�j � 1):

Egðx; yÞ ¼ LG3;3ðx; yÞ þ i�LGp;lðx; yÞ; (2)

where � is the spurious mode coefficient, which in the
general case can be complex. The best mirror map zðx; yÞ is
then found by minimizing the mean square difference
between the reflected and the target fields:

E½z� ¼
ZZ

jEgðx; yÞ � Erðx; yÞj2dxdy; (3)

where the integration is carried out over the entire
mirror surface. The minimum value of the error E½z�
can be found with standard variational techniques, solving
the Euler-Lagrange equations associated with the above
functional [18]:

zðx; yÞ ¼ �

4�
Arg

�
1þ i�� LG

�
p;lðx; yÞ

LG�
3;3ðx; yÞ

�
: (4)

The computation is described in the Appendix A 1. An
example of the maps obtained with this formula is shown in
Fig. 1. The problem with this solution comes from the
presence of the LG3;3ðx; yÞ function at the denominator,

which introduces sharp features in the map that are not

realizable with the correction system, since they contain
components at high spatial frequencies.
We therefore adopted a different approach, which allows

us to retain control of the frequency content of the correc-
tion maps. Following the approach described in [13], we
expand zðx; yÞ in terms of Zernike polynomials Zm

n [19]. As
demonstrated in [13], we can restrict ourselves to using
only the polynomials that satisfy the selection rule m ¼
j3� lj where l is the azimuthal index of the target LG
mode. For simplicity of notation, we list the Zernike poly-
nomials up to a given order with a single index. Therefore
the desired mirror map can be written as

zðx; yÞ ¼ XN
i¼1

piZiðx; yÞ: (5)

The error of Eq. (3) becomes a function of the Zernike
coefficients:

E½p� ¼
ZZ ��������i�LGp;l þ 4�i

�

XN
i¼1

piZiLG3;3

��������2

dxdy: (6)

The coefficient vector p ¼ ðp0; p1; . . . ; pNÞT gives the op-
timal map for each mode that can be found by solving
analytically the above least-square problem. The compu-
tation is detailed in the Appendix A 2, here we report the
results:

p ¼ �B�1 �A;

Ak ¼
ZZ

ð��LG3;3LG
�
p;l þ �LG�

3;3LGp;lÞZkdxdy;

Bi;j ¼ 8�

�

ZZ
jLG3;3j2ZiZjdxdy;

(7)

where the vector A and the matrix B involved in the first
equation are defined in the second and third equations.
When the number of Zernike modes N ! 1, the solution
found with this technique approaches the one obtained
with Eq. (4).
The choice of the maximum order of the Zernike poly-

nomials gives us control over the maximum spatial fre-
quency of the correction map. When implementing
numerically the solution given by Eq. (7), some care is
needed when inverting the matrix B. Indeed, if the bare
inverse is used, the maps that are found typically contain
large corrections close to the edge of the mirrors. This is an
undesirable feature, since we want to reduce as much as
possible the amplitude of the correction. Moreover, the
beam is mainly concentrated in the central part of
the mirror, therefore the shape of the peripheral part of
the mirror is less important. To better understand the origin
of this large correction, the matrix B can be described with
a singular value decomposition (SVD) [[20], sec. 2.6].
In the general case, the smallest singular values corre-

spond to correction modes that require very large ampli-
tudes for almost no improvement of the merit function. In
addition, in this particular case the smallest singular values

 

 

Surface map [nm]
−3 −2 −1 0 1 2 3

FIG. 1 (color online). Mirror surface map, computed analyti-
cally, that gives the best coupling from a LG3;3 to a LG4;1 mode.

The coated mirror diameter considered here is 51 cm, which is
that needed to have a cavity capable of sustaining a LG33 mode
with about 6 cm Gaussian radius with 1 ppm clipping losses (see
also Sec. II). The color scale has been clipped to best show the
map features.
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correspond also to correction modes that are mainly con-
centrated in the outer part of the mirror. Therefore if we
compute the inverse of B after truncating the decomposi-
tion to the modes with the largest singular values, we can
restrict the correction to the central part of the mirror.
Provided the truncation is not too extreme, the effect on
the efficiency of the maps is negligible. In summary, by
tuning the maximum order of the Zernike expansion and
the threshold for SVD truncation we can control both the
spatial frequency and the covered region of the correction.
In this way it is possible to ensure that we obtain maps that
can be implemented with the correction system.

We are interested in the set of maps that can couple the
fundamental LG3;3 mode to each of the nine degenerate

modes. Since the LG modes are complex, the coefficient �
of the target mode can have both real and imaginary
components. Therefore, for each of the degenerate modes,
two maps must be computed: one that generates the real
part and another that generates the imaginary part.
Therefore the algorithm produces in total 18 maps.

Since the criterion chosen to define an optimal map,
given by Eq. (3), is related to the minimization of the
mean square difference between the target field and that
reflected by the mirror, the resulting set of maps is not
completely diagonal in the basis of the ninth order LG
modes: in other words the field reflected by one of the maps
contains not only the desired ninth order mode, but also a
small fraction of the other degenerate modes. Therefore we
need to diagonalize the outcome of the previous computa-
tions. In this way we have a set of 18 mode-creating maps
M ¼ fM1; . . . ;M18g: the reflection of a LG3;3 beam on a

mirror with the mapMi will be composed of a LG3;3 plus a

contribution with coefficient � (real or imaginary, depend-
ing on the map chosen) of only one of the other degenerate
modes LGp;l. In other words, any arbitrary linear combi-

nation, with complex coefficient, of the degenerate modes
can be obtained in reflection of a mirror with a surface map
composed using only the maps in the set M.

An example of the maps obtained using this procedure is
shown in Fig. 2. We considered the application of this
technique to the Fabry-Perot resonant cavity of a GW
detector with the same geometry as Advanced Virgo [1]:
the cavity length is of 3 km and the input and end mirror
radii of curvature are respectively 1420 m and 1683 m. The
Gaussian beam size corresponding to this geometry is of
48 mm on the input mirror and 59 mm on the end mirror. To
reduce the clipping losses of a LG3;3 beam below 1 ppm,

the mirror diameter must be of about 52 cm. It would also
have been possible to reduce the beam spot size in order to
use more standard diameters of about 30 cm. However the
core of the results shown in this paper would be unchanged.

The dependency of the maps M on the maximum order
of the Zernike polynomials involved in the optimization
has been studied. It was found that the result is stable when
the maximum order of the expansion is at least 24, for the

given beam and mirror parameters. The important proper-
ties of these maps, which is evident from the pictures, is
that they do not contain high spatial frequencies or sharp
features and they are concentrated near the center of the
mirror. Therefore they are realizable with a thermal cor-
rection system such as the CHRAC.
The set M of these 18 maps is complete, in the sense

that given any real mirror surface map zðx; yÞ, one can
always find a linear combination of the maps in M that
completely eliminates the coupling from the LG3;3 mode to

all the other degenerate ones. This statement has been
checked in simulation with many randomly generated
maps, with a procedure similar to the one explained in
[14]: a correction map made of a linear combination of Mi

is added to a mirror with a surface map z; the coefficients ci
of the linear combination are optimized in order to mini-
mize the power in the unwanted degenerate modes:

P½c� ¼ X9
n¼1

��������hnj 4�i�

�
zðx; yÞ þX18

i¼1

ciMiðx; yÞ
�
j0i

��������2

; (8)

where we have used the bracket notation to indicate the
projection into LG modes, enumerated with a single index

LG
0,−9

LG
0,9

LG
1,−7

LG
1,7

LG
2,−5

LG
2,5

LG
3,−3

LG
4,−1

LG
4,1

FIG. 2 (color online). Maps to generate ninth order LG modes
in addition to the input LG33. Only the maps that generate the
mode with real coefficients are shown. The maps that generate
those with imaginary coefficients are simply rotated by �=4l.
These maps have been computed using parameters correspond-
ing to an Advanced Virgo-like resonant cavity, see the main text
for more details.

G. VAJENTE AND R.A. DAY PHYSICAL REVIEW D 87, 122005 (2013)

122005-4



n, with 0 corresponding to the fundamental LG33 mode.
The minimum of the above function can be computed
analytically, considering the orthogonality properties of
the maps

hnjMij0i ¼ að�i;n þ i�i;9þnÞ; (9)

where the set of maps is ordered as follows: first the nine
maps generating the degenerate modes with real coeffi-
cients, then the nine maps generating the modes with
imaginary coefficients. Here a is a normalization constant
which depends on the amplitude of the maps. Equation (8)
simplifies to

P½c� / X9
n¼1

jhnjzj0i þ Nðcn þ ic9þnÞj2 (10)

that is minimum when all terms of the sum are simulta-
neously null:

cn ¼ � 1

N
Rðhnjzj0iÞ c9þn ¼ � 1

N
Iðhnjzj0iÞ; (11)

where we indicated with RðxÞ and IðxÞ the real and
imaginary part of the complex number x.

Clearly this procedure to find the correction map is
viable in a resonant cavity only if perfect measurements
of the mirror surface maps are known. It is therefore
interesting to investigate the possibility of finding the
correction coefficients without a priori knowledge of the
map. As explained at the beginning of this section, one
possibility would be to implement a search: the fact that we
know all the maps that are relevant to remove the degen-
erate modes reduces the number of parameters to 18 per
mirror. This is still a large number, but not untreatable with
optimization techniques based for example on stochastic
parallel gradient descent algorithms [17].

Moreover, the fact that the mirror surface features
that are really relevant can be described in terms of a
reduced number of maps can provide a method to better
define the polishing requirements: instead of providing
limits on the Zernike polynomial contents as done for
example in [13], one could give limits in terms of the
mode-generating maps M.

III. MODE DECOMPOSITION OF
CAVITY REFLECTION

As pointed out in the introduction, to properly operate a
gravitational wave interferometric detector with a LG3;3

mode in input, the cavities must be corrected in order to
have the purest possible mode in reflection. In real detec-
tors it is normally possible to operate the two cavities
separately and easily acquire amplitude images of the
reflected beams, using standard CCD cameras. The goal
of this section is to demonstrate that it is possible to extract
a complete field decomposition of the cavity reflection
using only amplitude images. As will be shown in the

next section, this is enough to implement a feedback
system to compute the optimal correction, without knowl-
edge of the mirror surface maps.
Figure 3(a) shows a simulated image of the beam re-

flected by a Fabry-Perot cavity, taken at the surface of the
input mirror. In this simulation the end mirror is perfect and
the input mirror has a realistic surface map randomly
generated, with a RMS deviation from the reference sphere
of about 0.5 nm. The map, shown in Fig. 3(b), couples
partially the fundamental LG3;3 that is feeding the cavity

into the other degenerate modes. The field has been com-
puted using an optical simulation based on a FFT algorithm
[16], using a square window of 0.5 m sampled with 256
points. The optical parameters of the cavity are those al-
ready described in the previous section. In the following we
will refer to the simulation outcome as the real beam image,
in contrast with the fitted beam imagewhich is the result of
the image processing algorithm we are going to describe.
Since the beam reflected by the cavity is mainly com-

posed of a LG3;3, it is possible to extract from the real

(a) Intensity image
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FIG. 3 (color online). Simulated power image (a) in reflection
of a Fabry-Perot cavity with a perfect end mirror and an input
mirror with a map randomly generated (b) that introduces some
coupling from the fundamental mode to the other degenerate
modes. The two images have the same transverse scale and the
diameter of the mirror map is 51 cm.
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power image the mode radius with a simple fit procedure
which minimizes the mean square error between the image
and the power profile of a pure fundamental mode, with
unknown amplitude, width and center. The initial estimate
of these parameters can be obtained using first and second
order moments of the real image. The minimization is
carried out using the Nelder-Mead simplex direct search
algorithm [21].

The second step consists of fitting the real image with a
complex linear combination of ninth order modes (denoted
by �i with i ¼ 0 . . . 9) computed with the beam parame-
ters obtained with the above procedure. In other words we
search for the best set of complex parameters �i such that
the power image

Pðx; y;�Þ ¼
���������0�0ðx; yÞ þ

X9
i¼1

�i�iðx; yÞ
��������2

(12)

is the closest possible, again in a mean square sense, to the
real beam image Iðx; yÞ:

E½�� ¼
ZZ

jIðx; yÞ � Pðx; y;�Þj2dxdy: (13)

In Eq. (12) we separated the contribution coming from �0

which indicates the fundamental LG3;3 mode, from the

other ones. Indeed, in our application, the coefficient �0

will be much larger than the other coefficients and will be
the dominant contribution to the power image. The ap-
proximation j�ij � j�0j can be included explicitly in the
above minimization. In the general case it is possible to
solve the least square problem using a numerical algo-
rithm, such as the steepest descent method [[20], sec. 10].

It is clear from Eq. (12) that it will not be possible to
completely reconstruct the mode coefficients: at least a
global phase factor will remain unknown. In general one
would expect to have many more uncertainties, since only
the amplitude of the field is known. However, the numeri-
cal results, shown in Fig. 4, demonstrate that it is possible
to fully reconstruct the complex amplitude of all coeffi-
cients, modulus the global phase. Figures 4(a) and 4(b)
show that the amplitude is perfectly reconstructed.
However, in Figs. 4(c) and 4(d) it is possible to see that
also the phase is properly reconstructed over all the image,
except for a tilt term which can be seen in Fig. 4(f). Finally,
Fig. 5 compares the complex mode coefficients recon-
structed using this algorithm with those obtained from a
real decomposition which includes the beam phase infor-
mation. The phase of both sets of coefficients has been
normalized to that of the LG3;3 to compensate for the

unknown global phase. We see that there is very good
agreement.
It is clearly not possible to use this procedure to extract

any information on changes in the beam size and position,
since these are free parameters in the fit procedure.
Moreover, any tilt of the beam at the level of the camera
is also not detectable, since it would add only a tilt term to
the phase. However, these low order effects do not intro-
duce any coupling between the ninth order LG modes, and
therefore are not relevant to our objective.
The fact that such a complete knowledge of the beam

modal decomposition is attainable can be surprising at first
sight. Indeed for a beam composed of the most general
mixture of LG modes, it is always possible to find a set of
coefficients that properly fit the amplitude, but the solution
is not unique. In our application, however, the fact that one
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FIG. 4 (color online). Results of the reconstruction of the full field from intensity image only. (a) amplitude image of the real field;
(b) amplitude image of the reconstructed field; (c) phase image of the real field; (d) phase image of the reconstructed field;
(e) difference between the amplitude images; (f) difference between the phase images.
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of the modes is dominant, expressed by the approximation
j�ij � j�0j, changes the nature of the set of Euler-
Lagrange equations which determine the minimum of
Eq. (13). In the general case they are of third order in all
the coefficients. When the above approximation is intro-
duced, these equations becomes linear in all coefficients
�i for i � 0 and retain their non-linear nature only for �0.
The solution of this set of equations is therefore unique,
except for the previously mentioned global phase, which
can be fixed requiring �0 to be real and positive.
A complete proof of this statement is provided in the
Appendix A 3, where the analytical solution of the mini-
mization problem is given.

The coefficients found with this procedure are only first
order approximations of the true ones. However, in our
application, this approximation yields very good results, as
shown in Fig. 5.

In conclusion, it is possible, starting from a pure inten-
sity image of the cavity reflection, to reconstruct the mode
content, in terms of the complex coefficients of all ninth
order modes, taking as reference the phase of the injected
LG3;3 mode.

IV. CONTROL SYSTEM

The image processing algorithm described in the pre-
vious section allows to extract from a cavity reflected beam
a set of error signals. These, together with the actuation
described by the map setM defined in Sec. II, provides all
the ingredients needed to implement a complete adaptive
optics system. The results shown in this section are based,
as before, on a FFT simulation of a Fabry-Perot cavity,
with an ideal end mirror and an input mirror with a ran-
domly generated surface map. Each of the error signals ei
are given by the real or imaginary part of the coefficient

corresponding to that of the degenerate modes. These
coefficients are extracted from the intensity image of the
cavity reflection, taken at the input mirror surface. Since
there are 9 modes which are degenerate with the LG3;3, we

have a set of 18 error signals.
The first step to building the control system consists of

the calibration of the error signals. We select one of the
maps Mi and we add it to the input mirror, multiplied by a
scaling factor which is swept over a range that includes the
optimal value, known from the results of Sec. II. All the
error signals are computed for each point in the sweep.
Figure 6(a) shows an example of the sweep of one map
amplitude: it is clear that only one of the error signals is
changing significantly, and is linearly proportional to the
map amplitude. When we sweep the amplitude of the map
that creates a given (real of imaginary) mode, we see that
only the error signal corresponding to the same (real or
imaginary) mode is changing. This perfect diagonalization
is due to the fact that the beam image is taken exactly at the
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FIG. 6 (color online). (a) example of the dependence of all
error signals on the amplitude of one selected map added to the
input mirror of a Fabry-Perot cavity. (b) sensing matrix, com-
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all map amplitudes.
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input mirror. In the presence of an (ideal) imaging tele-
scope, there will be a mixing between the error signals due
to the induced change in Gouy phase.

The slope of the error signal variation as a function of
the map amplitude can be extracted. When all maps have
been added one by one, the set of slopes determines the
sensing matrix Sij which tells us the sensitivity of the i-th

error signal to the jth map amplitude. The result is shown
in Fig. 6(b). We see that the diagonalization of the error
signals is very good.

The adaptive optics control system is implemented as
follows. The intensity image of the beam reflected from the

cavity is processed to extract the 18 error signals ei. Each
of these is the input of a simple integrator: its output is the
amplitude ci of the ith mode-generating map. The gain of
the integrator is computed from the diagonal elements of
the sensor matrix Sij. The input mirror surface map is then

modified with the addition of the linear combination of the
mode-creating maps:

z0ðx; yÞ ¼ zðx; yÞ þX18
i¼1

ciMiðx; yÞ: (14)

At this point we may assume that the correction system is
capable of accurately reproducing any desired surface map
correction.
The system described above was completely simulated,

using several different randomly generated surface maps,
applied to the input mirror of the same Fabry-Perot cavity
considered above, with a finesse of 450. We consider here
one map as an example of the typical results. Without any
correction, the total round-trip losses in the cavity were
about 15 ppm and the reflected beam was degraded such
that only 92.9% of the power was in the LG3;3 mode (see

Fig. 7(a)). The control system is simulated by computing
the correction in an iterative way: the steady state field
reflected by the cavity is computed; the reflected beam
image is processed to extract the error signals; the correc-
tion is computed and added to the input mirror; the cavity is
simulated again and the entire procedure repeated. In about
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7 steps the correction converges to the final value
(see Fig. 8). The cavity round-trip losses are essentially
unchanged (17 ppm) but the purity of the reflected beam is
largely improved: 99.98% is in the fundamental LG3;3

mode (see Fig. 7(b)).
For simplicity, so far the simulation has been carried out

keeping the end mirror of the cavity perfectly spherical. In
the real world, both input and end mirrors will have maps
with similar defects. The adaptive optics system described
here is effective even in the case of two real mirrors.
Moreover, it will not be necessary to actuate on both mirrors
together, but one CHRAC system will be enough. Indeed,
the two mirrors will create LG degenerate modes that will
propagate inside the cavity and will be resonant. However,
regardless of the origin of the modes, they will finally be
present at the reflection of the cavity with some complex
amplitudes. However, as shown in Sec. II, we are also able
to generate each mode with arbitrary complex amplitude by
acting on one single mirror. It will therefore be possible to
cancel the unwanted modes from the cavity reflection using
exactly the same compensation system described in the
previous sections. This statement is confirmed by simula-
tion. We added two different random maps to the input and
end mirrors, such that the uncorrected cavity gives total
round-trip losses of 50 ppm and a purity of the reflected
beam of only 83%. In about 10 iterations, the adaptive
optics system was able, acting only on the end mirror, to
increase the purity of the reflected beam to 99.96%, without
a significant change in the round trip losses (53 ppm).

The fact that it is enough to actuate only on one mirror is
very important. As pointed out in [14], an actuation on the
input mirror will introduce also a thermal lensing which, if
not compensated by a thermal compensation system [22]
could degrade the interferometer performance. It is there-
fore preferable to limit the actuation to the end mirror,
where the additional thermal lensing can be neglected.

Finally, it might not be possible to perfectly reproduce
the set of correction maps described in sec. II. It was shown
in [14] that the CHRAC system is capable of a very good
reproduction of the correction pattern. However, as long as
each map is still capable of generating a not null amount of
the desired degenerate mode, the iterative loop will correct
for the imperfections, always converging to the point
where all unwanted modes are canceled.

V. ROBUSTNESS AGAINST SENSING ERRORS

The simulation results presented so far assumed that it is
possible to perfectly acquire the image of the reflected
field. In real world applications there are several sources
of image quality degradation. We briefly discuss in this
section the effect of the main ones.

First of all, we must consider that the input beam waist
size and position are not perfectly matched to those of the
ideal cavity resonant mode. This mismatch introduces
additional high order modes in reflection of the cavity.

However, the image processing technique proposed here
is able to select only the ninth order modes and it is there-
fore insensitive to mismatch. To prove this statement, we
simulated the effect of a mismatch of the input beam of
4%, meaning that in the case of a cavity with perfect
mirrors only 96.29% of the reflected beam is in the cavity
fundamental mode. The error signals obtained from the
reflected beam are not affected by the mismatch and
the iterative algorithm described here is able to converge
to the same correction map as in the ideally matched case.
The purity of the reflected beam is increased from 89.44%
to 96.25%, with an efficiency comparable to that obtained
with a perfectly matched beam.
In addition to a mismatch of the Gaussian mode, the

input beam might not be pure, meaning that it can contain
spurious ninth order modes in addition to the fundamental
mode. The adaptive technique proposed here does not
distinguish between the modes generated by the cavity
and those already present in the input beam. The zero of
the error signals will correspond to a reflected beam which
contains the purest possible LG33 beam. The effect of the
correction will therefore be to compensate for the unwanted
modes in the input beam by modifying the mirror surfaces.
This suggests also that the technique proposed here can
used to improve the quality of the beam generation.
In the simulation shown previously the image was taken

exactly at the input mirror. In the real case however, the
beam must propagate through additional optical elements
before being imaged onto a camera. It is important to take
care in designing the imaging system in order to avoid
adding any aberrations to the field. To quantify the effect
of such aberrations we simulated the propagation of the
cavity reflected beam through a telescope similar to the one
designed for the Advanced Virgo input system [1,23],
composed of two parabolic mirrors and a meniscus lens.
The main distortion is astigmatism: this can be handled in
the algorithm that reconstructs the mode decomposition if
the base is allowed to be scaled with respect to a possibly
tilted axis. This is a simple extension of the fit in Eq. (12).
The higher order aberrations introduce also a small cou-
pling among the ninth order LGmodes, resulting in an error
of a few percent in the reconstructed coefficients. This
effect is, for most part, compensated by the iterative ap-
proach described above. However, the correction which
corresponds to the zero of all error signals is no longer
equal to the ideal one. In the case of both input and end
mirrors with surface maps, the iterative algorithm described
above can be implemented reconstructing the error signal
from the beam transmitted through a simulated output tele-
scope. The correction obtained in this way, corresponding
to the zero of all error signals, is slightly different from the
ideal one, and is able to increase the reflected beam purity
from 83% to only 99.65% instead of 99.96%. This indicates
that the performance of the imaging system is important if
we want to reach a very high purity of the beam.
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We identified three possible ways to improve this situ-
ation. The most obvious one is of course to design the
imaging optics in order to reduce the aberrations that create
the largest deformations of the LG modes. This approach is
outside the scope of this paper. The second possibility is to
directly measure and subtract the aberrations induced by the
imaging system. It is possible to measure the offsets added
to the error signals, by sending a pure LG33 beam through
the system and to the camera. This can be done, for example,
by tilting the end mirror of the resonant cavity, in order to
have only the prompt reflection from the input mirror. This
mirror will still add its own aberrations to the LG33 input
beam but, being outside of a resonant cavity, they will be
much less important. Therefore we expect that the reflection
of the input mirror alone will be a good purity LG33 mode
and that any degenerate mode that would be detected at the
level of the camera is introduced by the imaging system. We
tested this idea in simulation: we reconstructed the field
decomposition of the beam reflected by the input mirror
alone and passing through the same telescope described
above; the values were then subtracted from the error signals
reconstructed during the iterative approach. In this way it
was possible to completely remove the distortion and to
recover the nominal 99.96% purity after correction.

Finally, in principle it would be possible to avoid using
any imaging optical system, and look directly at the beam
on the input mirror. Indeed the micro-roughness of the
surface will produce a few ppm of scattered light that
would provide enough power to image the beam directly.
Clearly, this approach would be viable only in the case of a
good homogeneity of the mirror scattering. We carried out
several simulations adding a randomly generated power
error on the beam images, with different amplitude and
spatial frequencies. The results show that if the homoge-
neity of image power reconstruction is better than 5% it is
possible to recover the nominal correction level of the
beam. We did not consider the effect of point defects but
we expect that these could be easily subtracted removing
the corresponding pixel in the image. This idea of imaging
directly the beam on the mirror is clearly appealing, but it
needs more in depth studies.

VI. CONCLUSIONS

The main problem that will prevent the use of a LG3;3

input beam in second and third generation interferometers
is the poor contrast defect that will result from degenerate
modes created by the imperfect mirror surfaces. We dem-
onstrated with a detailed optical simulation that it is pos-
sible to implement a relatively simple adaptive optics
system to correct for the mirror defects and recover a
good purity of the mode reflected by the cavities and
therefore a good contrast defect of the interferometer.

The system proposed here is rather simple and low cost.
The actuation is performed using the CHRAC system,
already described in detail in [14], which is capable of

correcting the mirror surface by projecting a thermal image
with relatively high spatial resolution. The correction map
needed to remove virtually all unwanted modes from the
cavity reflection can be computed without any a priori
knowledge of the mirror maps. Indeed, we showed that it
is possible to extract the correction map using an image
processing algorithm based only on an intensity image of the
cavity reflection that can be obtained with CCD cameras.
Moreover, we showed that it is enough to apply the

correction to only one of the two mirrors of the cavity. If
the end mirror is chosen, the implementation of the pro-
posed system will not add any burden to the existing
thermal compensation systems.
In conclusion, the implementation of the adaptive optics

system proposed here will allow the use of a LG3;3 input

mode in second generation interferometers with presently
available mirror polishing and coating technology. If im-
plemented in second generation detectors, this technique
will allow a gain of a factor 1.6 [6] in the coating thermal
noise and ultimately a significant improvement in the
detector sensitivity.
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APPENDIX: DETAILS OF THE COMPUTATIONS

This appendix gives more details on the computations
that are needed to obtain the main results described in this
article.

1. Analytical solution of mode-generating map

The goal is to find the function zðx; yÞ describing a
mirror surface that minimizes the error function defined
by Eq. (3). It is possible to find the exact solution even
without using the approximation jzj � �. Indeed, using
Eqs. (1) and (2) we get

E½z� ¼
ZZ

jð1� e�2ikzÞ�0 � i��1j2dxdy; (A1)

where k ¼ 2�
� and for simplicity we set �0 ¼ LG3;3 and

�1 ¼ LGp;l. Considering that the surface map is real and

writing explicitly the absolute value we obtain

E½z� ¼
ZZ

½2j�0j2 þ e2ikzð�j�0j2 þ i���
0�1Þ

þ e�2ikzð�j�0j2 � i���0�
�
1Þ

� i��
0��1 þ i�0�

���
1 þ j�j2j�1j2�dxdy: (A2)
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The extremal of this functional can be obtained solving the
corresponding Euler-Lagrange equation, which takes a
simple form:

0 ¼ @E

@z
¼ 2ike�2ikz½e4ikzð�j�0j2 þ i���

0�1Þ
þ ð�j�0j2 � i���0�

�
1Þ� (A3)

with the following solution:

e4ikz ¼ �j�0j2 þ i����
1�0

j�0j2 � i���
1�0

: (A4)

In this equation the numerator and the denominator of the
fraction are complex conjugate. The value of z can be ob-
tained therefore from twice the argument of the numerator:

8�

�
z ¼ 2Arg½j�0j2 þ i����

1�0�

¼ 2Arg

�
j�0j2

�
1þ i�� �

�
1

��
0

��

¼ 2Arg

�
1þ i�� �

�
1

��
0

�
; (A5)

which corresponds to Eq. (4).

2. Zernike polynomials expansion of
mode-generating maps

In this case the mirror map is expressed as an expansion
in terms of Zernike polynomials, using Eq. (5). Starting
from Eq. (6) and using the same definition of �0 and �1

introduced in the previous section we get

E½p� ¼
ZZ ��������i��1 þ 2ik�0

XN
i¼1

piZi

��������2

dxdy; (A6)

where we have this time used the approximation jzj � �.
For simplicity we call�� ¼ i��1 the additional field that
we want to create. The absolute value in the above integral
can be expanded explicitly:

E½p�¼
ZZ �

j��j2þ2ikð�0��
� ���

0��Þ

�XN
i¼1

piZiþ4k2j�0j2
Xn
i;j¼1

pipjZiZj

�
dxdy: (A7)

The optimal value for each Zernike coefficient can be found
by setting to zero the corresponding partial derivative:

0 ¼ @E

@pk

¼ 4�i

�

ZZ
ð�0��

� ���
0��ÞZkdxdy

þ 32�2

�2

XN
i¼1

pi

ZZ
j�0j2ZkZidxdy: (A8)

The two terms in the right-hand side are respectively a
vector Ak and the multiplication of a matrix Bik with the
vector of unknown coefficients pi. This set of k equation is
therefore a linear system with the solution given in Eq. (7).

3. Intensity image modal decomposition

Here we derive the analytical solution of the minimiza-
tion problem defined by Eqs. (12) and (13):

E½�� ¼ hðI � P½��Þ2i; (A9)

where for simplicity we have denoted with angular brack-
ets the integral over the entire x, y plane. We assume here
that j�ij � �0 and that �0 > 0. At first order in the �i the
above equation becomes:

E½�� ¼
��

I��2
0j�0j2 ��0

X9
i¼1

ð�i�
�
0�i þ��

i�0�
�
i Þ
�
2
�
;

(A10)

where �0 is the fundamental mode and �i are the degener-
ate modes. The optimal coefficients are found by setting to
zero the partial derivative of e with respect to the coefficients
�. We first consider the degenerate mode coefficients:

0¼ @E

@�k

¼2

��
I��2

0j�0j2��0

X9
i¼1

ð�i�
�
0�iþ��

i�0�
�
i Þ
�

� ð��0�
�
0�kÞ

�
(A11)

which, again at first order in the �i gives the following
equation

0 ¼ ��0hI��
0�ki þ �3

0hj�0j2��
0�ki

þ �2
0

X9
i¼1

½�ihð��
0Þ2�i�ki þ ��

i hj�0j2��
i�ki�: (A12)

With the following definitions:

ak ¼ hI��
0�ki; (A13)

bk ¼ hj�0j2��
0�ki; (A14)

mki ¼ hð��
0Þ2�i�ki; (A15)

nki ¼ hj�0j2��
i�ki; (A16)

Eq. (A12) simplifies to

0 ¼ �ak þ �2
0bk þ �0

X9
i¼1

ðmki�i þ nki�
�
i Þ: (A17)

It is useful to decompose the coefficients in real and
imaginary parts �i ¼ �i þ i�i. This allows us to rewrite
the above equation in terms of real matrices and vectors.
With the following definitions

R ¼ �

�

" #
(A18)
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A ¼ RðaÞ
IðaÞ

" #
(A19)

B ¼ RðbÞ
IðbÞ

" #
(A20)

M ¼ Rðmþ nÞ �Iðm� nÞ
Iðmþ nÞ Iðm� nÞ

" #
(A21)

Eq. (A17) further simplifies to

�Aþ �2
0Bþ �0MR ¼ 0; (A22)

which is easily solved for the vector of field coefficients R:

R ¼ ��0M
�1

�
B� 1

�2
0

A

�
: (A23)

The value of �0 can be found by solving the equation
provided by the partial derivative of Eq. (A10) with respect
to �0:

0 ¼ �2hIj�0j2i þ 2�2
0hj�0j4i þ 3�0

Xð�ibi þ ��
i b

�
i Þ

(A24)

with the same definition of bi as in Eq. (A14). Using the
definitions of Eqs. (A18) and (A20) we can write

hIj�0j2i � �2
0hj�0j4i � 3�0R

TVB ¼ 0 (A25)

with the additional definition of the matrix V:

V ¼ 1 0

0 �1

" #
; (A26)

where 1 is the 9� 9 unity matrix. The explicit solution forR
can be substituted from Eq. (A23). The equation for �0

simplifies to a quadratic binomial:

0 ¼ hIj�0j2i � �2
0hj�0j4i

þ 3�2
0B

TVM�1B� 3BTVM�1A (A27)

with the unique solution, modulus a sign, given by

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hIj�0j2i � 3BTVM�1A

hj�0j4i � 3BTVM�1B
:

s
(A28)

This equation, together with (A23) uniquely determines all
the coefficients �0 and �i.
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