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We first show that stationary black holes satisfy an extremely simple quasilocal form of the first law,

�E ¼ ��
8� �A, where the (quasilocal) energy E ¼ A=ð8�‘Þ and (local) surface gravity �� ¼ 1=‘, with A the

horizon area and ‘ is a proper length characterizing the distance to the horizon of a preferred family of

quasilocal observers suitable for thermodynamical considerations. Our construction is extended to the

more general framework of isolated horizons. The local surface gravity is universal. This has important

implications for semiclassical considerations of black hole physics as well as for the fundamental quantum

description arising in the context of loop quantum gravity.
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I. INTRODUCTION

Hawking’s semiclassical calculations [1] imply that
large black holes (BHs) produced by gravitational collapse
behave like perfect black bodies at Hawking temperature
TH proportional to their surface gravity once they have
reached their stationary equilibrium state. Moreover, dif-
ferent neighboring stationary states are related by the first
law of BH mechanics from which black holes can be

assigned an entropy S ¼ A=4‘2p, where ‘p ¼ ℏ1=2 (in units

G ¼ c ¼ 1) is the Planck length and A is the classical area
of the event horizon.

A complete statistical mechanical account of the thermal
properties of BHs from quantum degrees of freedom
remains an important challenge for all candidate theories
of quantum gravity. Statistical entropy has been calculated
in string theory [2] and loop quantum gravity [3], yet in
both cases significant gaps remain to be filled.

An important difficulty in dealing with black holes in
quantum gravity is that, as they evaporate, the usual defini-
tion based on global structure of spacetime is ill posed. This
has been recently clearly illustrated in the context of two-
dimensional models [4]. Nevertheless, one would expect
that the physical notion of a large black hole radiating very
little and, thus, remaining close to equilibrium for a long
time could be characterized in a suitableway and that such a
characterization should help in studying the appropriate
semiclassical regime of the underlying quantum theory.

Such quasilocal characterization of black holes is pro-
vided by isolated horizons [5]. Isolated horizons (IHs)
capture the main local features of BH event horizons while
being of a quasilocal nature itself. In particular, isolated
horizons satisfy a quasilocal version of the first law [6],

�EIH ¼ �IH

8�
�Aþ�IH�JIH þ�IH�QIH; (1)

where EIH, JIH, and QIH are suitable quasilocal energy,
angular momentum, and charge functions, while �IH,�IH,

and �IH are local notions of IH surface gravity, angular
velocity, and electrostatic potential. The previous equation
comes from the requirement that time evolution which
respects the IH boundary conditions be Hamiltonian [6].
The first law implies that the IH energyEIHmust be function
EðA; JIH; QIHÞ. The integrability conditions for EIH stem-
ming from the previous phase space identity imposes
restrictions on the ‘‘intensive’’ quantities. Beyond these
conditions the first law of IH does not give a preferred
notion of energy of the horizon: this is a limitation for
statistical mechanical descriptions of quantum BHs.
In this paper we show that the above indeterminacy

disappears if one fully develops the quasilocal perspective
from which IH were defined in the first place. In fact, when
studied by stationary observers at proper distance ‘ from
the horizon, stationary BHs (and more generally IHs)
satisfy the quasilocal first law,

�E ¼ ��

8�
�A; (2)

where EIH ¼ E, �� ¼ ‘�1 with ‘2 � A a proper length
intrinsic to our analysis. The previous equation can be
‘‘integrated,’’ thus providing a notion of horizon energy
E ¼ A

8�‘ which is precisely the one to be used in statistical

mechanical considerations by quasilocal observers at dis-
tance ‘. We first show the validity of (2) for stationary
black holes and later extend the proof for IHs. The area as a
notion of energy has been evoked on several occasions in
the context of BH models in loop quantum gravity [7,8].
The results of this paper put these analysis on firm ground.
The results here presented are of a very simple nature

and might produce the impression that they must have been
somehow well studied in the past. After all the subject of
black hole thermodynamics has a vast and long history
where the most important and influential results have been
published in the 1970s and 1980s. Local aspects such as
the notion of local temperature, measured by stationary
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observers close to the horizon, have been studied in [9].
An earlier reference is the review of Carter in [10]. There is
of course the famous membrane paradigm [11] where a
similar quasilocal perspective is explored in detail. Finally,
the manipulations of [12] are very closely related to the
ones found here although the interpretation sought there is
quite different from ours. Therefore, despite the long his-
tory of the subject the key point that we are making here is
new and has not been appropriately stressed before.

II. A QUASILOCAL FIRST LAW

A. Stationary black holes

We first study the thermodynamic properties of
Kerr-Newman BHs as seen by a family of stationary ob-
servers O, surrounding the horizon at a small proper dis-
tance ‘2 � A. They follow integral curves of the Killing
vector field,

� ¼ �þ�c ¼ @t þ�@�; (3)

where � and c are the Killing fields associated with the
stationarity and axisymmetry of Kerr-Newman spacetime,
respectively, while � is the horizon angular velocity,

� ¼ a

r2þ þ a2
; (4)

where a ¼ J=M. The four-velocity of O is given by

ua ¼ �a

k�k : (5)

These observers are the unique stationary ones that coin-
cide with the locally nonrotating observers of [13] or
ZAMOs of [11] as ‘ ! 0. As a result, the angular momen-
tum of these observers is not exactly zero, but oð‘Þ. Thus,
they are at rest with respect to the horizon: this makes them
the preferred observers for studying thermodynamical
issues from a quasilocal perspective.

Notice that the family of observers that we have intro-
duced here defines a two-sphere of stationary observers
around the horizon (in spacetime their history is repre-
sented by a three-dimensional world sheet). Thus, the
word ‘‘local’’ is here used in the sense that only the near
horizon geometry of the BH will play a role as it will
become clear below. In order to avoid confusion from
now on we use the term ‘‘quasilocal’’.

Standard arguments lead to the so-called first law of
BH mechanics that relates different nearby stationary BH
spacetimes of Einstein-Maxwell theory,

�M ¼ �

8�
�Aþ��J þ��Q; (6)

where M, J, and Q are respectively the total mass, angular
momentum, and charge of the spacetime, A is the horizon
area, � ¼ ��aAa is the horizon electric potential where
Aa is the Maxwell field produced by the electric charge Q
of the BH, and � is the surface gravity. Note that many of

these quantities are defined for an asymptotic observer or
have a global meaning—this is clear for M, J, and Q;
� can be interpreted as the difference in electrostatic
potential between the horizon and infinity,� is the angular
velocity of the horizon as seen from infinity, and � (if
extrapolated from the nonrotating case) is the acceleration
of the stationary observers as they approach the horizon as
seen from infinity.
The aim of this paper is to construct a quasilocal form of

the first law of black hole mechanics. For this it will be
crucial to describe physics from the viewpoint of our
family of observers O.

1. Thought experiment: Throwing a test particle

The first situation that we will consider involves the
process of absorption of a test particle by the BH. More
precisely, one throws a test particle of unit mass and charge
q from infinity to the horizon. The geometry is stationary
and axisymmetric as well as the electromagnetic field,
namelyL�gab ¼ Lcgab ¼ L�Aa ¼ LcAa ¼ 0. The par-

ticle satisfies the Lorentz force equation,

warawb ¼ qFbcw
c; (7)

with four-velocitywa. The conserved energy of the particle
is E � �wa�a � qAa�a while the conserved angular
momentum is L � wac a þ qAac a. As the particle gets
absorbed, the black hole settles down to a new state with
�M ¼ E, �J ¼ L, and �Q ¼ q. Equation (6) then implies

�

8�
�A ¼ E ��L��q: (8)

For our observers having four-velocity ua the local energy
of the particle is

Eloc ¼ �waua: (9)

Using (5), the definitions of E, L, and� � ��aAa we find

Eloc ¼ �wa�a þ�wac a

k�k ¼ E ��L� q�

k�k : (10)

Finally from (8)

Eloc ¼ ��

8�
�A; where �� � �

k�k : (11)

From the point of view of our quasilocal observers, the
horizon has absorbed a particle of energy Eloc. The change
in energy of the system E as seen byOmust be �E ¼ Eloc.
All this implies a quasilocal version of the first law,

�E ¼ ��

8�
�A: (12)

Direct calculations show that

�� � �

k�k ¼ 1

‘
þ oð‘Þ: (13)

In other words the local surface gravity measured by
the locally nonrotating stationary observers is universal,
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i.e., independent of the massM, angular momentum J, and
charge Q of the Kerr-Newman black hole (for a different
local definition of surface gravity see [14]). From (12) we
get the quasilocal notion of energy,

E ¼ A

8�‘
; (14)

as the above quantity [defined up to a constant and in the
approximation where oð‘Þ corrections are neglected] leads
to the quasilocal first law when varied. This provides a
natural quasilocal notion of horizon energy relevant for
thermodynamical considerations: a thermal analog of in-
ternal energy. Its physical interpretation is restricted to the
realm of small changes close to equilibrium. Equation (14)
provides a bookkeeping devise that accounts for the energy
exchanges with the BH horizon as seen by our quasilocal
observers at distance ‘ in a way that becomes exact when
‘ ! 0. This is the meaning of oð‘Þ. Our formula could in
principle be modified by the addition of an unknown
constant. However, as such constant plays no role in the
thermodynamical considerations or equilibrium statistical
mechanics, we have removed it from our definition. Far
from equilibrium our framework simply breaks down.

The idea is to associate the above energy and first law
to the horizon itself by taking our ‘ as small as possible
without being zero. An effective quantum gravity formu-
lation where thermodynamics makes sense suggests that ‘
should be of the order of the Planck scale [8] but this is not
really essential for the analysis presented here.

2. Refined thought experiment:
The field theoretical version

A stronger (and local) field theoretic version of
the previous arguments goes as follows: Let the matter
falling into the stationary BH (with bifurcate horizon) be
described by a small perturbation of the energy-momentum
tensor �Tab whose backreaction to the geometry will be
accounted for in the linearized approximation of Einstein’s
equations around the stationary black hole background.
The current Ja ¼ �Ta

b�
b is conserved, raJ

a ¼ 0.
Applying Gauss’s law to the spacetime region bounded
by the BH horizon H and the timelike world sheet of the
observers O (WO), we getZ

H
dVdS�Tab�

akb ¼
Z
WO

JbN
b; (15)

where Na is the inward normal of WO and k ¼ @V a null
geodesic normal on H , with V an affine parameter along
the generators of the horizon. The origin V ¼ 0 is chosen
to coincide with the bifurcation horizon, see Fig. 1. We
have also assumed that �Tab vanishes in the far past and far
future of the considered region. Using the fact that �a ¼
�Vka on H , the previous identity takes the form

�
Z
H

dVdSV�Tabk
akb ¼

Z
WO

k�k�Tabu
aNb: (16)

Notice that the integral on the right is closely related to the
energy flux associated to the observers, which is equal to
�E. Now, the Raychaudhuri equation in the linear approxi-
mation is

d�

dV
¼ �8��Tabk

akb; (17)

where � is the expansion of the null generators ka. Finally,
using the fact that k�k is constant up to first order on the
right-hand side of (16), we obtain

Z
H

dVdSV
d�

dV
¼ � 8�k�k

�
�E; (18)

where we have neglected terms of the form oð‘Þ� which
are higher order in our treatment. By an integration by parts
the integral on the left is equal to ��A.1

FIG. 1. Conformal diagram representing the perturbation of an
initially stationary black hole with a bifurcate horizon. The
dashed line represents the true BH horizon, the stationary
observers world sheet is denoted by W . The quantity Ain is
the area of the initially stationary background while Aout is the
final area of the BH horizon.

1Explicitly,

�
Z 1

V1

dV
Z

dSV
d�

dV
¼

Z 1

V1

dV
Z

dS�ðVÞ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{Aout�AðV1Þ

þ
Z

dSV1�ðV1Þ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Ain�AðV1Þ

¼ Aout � Ain ¼ �A; (19)

where in the last term we dropped the boundary contribution at
V ¼ 1 using that �ð1Þ ¼ 0. The Raychaudhuri equation
implies that the previous quantity is independent of V1 when it
is prior to the start of matter infall. The proof of the above
equations follows from this fact, the evaluation of (19) at
V1 ¼ 0, and the use of Að0Þ ¼ Ain (see Fig. 1).
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Finally, using �� � �=k�k we get the desired result,

�E ¼ ��

8�
�A: (20)

The previous local field theoretical argument will be
generalized to include IHs at the end of this paper.

B. Isolated horizons

Here we prove the validity of the quasilocal form of the
first law (20) in the more general framework of IHs.
Moreover, the first law so derived is dynamical in charac-
ter, i.e., changes in the area and energy of the system can
really be seen as the consequence of the absorption of
matter fields by the horizon along its history.

Isolated horizons are equipped with an equivalence class
of null normal [�] where equivalence is defined up to
constant scalings. The generators �a are geodesic and
define a notion of isolated horizon surface gravity �IH

through the equation r��a ¼ �IH�a. It is clear that �IH

is not defined in [�] because it gets rescaled when � is
rescaled. The near horizon geometry is described (in terms
of Bondi-like coordinates) by the metric [15],

gab ¼ 2dvðadrbÞ � 2ðr� r0Þ½2dvða!bÞ � �IHdvadvb�
þ qab þ o½ðr� r0Þ2�; (21)

where � ¼ @v is the extension to the vicinity of H of the
null generators of the IH through the flow of a natural null
vector na ¼ @ar [i.e., Lnð�Þ ¼ 0], qabn

a ¼ qab�
a ¼ 0,

and !a is a one form intrinsic to IHs with the important
property that !ð�ÞjH ¼ �IH. Also one has [16]

L�gabjH ¼ 0: (22)

Thus, � can be used to define the observersO as in (5). The
proper distance ‘ to the horizon from a point with coor-
dinate r along a curve normal both to � and qab—with
tangent vector Na ¼ @ar þ ð2�IHðr� r0ÞÞ�1@av—is given

by ‘ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr� r0Þ=�IH

p
, while � � � ¼ 2�IHðr� r0Þ.

Therefore,

�� ¼ �IH

k�k ¼ 1

‘
: (23)

Notice that �� is well defined in [�] in contrast with �IH. As
the form of the perturbed Raychaudhuri equation (17) is
the same for the generators of IH (as their expansion, shear,
and twist vanish by definition), the same arguments given
below Eq. (14) yield the quasilocal first law,

�E ¼ ��

8�
�A; (24)

where the energy notion E ¼ A
8�‘ , and we have used that

‘2 � A, provide the right quasilocal framework for the
statistical mechanics study of quantum IHs.
Summarizing, even though we have first justified the

quasilocal first law (24) starting from the analysis of the
first law for stationary spacetimes and its translation in
terms of the quasilocal observers O, the final analysis for
IHs implies that the result can be recovered entirely from
local considerations that know nothing about the global
structure. In this paper we are proposing to use this
remarkable fact in order to reverse the perspective, and
thus take the local definition of IHs with its null normals
[�], the quasilocal first law (24), the energy (14), and the
intrinsic notion of surface gravity (23) [both associated to
the quasilocal observers (5)] as the fundamental structure
behind BH thermodynamics and the statistical mechanical
treatments in the framework of loop quantum gravity [8].
Notice also that the quasilocal first law and the univer-

sality of �� implies the Gibbs relation E ¼ TS where
T ¼ ‘2p ��=ð2�Þ, and S ¼ A=4‘2p. This simple property of

usual thermodynamic systems is not realized by the quan-
tities taking part in the standard first law (6). This is an
extra bonus of our quasilocal description.
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