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We perform a QCD sum rule analysis for the scalar f0ð980Þ meson to investigate whether it can be

described as a pure bound state of K and �K mesons. Based on the QCD sum rule with the operators of up

to dimension 10 within the operator product expansion, we found that it is hard to treat the f0ð980Þ as a
simple K �K bound state, which implies that the f0ð980Þ scalar meson has more complicated structure being

mixed states of various configurations.

DOI: 10.1103/PhysRevD.87.117901 PACS numbers: 11.55.Hx, 12.38.Lg, 14.40.Be

The structure of the scalar meson nonet has been a long-
standing puzzle in hadron physics. It is now widely ac-
cepted that the simplest picture, where the scalar mesons
are described as orbital excitations of quark-antiquark
pairs, is not compatible with the experimental observations
on the decay modes and mass spectra [1]. This led to the
idea that these scalar mesons are cryptoexotic tetraquark
states [2], and there have been a lot of studies along this
direction. Depending on the details of the structure of the
tetraquark states, the scalar mesons are considered as
diquark-antidiquark bound states [3–8], two-meson mo-
lecular states [9–14], or hybrid states [15]. (See also
Ref. [16].)

Among the low-lying scalar mesons, the f0ð980Þ
attracts much interests since the seminal work of
Weinstein and Isgur, which investigated the f0ð980Þ as
a K �K molecular state [9]. In a recent work [13], for
example, the properties of the f0ð980Þ were reanalyzed
in a phenomenological Lagrangian approach assuming a
pure K �K bound state, and the calculated decay widths
for f0ð980Þ ! �� and f0ð980Þ ! �� were claimed to
be consistent with the available data. In a recent work
[14], however, the scalar and isoscalar meson reso-
nances are investigated in various channels of �� scat-
tering, which raised the possibility of the f0ð980Þ as a
pure �� bound state rejecting the pure K �K structure.
All these ambiguities show that the structure of scalar
mesons is nontrivial and more QCD-based approaches
are required for understanding the structure of scalar
mesons.

The QCD sum rule (QCDSR) approach is known to
be one of the ways to investigate the hadron properties
from QCD in a direct way [17]. This approach was
used to study the diquark picture of scalar mesons [6],
and it was recently shown by one of us that the
QCDSR does not support the picture of the f0ð980Þ
as a pure �� bound state [18]. In the present work,
we construct the QCDSR for the f0ð980Þ to test
whether it can be described as a pure K �K bound state.
To this end, we obtain the QCDSR up to dimension
d ¼ 10 operators within the operator product expansion
(OPE).
The wave function of the f0ð980Þ meson as a pure K �K

bound state is written generally as

jf0ð980Þi ¼ �jKþK�i þ �jK0 �K0i: (1)

With the following K meson interpolating currents:

JKþ ¼ i �s�5u; JK� ¼ i �u�5s;

JK0 ¼ i �s�5d; J �K0 ¼ i �d�5s;
(2)

the interpolating current for the f0ð980Þ in QCDSR ap-
proach becomes

Jf0 ¼ �JKþJK� þ �JK0J �K0

¼ �½�ð �s�5uÞð �u�5sÞ þ �ð�s�5dÞð �d�5sÞ�: (3)

Then the vacuum expectation value of the time ordered
product of the currents reads
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h0jTJf0ðxÞJyf0ð0Þj0i ¼ h0jTf�2½ �sðxÞ�5uðxÞ�½ �uðxÞ�5sðxÞ�½�sð0Þ�5uð0Þ�½ �uð0Þ�5sð0Þ�
þ ��½�sðxÞ�5uðxÞ�½ �uðxÞ�5sðxÞ�½�sð0Þ�5dð0Þ�½ �dð0Þ�5sð0Þ�
þ ��½�sðxÞ�5dðxÞ�½ �dðxÞ�5sðxÞ�½�sð0Þ�5uð0Þ�½ �uð0Þ�5sð0Þ�
þ �2½ �sðxÞ�5dðxÞ�½ �dðxÞ�5sðxÞ�½ �sð0Þ�5dð0Þ�½ �dð0Þ�5sð0Þ�gj0i: (4)

Since the disconnected terms do not contribute to the
QCDSR, here we present only the connected terms. Then
the first term can be transformed as

h0jT½�sðxÞ�5uðxÞ�½ �uðxÞ�5sðxÞ�½�sð0Þ�5uð0Þ�½ �uð0Þ�5sð0Þ�j0i
¼Tr½Sba0s ðx;0Þ�5S

a0b
u ð0;xÞ�5�Tr½Sb0as ð0;xÞ�5S

ab0
u ðx;0Þ�5�;

(5)

in terms of the quark propagator Sabq ðx; yÞ with the color
indexes a, b. One can easily verify that, in Eq. (4),
replacing the quark flavor u in the first two terms by d

yields the last two terms. Since we are working in the
chiral limit mu ¼ md ¼ 0, the first two terms and the
last two terms give the same contribution. Furthermore,
the second and the third terms have disconnected dia-
grams only, which leads to the overall factor �2 þ �2 in
Eq. (4).

The correlator �ðq2Þ ¼ i
R
d4xeiq�xh0jTJf0ðxÞJyf0ð0Þj0i

can then be calculated within the OPE up to OðmsÞ and
Oðg2cÞ keeping the operators of dimension up to 10. By
making use of the quark propagator of Ref. [19], the
imaginary part of the correlator is obtained as

1
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FIG. 1. Diagrammatic representations of the terms in Eq. (6). The upper two lines correspond to the s quark and the lower two lines
to the u quark. The symbol � denotes the strange quark mass ms. Here only the nonvanishing diagrams are shown.
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where gc is the strong coupling constant and c ðnÞ ¼
1þ 1=2þ � � � þ 1=ðn� 1Þ � �EM with the Euler-
Mascheroni constant �EM. Here, we have used the
factorization hypothesis in calculating the condensates
of the operators of dimension higher than 6. The dia-
grammatic representation of each term is shown in
Fig. 1.

Decomposing the spectral sum, which is generated from
the dispersion relation of the correlator, into a narrow
single resonance and the continuum, and applying the

hadron-quark duality hypothesis with the Borel transform
as well, we have the following sum rule:

1

�

Z s2
0

0
ds2e�s2=M2

Im�OPEðs2Þ ¼ 2f2f0m
8
f0
e
�m2

f0
=M2

; (7)

with the convention h0jJf0ð0Þjf0ð980Þi ¼
ffiffiffi
2

p
ff0m

4
f0
. Here,

s0 and M denote the threshold for the continuum and the
Borel mass, respectively. The imaginary part of the corre-
lator in Eq. (6) gives the explicit QCDSR for the f0ð980Þ as

2f2f0m
8
f0
e
�m2

f0
=M2 ¼ ð�2 þ �2Þ
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�
; (8)

where we have used h �uui ¼ h �ddi in the chiral limit and

EnðM2Þ ¼ 1

�ðnþ 1ÞM2nþ2

Z s2
0

0
ds2e�s2=M2ðs2Þn;

�WnðM2Þ ¼ 1

�ðnþ 1ÞM2nþ2

Z s2
0

0
ds2e�s2=M2ðs2Þn

� f�2 ln ðs2=�2Þ þ ln�þ c ðnþ 1Þ
þ c ðnþ 2Þ þ 2�EMg;

(9)

with WnðM2Þ ¼ �WnðM2Þ � 2
3EnðM2Þ:

For numerical analysis, we use the standard values and
relations for ms and the condensates as

h �uui ¼ �ð0:25Þ3 GeV3; h�ssi ¼ fsh �uui;
hg2cG2i ¼ 0:5 GeV4; ms ¼ 0:15 GeV;

igch �u� �Gui ¼ 0:8 GeV2h �uui;
igch �s� �Gsi ¼ fsigch �u� �Gui; (10)

with fs ¼ 0:8 and � ¼ 0:5 GeV. Since the QCDSR is
proportional to �2 þ �2, the results are independent of
the choice on � and �.
Defining the right-hand side of the sum rule in Eq. (8) by

LOPEðMÞ, we analyze its behavior as a function of the Borel
massM. Shown in Fig. 2 is LOPEðMÞ for the threshold s0 ¼
1:2 and 1.5 GeV. Here, the dashed, dot-dashed, and solid
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FIG. 2 (color online). LOPE as a function of M for (a) s0 ¼ 1:2 GeV and (b) s0 ¼ 1:5 GeV. Dashed and dot-dashed lines are LOPE

obtained with the operators of up to dimensions 6 and 8, respectively. The solid lines show the full calculation of up to dimension 10.
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lines correspond to LOPEðMÞ with the operators of d � 6,
d � 8, and d � 10, respectively. This shows that the con-
tribution from the operators of dimension 8 to the QCDSR
is large and negative for both cases. For s0 ¼ 1:2 GeV, in
contradiction with a positive definite value of the left-hand
side of Eq. (8), the large negative contribution from the
operators of dimension 8 makes the full LOPEðMÞ have a
definite negative value in the physical Borel region less
than the threshold. This is similar to the result found in
Ref. [20], where the QCDSR for the light scalar meson
nonet was analyzed by assuming the scalar diquark-
antidiquark structure. For s0 ¼ 1:5 GeV, the contributions
from the operators of dimensions 6 and 10 are large enough
to overcome the negative contribution from the dimension
8 operators in the Borel region M � 1 GeV. However, as
shown in Fig. 3, it is difficult to find the Borel window,
where the fitted mass does not have strong dependence on
M. Furthermore, the fact that the fitted mass is larger than
the value of the threshold is in contradiction with the basic
concept of the QCDSR. In addition, the ratio of the pole to

continuum contributions is found to be very small
(� 0:03), which violates one of the main requirements to
have a reliable QCDSR as discussed in Ref. [21].
We have also tested the sum rule with s0 > 1:5 GeV to

find that the Borel region of positive LOPEðMÞ becomes
wider. However, the fitted mass is very high (about
1.8 GeV for s0 ¼ 2:0 GeV, for example) compared to
the f0ð980Þ mass. These observations lead us to conclude
that it is hard to consider the f0ð980Þ as a pure K �K bound
state. We also point out that the possible strong devia-
tions of the values of the condensates of dimensions 6
and 8 from the factorization hypothesis in the level
presented in Ref. [22] does not change our main
conclusion.
In summary, we have constructed and analyzed the

QCDSR within the OPE with the operators of d � 10 by
assuming the pure K �K structure for the f0ð980Þ. Our
analyses show that there is no value of the threshold
which guarantees the positivity of LOPE and weak de-
pendency of the fitted mass for the f0ð980Þ on the Borel
mass simultaneously. This leads to the conclusion that
the f0ð980Þ has a very complicated structure other than a
pure K �K state. Therefore, it would be interesting to
investigate an admixture of four quark configurations
and two quark configuration for the internal structure
of the f0ð980Þ.
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