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We analyze the geometric phase in the neutrino oscillation phenomenon, which follows the pion decay

�þ ! �þ þ ��. Its value � is consistent with the present-day global analysis of the Standard Model

neutrino oscillation parameters, accounting for the nonzero value of �13. The impact of the CP violating

phase �, the neutrino’s nature, and the new physics is discussed.
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I. INTRODUCTION

The aim of this brief paper is to discuss the idea that in
measurement subtleties of the neutrino oscillation phe-
nomenon, geometrical properties reflected in the geometric
phase of the oscillating flavor neutrino are important. In
Ref. [1] it was proposed that the production and detection
of the neutrino shall be treated as the split-beam experi-
ment in the energy space. In the present paper, we consider
the muon neutrino which is produced in the decay of pion
to muon and the Dirac neutrino, namely �þ ! �þ þ ��

[2]. The flavor neutrino state j��i is a superposition of the

stationary states j�ii� � jp; �; ii of the definite masses mi,
i ¼ 1, 2, 3, helicities � ¼ �1 or þ1, and four-momentum
p. When the new physics (NP) interactions are included,
this superposition composes the mixed state [3,4]. Thus,
the flavor neutrino, here ��, represents the beam of three

massive states, which split at the moment of production of
the � ¼ �-flavor superposition, propagate, and finally at
the distance L, interfere in the detector in the �-flavor
interference pattern. This interference experiment for the
neutrino proposed in [1] and discussed in [1,5] in two
flavor neutrino cases, allows us to test the dependence of
the type [6] of the Aharonov-Anandan geometric phase
(GP) [7] on the particular field theory model to which this
paper is devoted.

The global analysis of neutrino oscillation parameters
[8] shows the discrepancy in the data for the atmospheric
neutrino mixing angle �23. For the normal neutrino mass
ordering (and we will use this one), the profile of the �	2

test statistics has two almost equally deep minima—the
‘‘local minimum’’ (lm) for the solar plus reactor long-
baseline and accelerator long-baseline neutrino experi-
ments, with new data from the �� and ��� channels

included, and the ‘‘global minimum’’ (gm), which includes
data from atmospheric neutrinos, too. The profile is practi-
cally symmetric and the preference (if any, see [9]) of gm
(with sin 2�23 ¼ 0:427) over lm (with sin 2�23 ¼ 0:613) is
very weak as the difference of �	2 in these minima is
equal to 0.02 [8]. The 2
 range (0.38, 0.66) covers both of
them. The experimental reason is that �23 strongly depends
on the CP violating phase � [9], whose 1
 range is h0; 2�Þ
[8]. For further discussion of this problem, see [10,11].

It will appear that the mean sin 2�23 � 0:517 is the robust
one. The central values of the other oscillation parameters
are [8] sin 2�12 ¼ 0:320, sin 2�13 ¼ 0:0246, � ¼ 0:80�,
�m2

21 ¼ 7:6210�5 eV2, and �m2
31 ¼ 2:5510�3 eV2.

A. Muon neutrino density matrix

From the �þ ! �þ þ �� decay experiments [2], we

know that the fraction of the right-handed N�þ1
to the

left-handed N��1
neutrinos fulfils the constraint [12,13]

N�þ1
=N��1

< 0:002: (1)

Let us assume that the pion decays effectively both in the
left (L) and right (R) chiral charge current (CC) interac-
tions [4] via the exchange of the Standard Model (�SM)W
boson only. Then, at theW-boson energy scale, the R and L
chiral pion decay constants [14] are equal [15]. Moreover,
the pseudoscalar correction to the pion hadronic matrix
element can be neglected due to its smallness [16].

Then the invariant amplitudes A
��;��

i ðpÞ in the decay
�þ ! �þ þ �i;� are related as follows [2,4],

jA�þ1;þ1
i ðpÞj2 ¼ jA��1;�1

i ðpÞj2 j"Rj
2jUR

�ij2
j"Lj2jUL

�ij2
: (2)

Here, UL
�i and UR

�i are the L and R chiral neutrino mixing
matrices, which enter into the CC Lagrangian in the prod-
ucts with the coupling constants "L and "R, respectively
[4]. The NP values of "L and "R can deviate slightly from
the �SM values 1 and 0, respectively. However, the Fermi
constant constraint "4L þ "4R ¼ 1 should hold.
Under the above conditions, in the process of neutrino

production (P) the nonzero neutrino density matrix ele-
ments in the mass-helicity basis j�ii� and in the center-of-
mass (CM) frame are as follows [3,4]:

%P�i;i0
�1;�1 ¼

j"Lj2UL�
�iU

L
�i0

j"Rj2þj"Lj2
; %P�i;i0

þ1;þ1 ¼
j"Rj2UR�

�iU
R
�i0

j"Rj2þj"Lj2
; (3)

constituting the muon neutrino 6� 6-dimensional block

diagonal density matrix �P� ¼ diagð%P�
�1;�1; %

P�
þ1;þ1Þ with

two 3� 3 matrices given in (3). Here we choose
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UR
�i ¼ UL

�i ¼ U�i, whereU is the Maki-Nakagawa-Sakata
neutrino mixing matrix [17], as the full statistical analysis
of this hypothesis is beyond the data accessible in the
present-day experiments. Using (1) we obtain the bound
on the ratio j"R="Lj< 0:0447. It constrains the density

matrix %P�i;i0
þ1;þ1 of the initial neutrino. Its evolution and the

effective Hamiltonian during the neutrino propagation are
described in the next section. Next, for the neutrino energy
E� > 100 MeV, the neutrino is in practice the relativistic
particle. hence the effect of the helicity Wigner rotation is
negligible [3] and the result for the density matrix in the
laboratory (L) frame is %P

Lð ~pLÞ ¼ %Pð ~pÞ. Finally, only the
neutrino which is produced in the L frame in the forward
direction along the z axis reaches the detector and we
choose this axis as the quantization one.

II. EVOLUTION OF THE DENISTY MATRIX

Under the requirement of the nondissipative homoge-
neous medium, the Liouville–von Neumann equation
governs the density matrix evolution. Thus, in the ultra-
relativistic case, when the distance and the propagation
time approach the relation z ¼ t, the evolution rule for the
neutrino density matrix is as follows,

��ðt ¼ 0Þ ! ��ðtÞ ¼ e�iH t�P�ðt ¼ 0ÞeiH t; (4)

where �P� is an initial density matrix (3) and H is the
effective Hamiltonian.

With three massive and two helicity neutrino states, the
effective Hamiltonian H has the 6� 6-dimensional rep-
resentation. In the case of the axial-vector interactions
only, the effective Hamiltonian H can be considered as
block diagonal with two 3� 3 matrices,

H ¼ Mþ diagðH��;HþþÞ: (5)

Here M ¼ diagðE0
1; E

0
2; E

0
3; E

0
1; E

0
2; E

0
3Þ with E0

i ¼
E� þm2

i =2E� (i ¼ 1, 2, 3) the mass term, where E� is
the energy for the massless neutrino [2]. The interaction
Hamiltonians for the coherent Dirac neutrino scattering
inside unpolarized matter read [2,4,18]

ðH��Þij ¼
ffiffiffi
2

p
GFNej"Lj2UL�

ei U
L
ej

ðHþþÞij ¼
ffiffiffi
2

p
GF

�
Nej"Rj2UR�

ei U
R
ej �

�

2
Nn"

N�
R �R

ij

�
;

(6)

where Ne and Nn stand for the number of background
electrons (e) and neutrons (n) per unit volume, respec-
tively, and % ’ 1. Small NP deviations of the neutral
coupling constant for background particles are also ne-
glected. We choose the right chiral neutral mixing matrix
in the mass basis equal to �R ¼ 3 diagðw1; w2; w3Þ with
w1;2;3 ¼ me;�;�=ðme þm� þm�Þ, where m�, � ¼ e, �, �

is the mass of electron, muon, and tau lepton, respectively.
The bound on the neutrino right chiral neutral current (NC)
coupling constant equal to j"N�

R j ¼ 1 can be obtained from

the analysis of the CPT violation in the neutrino oscillation
survival events [19]. In the analysis we assume that the
relevant �SM and NP coupling constants are real.

III. ANALYSIS OF GEOMETRIC PHASE

Various types of geometric phases have been studied for
a long time in physical systems ranging from classical
mechanics to high-energy physics [20]. There are also
examples of exploiting the notion of geometric phases in
neutrino physics. Let us mention a few of them. In [21], it
was shown that in the neutrino oscillations analysis, carried
out under adiabatic conditions [2], the nonzero Berry phase
[22] appears in the �SM if a background consists of at least
two varying densities. The case of the three-level neutrino
systems was considered [23]. In [1] it was noted that the
Pancharatnam phase [24], which defines the relative phases
between states in the Hilbert space, leads in two-flavor
neutrino oscillation to the topological phase of the inter-
ference term, which is equal to zero or � for the survival
and appearance probability, respectively.
In the present case, the neutrino �� is produced in the

�þ decay and propagates in the ordinary matter of the crust
(with the density � ¼ 2:6 g=cm3). It reaches the detector
after one oscillation period, i.e., at the maximum of the
survival transition rate Pð�� ! ��Þ. If the detector lies at
the distance L ¼ 800 km which is the baseline for the
NO�A–Low-Z Calorimeter experiment [2], it happens
for E� ¼ 0:803 GeV (what matters is the ratio L=E�).
For the central value of the CP violating phase � ¼
0:80� of the U matrix, we obtain Pð�� ! ��Þ � 0:992

(gm) or Pð�� ! ��Þ � 0:991 (lm). For perfect cyclicity,

Pð�� ! ��Þ ¼ 1. Hence the evolution is not exactly

cyclic. Another measure of the deviation from perfect
cyclicity is the trace distance between initial state at
t ¼ 0 and the state at time t ¼ L [25],

D ¼ 1

2
k ��ðt ¼ 0Þ � ��ðt ¼ LÞ k; (7)

where the norm k % k¼ Tr
ffiffiffiffiffiffiffiffiffi
%y%

q
. For perfectly cyclic

evolution, D ¼ 0. The calculations show that depending
on � and at the central values of other parameters [8], the
trace distance D 2 ð0:012; 0:092Þ (gm) with the minimum
for � ¼ 0 and maximum for � ¼ � (the cases when CP is
not violated). For � ¼ 0:80 the minimal value D ¼ 0:089
(gm) is at L ¼ 800 km, which is the period of the oscil-
lation. The same is true for the ‘‘local minimum’’ [8,9].
The deviation from the perfect cyclicity is due to the fact
that the neutrino flavor state is a three-state system and is
not an eigenvector of the effective Hamiltonian governing
its propagation.
In this paper, we exploit the kinematic approach to the

geometric phase [6] which can be applied to arbitary (also
nonunitary and/or noncyclic) quantum evolution. It pos-
sesses the following fundamental features [6]: it is gauge
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invariant, purification independent, and it reduces to well
establish results in the limit of unitary evolution. This
approach has already been utilized in [5] for the two-flavor
neutrino system both for nondissipative and dissipative
cases.

In order to analyze the GP, it is convenient to present the
density matrix (4) in the spectral-decomposition form

��ðtÞ ¼ X6
i¼1

��
i ðtÞjw�

i ðtÞihw�
i ðtÞj; (8)

where ��
i ðtÞ and jw�

i ðtÞi are the eigenvalues and eigenvec-
tors of the matrix ��ðtÞ. Then the geometric phase��ðtÞ at
time t associated with such an evolution is defined by the
following relation [6]:

��ðtÞ ¼ Arg

�X6
d¼1

½��
d ð0Þ��

d ðtÞ�1=2hw�
d ð0Þjw�

d ðtÞi

� exp

�
�

Z t

0
hw�

d ðsÞj _w�
d ðsÞids

��
; (9)

where Arg½Z� denotes argument of the complex number Z,
hw�

d jw�
d i is a scalar product, and the dot indicates the

derivative with respect to time s. It is natural to analyze
the GP at time t ¼ L, which corresponds to the period of
neutrino oscillations. Below, we study the GP at this time
and use the notation � � ��ðt ¼ LÞ.

In [1] it was assumed that neutrino oscillation realizes a
kind of interference experiment, and under this assumption
it was proven that in the two-flavor case, the topological
phase of the interference term is reflected in the orthogo-
nality of the mixing matrix. In the present paper, it is
suggested that because this interference experiment re-
flects the orthogonality of the neutrino mixing matrix, the
GP takes the topological value � (the correction from the
CP violating phase � will appear very tiny). This value of
GP influences self-consistently the parameters of the mix-
ing matrix.

A. Geometric phase in �SM

Because of the mentioned discrepancy in the data, the
analysis of the GP given by Eq. (9) is for �SM performed
for lm and gm [8]. The results are presented in Fig. 1. The
GP for the central values of lm and gm are equal to �lm ¼
1:1917� and �gm ¼ 0:8301�, respectively. The bottom
line is plotted for sin 2�23 ¼ 0:461 for þ1
 bound of lm
range (0.400, 0.461) and the upper one for sin 2�23 ¼ 0:573
for �1
 bound of gm range (0.573, 0.635) [8]. We notice
that (with other oscillation parameters fixed) � changes
linearly as the function of sin 2�13, where �13 is the third
mixing angle of U [2]. Two examples of the GP solution
with � ¼ � are pointed out, the first one for sin 2�23 ¼
0:517 (s1) and the second one for sin 2�23 ¼ 0:514 (s2).
The former value, sin 2�23 ¼ 0:517, is the arithmetic mean

of the þ1
 bound 0.461 for lm and �1
 bound 0.573 for
gm. With this value, the condition of the geometric value
� ¼ � for the GP gives sin 2�13 � 0:029, which lies in the
2
 range (0.019, 0.030) for sin 2�13 [8]. In the second
example the current central value sin 2�13 ¼ 0:0246 is
chosen. Now, the ‘‘GP solution’’ for � ¼ � is sin 2�23 ¼
0:514 (s2) [11]. The value � of the GP arises as the result
of the interference of the neutrino mass states [1] at the
point of the flavor neutrino detection at the first period.

lm

(gm)

FIG. 1 (color online). The geometric phase� � ��ðt ¼ LÞ vs
sin 2�13 plotted for the value of sin 2�23 ¼ 0:461 (þ1
 bound
lm) and sin 2�23 ¼ 0:573 (�1
 bound gm) [8]. For any sin 2�13
the whole area on the figure is covered by the 2
 range for
sin 2�23. The GP, 1.1917, and 0.8301, for the central values of gm
and lm, respectively, are signified. Two examples of the GP
solution are pointed out, sin 2�23 ¼ 0:517 (s1) and sin 2�23 ¼
0:514 (s2). The �2
 limits, 0.019 and 0.030, for sin 2�13 are
signified by the short vertical lines.

FIG. 2 (color online). The geometric phase difference �� ¼
�NP ���SM as a function of the NP coupling constant "R. Each
curve corresponds to one � and one NP value of "N�

R . As the

reference level the �SM s2 solution (see Fig. 1) is taken for
which ��SM ¼ � (up to the influence of � ¼ 0:80� equal to
�4:0910�4�).
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The GP changes mainly with sin 2�23 and sin 2�13 (see
Fig. 1), whereas the impact of the other �SM oscillation
parameters is significantly weaker. That is, the change of
�2m31 � m2

3 �m2
1, �2m21 � m2

2 �m2
1 and sin 2�12 in

their 2
 ranges [8] causes the change of �=� approxi-
mately equal to 3� 10�4, 10�5, and 3� 10�6, respec-
tively. The small dependence on the CP-violating phase
� is presented in Fig. 2. Its impact is of the order of 10�4.
The numerical calculations show that in �SM with the
period L ¼ 800 km the GP takes the topological values
�� ¼ n� (mod 2�), n 2 N (up to the influence of the
phase �).

Interestingly, for the old �SM global analysis [26] with
the central value sin 2�13 ¼ 0:010 (but when the non-zero
value of �13 was still disputed), the GP analysis had
suggested that the condition � ¼ � requires sin 2�13 to
be enlarged approximately to 0.0175, which value was then
inside �1
 limits, or alternatively that sin 2�23 shall be
diminished from 0.51 to 0.506 [26].

B. Geometric phase in new physics

The bounds on the CC and NC right-chiral coupling
constants "R and "N�

R are given in the Introduction. In

Fig. 2, the difference �� ¼ �NP ���SM between NP
and �SM values of � as the function of "R is depicted.
Each curve corresponds to the different value of the phase
�. The upper impact of "R on �=� is of 10�6 order. Even
weaker is the influence of "N�

R . Yet, because it enters

linearly into the Hamiltonian (6) [18], it therefore depends
on the "N�

R sign, too.

Finally, let us comment on the Majorana neutrino case.
In the case of �SM, there is no difference between GP for
the Dirac and Majorna neutrinos [5]. In the case of NP, the
difference �M�D� ¼ �M ��D of the geometric phases
�M and �D for the Majorana neutrino and Dirac neutrino
is depicted in Fig. 3 as a function of the NP couplings [18].
The impact of "N�

R and "R on �=� is of order 10�4 and

10�5–10�6, respectively.

IV. CONCLUSIONS

With this brief paper we have shown that selected prop-
erties of the nonadiabatic noncyclic flavor neutrino oscil-
lation can be analyzed in terms of the type of the
Aharonov-Anandan GP introduced in [6]. At first, using
the trace distance D, it has been checked that in one
oscillation period, the muon neutrino state performs the
evolution along the path in its Hilbert space, which shows
some small departure from cyclicity. Hence the solid angle
encircled in this space is close to 2� (similar to the spin
particle moving in the mesoscopic ring [27]). This moti-
vates the use of the kinematic approach to the geometric
phase presented in [6], which attaches the geometric phase
to the Pancharatnam relative one. As mentioned above, the
described pattern of the interference in the energy space of
the massive neutrino states is highly possible [1,5]. This in
[1] enables us to use the Pancharatnam relative phase for
the explanation of the orthogonality of the two-flavor
mixing matrix. In [5], the behavior of the GP attached to
it was analyzed. In this paper it is pointed out that the
present-day global analysis of the oscillation parameters
[8] is consistent with the GP value equal to �, which is the
reflection of both the unitarity of the mixing matrix and the
values of its experimentally estimated parameters. The GP
is sensitive to changes of sin 2�23 and sin 2�13 (see Fig. 1),
currently the more disputed parameters [8], whereas the
influence of the other �SM oscillation parameters is ap-
proximately of the relative order 10�6–10�4 in their 2

ranges. The NP corrections connected with the right-chiral
CC and NC currents are at most of the relative order of
10�6, being at present far beyond the experimental verifi-
cation. Recent progress in entirely novel experimental
techniques makes the verification of presented findings
more realistic in the future. In the long term, our research
may provide new tools for analysis of neutrino physics.
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FIG. 3 (color online). Comparison of geometric phases for the
Majorana and Dirac NP neutrinos. The geometric phase differ-
ence �M�D� ¼ �M ��D is depicted as a function of the NP
coupling constant "R. Each curve corresponds to one value of "

N�
R .
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