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We advocate the use of Daubechies wavelets as a basis for treating a variety of problems in

quantum field theory. This basis has both natural large-volume and short-distance cutoffs, has natural

partitions of unity, and the basis functions are all related to the fixed point of a linear renormalization

group equation.
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I. INTRODUCTION

Daubechies wavelets and their associated scaling func-
tions are functions [1–6] that are used in signal processing
and data compression. The functions have useful properties
that have advantages for applications to problems in quan-
tum field theory. Daubechies wavelets have been used in
some field-theoretic applications [7–10] and different types
of wavelets have been used in more formal treatments of
field theory [11–15]; however, many useful properties of
wavelets do not appear to have been exploited. Some of the
properties of Daubechies wavelets that are potentially
useful for field theory applications are

(1) The functions are an orthonormal basis for the
square integrable functions on the line. This means
that one can formally express fields exactly as infi-
nite linear combinations of discrete field operators
and coefficient functions. This can be used to study
the nature of corrections to truncated theories or to
compute the singular coefficients in operator prod-
uct expansions.

(2) The basis functions have compact support. This
means that discrete fields associated with basis func-
tions with spacelike separated support commute.
The maximum size of the support of the basis func-
tions can be controlled. There are also infinite num-
bers of basis functions with arbitrarily small support
so it is possible to use these operators to study
locality and how locality is violated in truncations.
In these representations local fields can be replaced
by a local algebra of well-defined operators.

(3) The Daubechies basis functions are related to solu-
tions of a linear renormalization group equation. It is
a natural basis to formulate renormalization group
transformations. The basis allows for a separation
of scales; a fine resolution truncated Lagrangian or
Hamiltonian can be exactly expressed in terms
of a coarse resolution truncated Lagrangian or
Hamiltonian of the same form, plus some additional
operators that fill in the missing fine-scale physics.

Eliminating the fine-scale operators gives a new
Hamiltonian, involving the same masses and cou-
pling constants, in the coarse-scale degrees of
freedom that include the effects of the eliminated
fine-scale degree of freedom. This can be repeated
to include the effects of eliminated degrees of free-
dom on arbitrarily small scales.

(4) The basis is generated from a single function, which
is the solution of the linear renormalization group
equation, using discrete unitary translations and
discrete unitary scale transformations. While the
basis functions have a fractal structure, overlap in-
tegrals of products of any number of the basis
functions and low-order derivatives can be com-
puted analytically using only the renormalization
group equation and a scale fixing condition. In
addition, integrals of products of basis functions
and polynomials can also be computed exactly using
the renormalization group equations.

(5) Subsets of the basis functions contain compact,
locally finite partitions of unity. This property can
be used to investigate symmetries like Poincaré in-
variance. The partitions of unity can be used to make
local realizations of the Lie algebra. The generators
can be expressed exactly as sums of localized opera-
tors obtained by integrating the operator densities
multiplied by the functions in the partition of unity.

(6) The basis functions have a limited amount of
smoothness, and can locally pointwise represent
low-degree polynomials. This means that overlaps
of low-order derivatives of field operators can be
computed directly, rather than by using a finite-
difference approximation.

(7) Because the basis functions have compact support
and there are basis functions with arbitrarily small
support, the basis has both natural short-distance
and large-volume cutoffs.

The purpose of this paper is to discuss some problems in
field theory where wavelets might have advantages as well
as some of the specialized methods for dealing with fractal
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basis functions. In Sec. II we discuss the construction of the
wavelet basis and introduce the renormalization group
equation for the Daubechies scaling function. In Sec. III
we introduce our free-field conventions. In Sec. IV we
introduce the wavelet representation of free fields. This
representation is also relevant in interacting theories, when
the natural volume and resolution truncations in the wave-
let representation are used to make finite number of degree-
of-freedom truncations of the interacting theory. In Sec. V
we discuss the scaling properties of the wavelet fields.
In Sec. VI we discuss Poincaré invariance and partitions
of unity. In Sec. VII we discuss the formulation of renor-
malization group equations in the wavelet basis. In
Sec. VIII we discuss gauge transformations in the wavelet
representation. In the Appendix we compute the overlap
coefficients that couple different scales in the free-field
Hamiltonian.

II. BASIS CONSTRUCTION

The Daubechies scaling function is the solution of a
linear renormalization group equation subject to a scale-
fixing normalization condition. All basis functions are
generated from the scaling function using discrete trans-
lations, dyadic scale transformations, and sums.

The discrete translation operator, T, and the dyadic
scale transformation, D, are unitary operators on L2ðRÞ
defined by

ðDfÞðxÞ ¼ ffiffiffi
2

p
fð2xÞ ðTfÞðxÞ ¼ fðx� 1Þ: (2.1)

The operator D decreases the support of a function with
compact support by a factor of 2 in a manner that preserves
the L2ðRÞ norm. The scaling function, sðxÞ, is the solution
of the linear renormalization group equation,

sðxÞ ¼ X2K�1

n¼0

hnDTnsðxÞ; (2.2)

called the scaling equation. Equation (2.2) states that the
scaling function is a linear combination of 2K-translated
copies of itself on a scale smaller by a factor of 2. Since this
is a homogeneous equation for sðxÞ, we are free to assign
the normalization. It is fixed by the scale-fixing conditionZ

sðxÞdx ¼ 1: (2.3)

Equations (2.2) and (2.3) define the scaling function. The
hn are real coefficients that are characteristic of the type of
wavelet. The coefficients for some of the Daubechies
scaling functions are given in Table I.

Given the solution of (2.2) and (2.3), scale 1=2k scaling
functions are defined by applying n unit translations fol-
lowed by k dyadic scale transformations to the original
scaling function,

sknðxÞ :¼ DkTnsðxÞ: (2.4)

Linear combinations of these functions with square-
summable coefficients span a subspace H k of L2ðRÞ,
which we call the resolution 1=2k subspace. The scaling
equation implies the relation

H kþ1 � H k (2.5)

and more generally

H kþm � H k (2.6)

for m> 0. This means that the lower-resolution spaces are
linear subspaces of the higher-resolution spaces.
The mother wavelet, wðxÞ, is defined as the following

linear combination of the s1nðxÞ scaling functions:

wðxÞ ¼ X2K�1

n¼0

gnDTnsðxÞ ¼ X2K�1

n¼0

gns
1
nðxÞ (2.7)

where the coefficients gn are related to the coefficients hn
by reversing the order and alternating the signs

gn ¼ ð�Þnh2K�1�n: (2.8)

Plots of the DaubechiesK ¼ 3 scaling function and mother
wavelet are given in Figs. 1 and 2. Scale 1=2k wavelets,
wk

nðxÞ, are constructed by applying translations and dyadic
scale transformations to the mother wavelet

TABLE I. Daubechies hl coefficients.

hn K ¼ 1 K ¼ 2 K ¼ 3

h0 1=
ffiffiffi
2

p ð1þ ffiffiffi
3

p Þ=4 ffiffiffi
2

p
ð1þ ffiffiffiffiffiffi

10
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h1 1=
ffiffiffi
2

p ð3þ ffiffiffi
3

p Þ=4 ffiffiffi
2

p
ð5þ ffiffiffiffiffiffi

10
p þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h2 0 ð3� ffiffiffi
3

p Þ=4 ffiffiffi
2

p
ð10� 2

ffiffiffiffiffiffi
10

p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h3 0 ð1� ffiffiffi
3

p Þ=4 ffiffiffi
2

p
ð10� 2

ffiffiffiffiffiffi
10

p � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h4 0 0 ð5þ ffiffiffiffiffiffi
10

p � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h5 0 0 ð1þ ffiffiffiffiffiffi
10

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p
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FIG. 1. Daubechies K ¼ 3 scaling function.
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wk
nðxÞ ¼ DkTnwðxÞ: (2.9)

The scale 1=2k wavelets are designed to span the orthogo-
nal complement, W k, of H k in H kþ1,

H kþ1 ¼ H k �W k: (2.10)

The coefficients hl are chosen so the translations of the
scaling function and mother wavelet are orthonormal and
finite linear combinations of translations of the scaling
function can be used to make local pointwise representa-
tions of polynomials of degree K � 1.

Continuing the decomposition (2.10) inductively leads
to the following orthogonal direct sum decomposition of
the Hilbert space of square integrable functions on the line:

L2ðRÞ ¼ H k �W k �W kþ1 � � � � : (2.11)

This gives a decomposition of the Hilbert space into or-
thogonal subspaces with successively finer resolutions.
Specifically, the basis for H k can be used to represent
features down to scale 1=2k,W k represents features down
to scale 1=2kþ1 that cannot be represented on scale 1=2k,
W kþ1 represents features down to scale 1=2kþ2 that can-
not be represented on scale 1=2kþ1, etc. Smearing local
fields with these basis functions gives discrete fields that
are sensitive to average information on different scales.

The coefficients hn, which characterize the Daubechies
K-wavelets, are solutions of the system of equations

X2K�1

n¼0

hn ¼ ffiffiffi
2

p
(2.12)

X2K�1

n¼0

hnhn�2m ¼ �m0 (2.13)

X2K�1

n¼0

nmgn ¼ X2K�1

n¼0

nmð�1Þnh2K�1�n ¼ 0 m<K: (2.14)

The first equation is a necessary condition for the scaling
equation to have a solution; it can be derived by taking the
Fourier transform of both sides of the scaling equation.
The second equation ensures that integer translations of the
scaling function are orthonormal. The third equation en-
sures that linear combinations of integer translations
of the wavelet functions are orthogonal to degree K � 1
polynomials.
This last condition, along with (2.11), implies that poly-

nomials of degree K � 1 can be locally pointwise repre-
sented by locally finite linear combinations of scaling
functions.
The solution of these equations for K ¼ 1, 2, 3 are given

in Table I. The solutions are unique up to reversal of
order; n ! 2K � 1� n.
The numerical values of theK ¼ 3 coefficients, rounded

to two decimal places, are h0 ¼ �g5 ¼ 0:43, h1 ¼ g4 ¼
1:11, h2 ¼ �g3 ¼ 0:66, h3 ¼ g2 ¼ �0:34, h4 ¼ �g1 ¼
�0:39, h5 ¼ g0 ¼ �0:66. An important observation is
that only one of the six coefficients, h1 ¼ g4, has magni-
tude larger than 1.
In this work we advocate using the Daubechies K ¼ 3

wavelets. This is because they have small support and have
one continuous derivative. The derivative allows one to
replace the finite-difference approximations of derivatives
that appear in the Hamiltonian or Lagrangian densities
with actual derivatives.
The scaling function sðxÞ and mother wavelet wðxÞ have

support on the interval ½0; 2K � 1�. It follows from (2.11)
that for any fixed scale, 1=2k, the functions

fsknðxÞg1n¼�1 [ fwm
n ðxÞg1;1

n¼�1;m¼k (2.15)

are an orthonormal basis for L2ðRÞ. The basis functions
sknðxÞ and wk

nðxÞ have compact support on the interval
½2�kn; 2�kðnþ 2K � 1Þ�. This support justifies calling
H k the resolution 1=2k subspace.
The basis functions satisfy the orthonormality

conditions

Z
dxsknðxÞskmðxÞ ¼ �mn (2.16)

Z
dxsknðxÞwkþl

m ðxÞ ¼ 0 ðl � 0Þ (2.17)

Z
dxwk

nðxÞwl
mðxÞ ¼ �mn�kl: (2.18)

Scaling functions with different k are not orthogonal and
are not members of the same basis. Similarly, the wkþl

m ðxÞ
with negative l are not orthogonal to skmðxÞ and are not
members of the basis that includes the skmðxÞ. In general,
the basis (2.15) consists of scaling functions, skmðxÞ, of a
fixed largest scale, 1=2k, and wavelets, wkþl

m ðxÞ, that can
represent the structure on all scales, 1=2kþl, with l � 0.
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FIG. 2. Daubechies K ¼ 3 mother wavelet.
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A basis for the resolution 1=2kþm subspace,H kþm, that
includes the basis functions for the resolution 1=2k sub-
space, H k, is

span ðfskþm
n g1n¼�1Þ ¼ spanðfskng1n¼�1 [ fwl

ng1;kþm�1
n¼�1;l¼kÞ:

(2.19)

This means that the wavelets on scales 1=2k; 1=2kþ1; . . . ;
1=2kþm�1 fill in all of the missing finer-resolution infor-
mation in H kþm that is not contained in H k.

The scaling functions form a partition of unity

1¼ X1
n¼�1

sðx�nÞ¼ X1
n¼�1

ðTnsÞðxÞ¼ X1
n¼�1

s0nðxÞ: (2.20)

This partition of unity is locally finite, meaning that at any
point only a finite number of the functions are nonzero, and
the functions all have compact support. There are also
partitions of unity for the scale 1=2k scaling functions

X1
n¼�1

1ffiffiffiffiffi
2k

p sknðxÞ ¼
X1

n¼�1
sð2kx� nÞ ¼ 1 (2.21)

except they must be multiplied by the factor 1ffiffiffiffi
2k

p .

The scale 1=2k�1 scaling functions and scale 1=2k�1

wavelets are both linear combinations of the scale 1=2k

scaling functions

sk�1
n ðxÞ ¼ X2K�1

l¼0

hls
k
2nþlðxÞ (2.22)

wk�1
n ðxÞ ¼ X2K�1

l¼0

gls
k
2nþlðxÞ: (2.23)

The inverse of these relations expresses the scale 1=2k

scaling function as a linear combination of the scale
1=2k�1 scaling functions and wavelets

sknðxÞ ¼
X
m

hn�2ms
k�1
m ðxÞ þX

m

gn�2mw
k�1
m ðxÞ: (2.24)

Equations (2.22) and (2.23) define the wavelet transform in
signal processing. It is a pair of filters that decompose
a signal into high- and low-resolution parts in a
manner that can be inverted to reconstruct the full signal.
In signal processing applications it is applied many times
to generate a multiresolution decomposition of the signal.
Equation (2.24) is relevant in field-theory applications,
where we see that the wavelets represent the lost informa-
tion when one discards small-scale degrees of freedom.
The same coefficients appear in (2.22)–(2.24) because
these two sets of orthonormal basis functions on H k are
related by a real orthogonal transformation.

For some applications it is useful to express Eqs. (2.22)
and (2.23) in infinite matrix form

sk�1
n ðxÞ ¼ X2nþ2K�1

m¼2n

Hnms
k
mðxÞ (2.25)

wk�1
n ðxÞ ¼ X2nþ2K�1

m¼2n

Gnms
k
mðxÞ (2.26)

where

Hnm ¼ hm�2n Gnm ¼ gm�2n: (2.27)

In this notation (2.24) becomes

sknðxÞ ¼
X
m

Ht
nms

k�1
m ðxÞ þX

m

Gt
nmw

k�1
m ðxÞ (2.28)

where

Ht
nm ¼ Hmn ¼ hn�2m Gt

nm ¼ Gmn ¼ gn�2m: (2.29)

While the matrices are in principle infinite, for fixed n there
are only 2K nonvanishing terms in the sum, which is clear
in the equivalent expressions (2.22) and (2.23).
Note that if we set x ¼ n in the scaling equation it

becomes

sðnÞ ¼ X2K�1

l¼0

ffiffiffi
2

p
hlsð2n� lÞ ¼ ffiffiffi

2
p X2n

m¼2n�2Kþ1

h2n�msðmÞ

(2.30)

which has the form of an eigenvalue equation for the
matrix, Mnm ¼ h2n�m, where the eigenvectors are
ð0; sð1Þ; sð2Þ; . . . ; sð2K � 2Þ; 0Þ and the eigenvalue is

1=
ffiffiffi
2

p
. If we differentiate the scaling equation and again

evaluate the derivative of the scaling functions at integer
values we get

s0ðnÞ ¼ X2K�1

l¼0

2
ffiffiffi
2

p
hls

0ð2n� lÞ

¼ 2
ffiffiffi
2

p X2n
m¼2n�2Kþ1

h2n�ms
0ðmÞ: (2.31)

This is an eigenvalue equation for the same matrix, with
eigenvector ðs0ð0Þ; s0ð1Þ; s0ð2Þ; . . . ; s0ð2K � 2Þ; s0ð2K � 1ÞÞ
and eigenvalue 1=23=2. Each derivative brings down an
additional factor of 1=2 in the eigenvalue. Since a finite
matrix has a finite number of eigenvalues, the scaling
function can only be differentiated a finite number of times

[n times if the matrix above has eigenvalues of 2�ðnþ1=2Þ].
Thus we have the interesting property that the number of
derivatives is associated with the eigenvalue spectrum of a
finite-dimensional matrix. This makes it clear that the
individual wavelets and scaling functions have only a finite
number of derivatives. It is interesting that certain linear
combinations of scaling functions may have more deriva-
tives than the functions themselves; this is the case with the
partition of unity (2.20). The sum is constant, which is
infinitely differentiable, but the individual functions in the
sum are not.
For fields that are functions of four space-time variables,

we use a basis for the square integrable functions of the
three space variables consisting of products of the wavelet
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basis functions, (2.15), in each of the three variables. We
identify basis functions that are the product of three reso-
lution 1=2k scaling functions as the resolution 1=2k basis;
the seven other products of combinations of wavelets and
scaling functions span the orthogonal complement of the
resolution 1=2k subspace in L2ðR3Þ. We introduce a com-
pact notation to make the three-dimensional case look like
the one-dimensional case.

In three dimensions we define

sknðxÞ ¼ skn1ðx1Þskn2ðx2Þskn3ðx3Þ (2.32)

and use the notation to wm
n;�ðxÞ to represent the remaining

basis functions that have one of the following seven forms:

wm
n;1;k3

ðxÞ :¼ skn1ðx1Þskn2ðx2Þwk3
n3ðx3Þ (2.33)

wm
n;2;k2

ðxÞ :¼ skn1ðx1Þwk2
n2ðx2Þskn3ðx3Þ (2.34)

wm
n;3;k1

ðxÞ :¼ wk1
n1ðx1Þskn2ðx2Þskn3ðx3Þ (2.35)

wm
n;4;k2;k3

ðxÞ :¼ skn1ðx1Þwk2
n2 ðx2Þwk3

n3 ðx3Þ (2.36)

wm
n;5;k1;k2

ðxÞ :¼ wk1
n1ðx1Þwk2

n2ðx2Þskn3ðx3Þ (2.37)

wm
n;6;k1;k3

ðxÞ :¼ wk1
n1ðx1Þskn2ðx2Þwk3n3ðx3Þ (2.38)

wm
n;7;k1;k2;k3

ðxÞ :¼ wk1
n1ðx1Þwk2

n2ðx2Þwk3
n3ðx3Þ: (2.39)

We call the functions wm
n;�ðxÞ generalized wavelets, where

the index, m, represents the smallest wavelet scale (largest
k1, k2, k3) appearing in the product. The index � indicates
the values of k1, k2, k3 as well as which of the seven types
of products appear in the basis function.

Since the scaling function is the solution of a renormal-
ization group equation and all of the other basis functions
are linear combinations of translated and scale-
transformed scaling functions, it follows that all of the
basis functions have a fractal structure. This makes it
difficult to represent the basis functions in terms of ele-
mentary functions that are smooth on a sufficiently small
scale. Fortunately, while it is possible to compute the
scaling function to any desired accuracy, this is never
needed in any application. What is needed are the overlap
integrals of products of arbitrary numbers of basis func-
tions and their derivatives. It turns out that these integrals
satisfy renormalization group equations and can all be
computed exactly using the renormalization group equa-
tions and the normalization condition, without knowing the
value of the integrand at any points. These equations can
also be used to compute the integrals of products of these
functions with polynomials of arbitrary degree. Since the
basis functions have compact support, and any continuous
function can be approximated by a polynomial on a com-
pact interval, it follows that integrals of products of these

basis functions and continuous functions can be computed
to any desired accuracy. Methods for computing these
quantities are discussed in Sec. V and the Appendix.

III. FREE FIELD CONVENTIONS

In this section we summarize our conventions for a free
mass-� scalar field and list some standard results that will
be used in the subsequent sections. Since the free-field
operators exist and the wavelet basis expansions are exact,
free fields provide a useful laboratory for understanding
truncations as approximations.
Free fields also play a role in modeling interacting

theories. In the presence of both resolution and volume
cutoffs, which are natural in the wavelet basis, all of the
operator products in the Hamiltonian become finite sums
of well-defined operators on the free-field Fock space,
allowing one to formally work in the interaction represen-
tation. The renormalization group, discussed in Sec. VII,
provides one means to investigate the existence of a limit-
ing interacting theory with an infinite number of degrees of
freedom.
The Lagrangian density for a free scalar field of mass

� is

LðxÞ :¼1

2
ð _�ðxÞ _�ðxÞ�r�ðxÞ �r�ðxÞ��2�ðxÞ2Þ: (3.1)

Lagrange’s equations are

@2

@t2
�ðxÞ � @2

@x2
�ðxÞ þ�2�ðxÞ ¼ 0: (3.2)

The generalized momentum is

�ðxÞ ¼ @LðxÞ
@ _�

¼ _�ðxÞ (3.3)

and the Hamiltonian is

H ¼
Z
ð�ðxÞ _�ðxÞ �LðxÞÞdx

¼ 1

2

Z
ð�ðxÞ�ðxÞ þ r�ðxÞ � r�ðxÞ þ�2�ðxÞ2Þdx:

(3.4)

The field �ðx; tÞ is normalized so �ðx; tÞ and �ðx; tÞ
satisfy the canonical equal-time commutation relations

½�ðx; tÞ;�ðy; tÞ� ¼ i�ðx� yÞ: (3.5)

The classical energy-momentum tensor is

T��ðxÞ ¼ � @LðxÞ
@ð@��Þ@

��þ ���LðxÞ

¼ @��ðxÞ@��ðxÞ � 1

2
���ð@��ðxÞ@��ðxÞ

þ�2�ðxÞ2Þ (3.6)

and the angular momentum tensor is
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M��� ¼ ðx�T�� � x�T��Þ: (3.7)

These tensors satisfy the conservation laws

@�T
�� ¼ @�M

��� ¼ 0 (3.8)

leading to the conserved charges, which after quantization
are the infinitesimal generators of the Poincaré group

P� ¼
Z
t¼0

dxP�ðxÞdx P�ðxÞ :¼ T�0ðxÞ (3.9)

J�� :¼
Z
t¼0

dxJ ��ðxÞdx J ��ðxÞ :¼M��0ðxÞ: (3.10)

The generators can be expressed as integrals over operator-
valued densities

H ¼ P0 ¼
Z
t¼0

:ð�ðxÞ _�ðxÞ �LðxÞÞ:dx

¼ 1

2

Z
:ð�ðxÞ�ðxÞ þ r�ðxÞ � r�ðxÞ þ�2�ðxÞ2Þ:dx

(3.11)

P ¼ �
Z
t¼0

:�ðxÞr�ðxÞ:dx (3.12)

Jij ¼ �Jji ¼ �ijkJk

¼
Z
t¼0

dx:ð�ðxÞxj@i�ðxÞ ��ðxÞxi@j�ðxÞÞ: (3.13)

Ji0 ¼ �J0i ¼ Ki

¼
Z
t¼0

:

�
1

2
�2ðxÞxi þ 1

2
xir�ðxÞ � r�ðxÞ

þ 1

2
xi�2�ðxÞ2

�
:dx (3.14)

where the :’s indicate that the operators are normal
ordered.

The field has the Fourier representation (�þþþmetric)

�ðxÞ ¼ 1

ð2�Þ3=2
Z dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2!�ðpÞ
q ðe�ip�xayðpÞ þ eip�xaðpÞÞ

(3.15)

�ðxÞ ¼ i

ð2�Þ3=2
Z

dp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!�ðpÞ

2

s
ðe�ip�xayðpÞ � eip�xaðpÞÞ

(3.16)

where

!�ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ p2

q
(3.17)

is the single-particle energy. The equal-time commutation
relations imply

½aðpÞ; ayðp0Þ� ¼ �ðp� p0Þ: (3.18)

The vacuum state of the field is the solution of

aðpÞj0i ¼ 0: (3.19)

The infinitesimal generators have momentum-space repre-
sentations as integrals over momentum densities

H ¼
Z

H ðpÞdp ¼
Z

dpayðpÞ!mðpÞaðpÞ; (3.20)

P ¼
Z

PðpÞdp ¼
Z

dpayðpÞpaðpÞ; (3.21)

J ¼
Z

J ðpÞdp ¼
Z

dpayðpÞ
�
i
@

@p
� p

�
aðpÞ; (3.22)

K¼
Z
KðpÞdp¼

Z
dpayðpÞ1

2

�
i
@

@p
;!mðpÞ

�
aðpÞ (3.23)

where we set x0 ¼ 0 in the last expression.

IV. WAVELET DISCRETIZED FIELDS

The wavelet basis discussed in (2.32)–(2.39) can
be used to write exact expansions of the fields as sums of
products of basis functions with time-dependent operator
coefficients,

�ðx;tÞ¼X
n

�kðn;tÞsknðxÞþ
X

n;�;l�k

�lðn;�;tÞwl
n�ðxÞ (4.1)

�ðx;tÞ¼X
n

�kðn; tÞsknðxÞþ
X

n;�;l�k

�lðn;�;tÞwl
n�ðxÞ; (4.2)

where the operator coefficients are projections of the field
operators on the orthonormal basis of scaling functions and
wavelets

�kðn; tÞ ¼
Z

dx�ðx; tÞsknðxÞ (4.3)

�lðn; �; tÞ ¼
Z

dx�ðx; tÞwl
n�ðxÞ ðl � kÞ (4.4)

�kðn; tÞ ¼
Z

dx�ðx; tÞsknðxÞ (4.5)

�lðn; �; tÞ ¼
Z

dx�ðx; tÞwl
n�ðxÞ ðl � kÞ: (4.6)

In these expressions the space-time points have dimen-
sions. If L is a length scale then replacing skmðxÞ and
wl

nðxÞ by 1ffiffiffi
L

p skmðxLÞ and 1ffiffiffi
L

p wl
nðxLÞ preserves all of the formu-

las in the previous section, except the translations and
rescaling are in units of L. The scale factors 1=2k remain
dimensionless. All factors of L disappear if we make this
change and use natural units where L ¼ 1.
In these expressions we only integrate over the spatial

coordinates x so the operator coefficients are time
dependent. It is also possible to integrate over all
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space-time coordinates, which is useful in action-based
formulations.

These expansions have been separated into operators
smeared over scaling functions and generalized wavelets.
This is a separation of scales—the scale 1=2k scaling
functions give the coarse-scale structure of the field, while
the wavelet parts include the structure on all smaller scales.

The field operators smeared with the scaling functions
represent the average value of the field over a compact
region weighted by the product of scaling functions.
Because the scale 1=2kþ1 scaling function can be expressed
in terms of the scale 1=2k scaling functions and scale 1=2k

wavelets, (2.24), the scale 1=2k wavelet and scaling-
function smeared fields contain the same information as
the scale 1=2kþ1 scaling-function smeared fields.

When all of the wavelet contributions are included the
expansions are exact. In any finite region there are still an
infinite number of wavelet basis functions associated with
arbitrarily small scales.

For fields satisfying canonical equal-time commutation
relations, the orthonormality of the basis functions implies
that the equal-time canonical commutation relations for the
discrete fields are

½�kðn; tÞ;�kðm; tÞ�¼0 ½�kðn;tÞ;�kðm; tÞ�¼0 (4.7)

½�kðn; tÞ;�kðm; tÞ� ¼ i�n;m (4.8)

½�rðn; �; tÞ;�sðm; �; tÞ� ¼ 0

½�rðn; �; tÞ;�sðm; �; tÞ� ¼ 0
(4.9)

½�rðn; �; tÞ;�sðm; �; tÞ� ¼ i����rs�n;m (4.10)

½�rðn; �; tÞ;�sðm; tÞ� ¼ 0

½�rðn; �; tÞ;�sðm; tÞ� ¼ 0
(4.11)

½�rðn; �; tÞ;�sðm; tÞ� ¼ 0

½�rðn; �; tÞ;�sðm; tÞ� ¼ 0
(4.12)

where in all of these expressions k � r, s.
Given these discrete field operators we can construct

discrete creation and annihilation operators

akðn; tÞ :¼ 1ffiffiffi
2

p
� ffiffiffiffi

	
p

�kðn; tÞ þ i
1ffiffiffiffi
	

p �kðn; tÞ
�

(4.13)

brðn; �; tÞ :¼ 1ffiffiffi
2

p
�
ð ffiffiffiffi

	
p

�rðn; �; tÞ þ i
1ffiffiffiffi
	

p �rðn; �; tÞ
�

(4.14)

that satisfy

½akðn; tÞ; akyðm; tÞ� ¼ �mn (4.15)

½blðn; �; tÞ; bjyðm; �; tÞ� ¼ �mn�jl��� (4.16)

with all other commutators vanishing. In these expressions
	 is a constant that can depend on the discrete indices.
While these quantities and their adjoints satisfy the com-
mutation relations (4.15) and (4.16) for creation and anni-
hilation operators for any choice of 	, a specific choice is
required if the annihilation operator is to annihilate the
free-field vacuum. This requires that 	 is chosen so

h0jakyðn; tÞakðn; tÞj0i ¼ 0 (4.17)

h0jbryðn; �; tÞbrðn; �; tÞj0i ¼ 0 (4.18)

h0jakðn; tÞakyðn; tÞj0i ¼ 1 (4.19)

h0jbrðn; �; tÞbryðn; �; tÞj0i ¼ 1 (4.20)

which leads to quadratic equations for the coefficients 	.
With this choice of 	 the annihilation operators annihilate
the mass � free-field vacuum.
The solution of these equations for the scaling-function

fields is

	ðkÞ ¼ 1	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4h0j�kðm; tÞ�kðm; tÞj0ih0j�kðm; tÞ�kðm; tÞj0ip

2h0j�kðm; tÞ�kðm; tÞj0i

¼ 1	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4h0j�kð0; 0Þ�kð0; 0Þj0ih0j�kð0; 0Þ�kð0; 0Þj0ip

2h0j�kð0; 0Þ�kð0; 0Þj0i (4.21)

and for the wavelet fields

	ðr; �Þ ¼ 1	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4h0j�rðm; �; tÞ�rðm; �; tÞj0ih0j�rðm; �; tÞ�rðm; �; tÞj0ip

2h0j�rðm; �; tÞ�rðm; �; tÞj0i

¼ 1	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4h0j�rð0; �; 0Þ�rð0; �; 0Þj0ih0j�rð0; �; 0Þ�rð0; �; 0Þj0ip

2h0j�rð0; �; 0Þ�rð0; �; 0Þj0i : (4.22)
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These coefficients depend on the scale 1=2k, � and the
mass �; however they are independent of m and t by
the space-time translational invariance of the vacuum.
With this choice of 	 the scaling-function fields can be
expressed in terms of the creation and annihilation
operators as

�kðm; tÞ ¼ 1ffiffiffiffiffiffi
2	

p ðakyðm; tÞ þ akðm; tÞÞ (4.23)

�kðm; tÞ ¼ i

ffiffiffiffi
	

2

r
ðakyðm; tÞ � akðm; tÞÞ (4.24)

with analogous expressions for the wavelet fields,

�kðm; �; tÞ ¼ 1ffiffiffiffiffiffi
2	

p ðbkyðm; �; tÞ þ bkðm; �; tÞÞ (4.25)

�kðm; �; tÞ ¼ i

ffiffiffiffi
	

2

r
ðbkyðm; �; tÞ � bkðm; �; tÞÞ: (4.26)

The coefficients 	 depend on the mass term in the field
operators. This is because the following integrals appear in
(4.21) and (4.22):

h0j�kðn; tÞ�kðn; tÞj0i

¼ 1

ð2�Þ3
Z sknðxÞsknðyÞ

2!�ðpÞ eip�ðx�yÞdxdydp (4.27)

h0j�kðn; tÞ�kðn; tÞj0i

¼ 1

ð2�Þ3
Z sknðxÞsknðyÞ!�ðpÞ

2
eip�ðx�yÞdxdydp (4.28)

h0j�rðn; �; tÞ�rðn; �; tÞj0i

¼ 1

ð2�Þ3
Z wr

�;nðxÞwr
�;nðyÞ

2!�ðpÞ eip�ðx�yÞdxdydp (4.29)

h0j�rðn; �; tÞ�rðn; �; tÞj0i

¼ 1

ð2�Þ3
Z wr

�;nðxÞwr
�;nðxÞ!�ðpÞ
2

eip�ðx�yÞdxdydp:

(4.30)

These are integrals of the basis functions over the
two-point mass-� Wightman functions of this field at
fixed time.

Using (4.23)–(4.30) in (4.1) and (4.2) gives exact ex-
pressions for the field operators in terms of the discrete
creation and annihilation operators:

�ðxÞ¼X 1ffiffiffiffiffiffiffiffiffiffiffiffi
2	ðkÞp skmðxÞðakðm;tÞþakyðm;tÞÞ

þX 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ðj;�Þp wj

m;�ðxÞðbjðm;�;tÞþbjyðm;�;tÞÞ

(4.31)

�ðxÞ¼ i
X ffiffiffiffiffiffiffiffiffiffi

	ðkÞ
2

s
skmðxÞðakyðm; tÞ�akðm;tÞÞ

þ i
X ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	ðj;�Þ
2

s
wj

m;�ðxÞðbjyðm;�;tÞ�bjðm;�;tÞÞ:

(4.32)

In this notation the a and ay operators destroy and create
scale 1=2k degrees of freedom, while the b and by opera-
tors destroy and create smaller-scale degrees of freedom.
The Hilbert space for this free field is generated

by taking limits of finite linear combinations of products
of the discrete creation operators, akðm; tÞy, blðm; �; tÞy
applied to the vacuum at a fixed time.
It is useful to decompose operators into parts that only

involve the a and ay operators, parts that only involve the b
and by operators, and mixed terms involving products of at
least one operator from each of the above groups.
The terms with only the a and ay operators represent the

2�k scale physics, the terms with only the b and by
operators represent the part of the operator associated
with scales finer than 2�k that do not couple to the scale
2�k operators, and the mixed terms are responsible for the
coupling of the 2�k scale degrees of freedom to the
smaller-scale degrees of freedom.
The Hamiltonian (3.11) has the decomposition

H ¼ HðaÞ þHðbÞ þHðabÞ (4.33)

where

HðaÞ :¼ 1

2

�X
n

:�kðn; 0Þ�kðn; 0Þ:

þX
mn

:�kðm; 0ÞDk
mn�

kðn; 0Þ:

þ�2
X
n

:�kðn; 0Þ�kðn; 0Þ:
�

(4.34)

HðbÞ :¼ 1

2

�X
n�;l

:�lðn; �; 0Þ�lðn; �; 0Þ:

þ X
m�;ln�;j

:�lðm; �; 0ÞDlj
m;�;n;��

jðn; �; 0Þ:

þ�2
X
l;n;�

:�lðn; �; 0Þ�lðn; �; 0Þ:
�

(4.35)
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HðabÞ :¼ 1

2

X
m�;ln

:�lðm; �; 0ÞDlk
m;�;n�

kðn; 0Þ: (4.36)

and the coefficients Dk
mn, D

lj
m;�;n;� and Dlk

m;�;n are given by

Dk
mn ¼

Z
dxrskmðxÞ � rsknðxÞ (4.37)

Dlj
m;�;n;� ¼

Z
dxrwl

m;�ðxÞ � rwj
n;�ðxÞ (4.38)

Dlk
m;�;n ¼ 2

Z
dxrwl

m;�ðxÞ � rsknðxÞ: (4.39)

The derivatives of the basis functions in (4.37)–(4.39) exist
for Daubechies K � 3 scaling functions. The computation
of these integrals, using the renormalization group equa-
tions and normalization condition, is discussed in the next
section and the Appendix. These integrals are almost local
in the sense that they vanish when the supports of the basis
functions do not overlap. From the above equations we see
that the part of the Hamiltonian, HðabÞ, that couples the
scale 1=2k degrees of freedom to the finer-scale degrees of
freedom proceeds through the terms in the free-field
Hamiltonian with the spatial derivatives. We will see that
interactions also lead to coupling of scales.

There are similar decompositions for the linear momen-
tum (3.12), angular momentum (3.13), and Lorentz boost
generators (3.14). For the linear momentum the decompo-
sition is

P ¼ PðaÞ þ PðbÞ þ PðabÞ (4.40)

where

P ðaÞ ¼ �X
mn

:�kðm; 0ÞPk
mn�

kðn; 0Þ: (4.41)

P ðbÞ ¼ � X
m�;ln�;j

:�lðm; �; 0ÞPlj
m;�;n;��

jðn; �; 0Þ:

(4.42)

P ðabÞ ¼ � X
m�;ln

:�lðm; �; 0ÞPlk
m;�;n�

kðn; 0Þ:; (4.43)

and

P k
m;n ¼

Z
dxskmðxÞrxs

k
nðxÞ (4.44)

P lj
m;�;n;� ¼

Z
dxwl

m;�ðxÞrxw
j
n;�ðxÞþ (4.45)

P l
m;�;n ¼

Z
dxðwl

m;�ðxÞrxs
k
nðxÞ þ sknðxÞrxw

l
m;�ðxÞÞ:

(4.46)

For the angular momentum

J ¼ JðaÞ þ JðbÞ þ JðabÞ (4.47)

where

J ðaÞ ¼ X
mn

:�kðm; 0ÞJkmn�
kðn; 0Þ: (4.48)

J ðbÞ ¼ X
m�;ln�;j

:�lðm; �; 0ÞJljm;�;n;��
jðn; �; 0Þ: (4.49)

J ðabÞ ¼ X
m�;ln

:�lðm; �; 0ÞJlkm;�;n�
kðn; 0Þ:

þ�kðn; 0ÞJkln;m;��
lðm; �; 0Þ: (4.50)

and

J k
m;n ¼ �

Z
dxðskmðxÞðx� rxÞsknðxÞ; (4.51)

J lj
m;�;n;� ¼ �

Z
dxwl

m;�ðxÞðx� rxÞwj
n;�ðxÞ; (4.52)

J lk
m;�;n ¼ �

Z
dxwl

m;�ðxÞðx� rxÞsknðxÞ; (4.53)

J kl
m;�;n ¼ �

Z
dxsknðxÞðx� rxÞwl

m;�ðxÞ: (4.54)

The decomposition for the rotationless boost generators is

K ¼ KðaÞ þKðbÞ þKðabÞ; (4.55)

where

K ðaÞ ¼
Z 1

2

X
m;n

ðFk
nmð:�ðn; 0Þ�ðm; 0Þ:

þ�2:�ðn; 0Þ�ðm; 0Þ:Þ
þGnm:�ðn; 0Þ�ðm; 0Þ:Þ (4.56)

KðbÞ ¼
Z 1

2

X
lm�;jn�

ðFlj
m;�;n;�ð:�lðm; �Þ�jðn; �; 0Þ:

þ�2:�lðm; �; 0Þ�jðn; �; 0Þ:Þ
þGlj

m�n�:�
lðm; �; 0Þ�jðn; �; 0Þ:Þ (4.57)

K ðabÞ ¼
Z X

l;m;�;n

ðFlk
m�;nð:�lðm; �Þ�kðn; 0Þ:

þ�2:�lðm; �; 0Þ�kðn; 0Þ:Þ
þGlk

n;�;m:�
lðn; �; 0Þ�kðm; 0Þ:Þ (4.58)

and the overlap integrals are

F k
nm ¼

Z
dxsknðxÞxskmðxÞ (4.59)
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G k
nm ¼

Z
dxrsknðxÞ � rskmðxÞx (4.60)

F lj
n�m� ¼

Z
dxwl

n;�ðxÞxwj
m;�ðxÞ (4.61)

G lj
n�m� ¼

Z
dxrwl

n�ðxÞ � rwj
m�ðxÞx (4.62)

F lk
n�m ¼

Z
dxwl

n;�ðxÞxskmðxÞ (4.63)

G lk
n�m ¼

Z
dxrwl

n�ðxÞ � rskmðxÞx: (4.64)

All of the numerical coefficients can be computed exactly
using linear algebra and the scaling equation. They vanish
when the supports of the wavelets or scaling functions have
no overlap. In addition, it is a simple matter to determine
how they scale with 1=2k.

V. INTEGRALS

The expressions for the Poincaré generators derived in
the previous section are linear combinations of normal
products of discrete wavelet fields multiplied by numerical
coefficients. The numerical coefficients are integrals of
products of scaling functions, wavelets, first derivatives
of these quantities and powers of x. For a 3þ 1 dimen-
sional field theory each coefficient is a product of three
coefficients involving one-dimensional integrals. In this
section we discuss methods for computing these one-
dimensional integrals.

While all of the integrals involve functions with fractal
values, making standard numerical methods impractical,
the unique properties of the wavelet basis make it possible
to compute all of the integrals appearing in the previous
section exactly. In this section we discuss how to compute
the coefficients in the previous section. We follow the
general discussion with an illustrative example.

The integrals in the last section are products of one-
dimensional integrals of the form

�n ¼
Z

f1ðxÞf2ðxÞ � � � fnðxÞdx; (5.1)

where the functions fiðxÞ are scaling functions, wavelets,
first derivatives of these functions or powers of x.

The important observation is that all of the functions that
appear in the integrand of the coefficient �n have simple
transformation properties under scale transformation and
translations. This, along with the scaling equation and
normalization condition, can be used to reduce the compu-
tation of all of these quantities to finite linear algebra.

The computation uses the following relations, which
follow from the definitions:

Z
sknðxÞdx ¼ 1ffiffiffiffiffi

2k
p (5.2)

DT2k ¼ TkD (5.3)

d

dx
D ¼ 2D

d

dx
(5.4)

Dx ¼ 2xD (5.5)

Tx ¼ ðx� 1ÞT: (5.6)

In addition, we use the scaling equation, the definition of
the wavelet and the derivatives of these equations in the
form (2.25)–(2.27):

skmðxÞ ¼
X
n

Hmns
kþ1
n ðxÞ (5.7)

wk
mðxÞ ¼

X
n

Gmns
kþ1
n ðxÞ (5.8)

sk0m ¼ 2
X
n

Hmns
ðkþ1Þ0
n (5.9)

wk0
m ¼ 2

X
n

Gmns
ðkþ1Þ0
n : (5.10)

These equations can be used to express skmðxÞ, wk
mðxÞ,

sk0mðxÞ, and wk0
mðxÞ, with scale 2�k, as linear combinations

of scaling functions and their derivatives with scale

2�ðkþ1Þ. Repeated application of these equations can be
used to increase k in each of the functions by any desired
amount.
In addition, the scale factor k of all functions in the

integral can be increased or decreased by the same amount
using Z

Dkf1ðxÞDkf2ðxÞ � � �DkfmðxÞdx

¼ 2kðm2�1Þ Z f1ðxÞf2ðxÞ � � � fmðxÞdx (5.11)

where in this equation k can be positive or negative. We
recall from the definition (2.4) and (2.9) that D increases k
by 1 when applied to scaling functions or wavelets. For
derivatives we also need to use (5.4).
Using (5.11) to make all of the k-values negative and

then using (5.7)–(5.10) to increase each one to zero leads to
an expression for the integral (5.1) as a linear combination
of integrals involving products of scale 1=20 scaling func-
tions, their derivatives and powers of x.
It is useful to first consider integrals where there are no

powers of x; we will see later that the corresponding
integrals with powers of x can be expressed in terms of
the integrals with no powers of x. To compute a general
coefficient, �n, we use the following steps.
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(1) Step 1: Use (5.11) to relate the integral to another
integral where the finest scale appearing in the in-
tegrand is 1=20. Then the scale of each function in
the integrand is 1=20 or coarser (negative k).

(2) Step 2: Use repeated application (5.7)–(5.10) to re-
place all of the coarse-scale functions by linear
combinations of scale 1=20 functions. The result
of these two steps is that the original integral can
be expressed as a finite sum of coefficients where all
of the functions in the integrand are scale 1=20

scaling functions or their derivatives. Note that the
wavelet contributions can always be expressed in
terms of scaling functions using (5.8) or (5.10).

(3) Step 3: Use integer translational invariance to make
the support of the leftmost function start at zero.
Then, because each function has compact support on
an interval of width ½2K � 1�, nonzero coefficients
have translational indices that vary from ½�2K þ
2; 2K � 2�. That means the number of nonzero
coefficients that cannot be generated by translations
is less than ð4K � 3Þn�1 (finite).

(4) Step 4: Apply the scaling equation to the integrand
of the resulting integral and use translational invari-
ance to shift the leftmost index to zero. This results
in a set of ð4K � 3Þn�1 homogeneous linear equa-
tions for the coefficient functions with leftmost
index zero.

(5) Step 5: Use the partition of unity property (there is
also one for the derivative of the scaling function) to
get additional inhomogeneous equations for these
coefficients.

(6) Step 6: Combine the homogeneous and inhomoge-
neous equations to get a linear system and solve for
the coefficients.

(7) Step 7: Reverse the steps, using the finite number of
solutions of the linear equations to construct the
general coefficients.

All of the steps are straightforward; for step 6 some of
the equations are redundant and one must select a set of
independent equations that includes at least one inhomo-
geneous equation.

We illustrate construction with the example of comput-
ing the integral of the product of a scaling function, wave-
let, and derivative of a scaling function with different
scales

Ik;kþl;kþj
mnp :¼

Z
skmðxÞwkþl

n ðxÞds
kþj
p

dx
ðxÞdx: (5.12)

To be specific we assume that j > l and k > 0. For the first
step we use (5.11) and (5.4) to reduce the finest scale,
1=2kþj to 1=20,

Ik;kþl;kþj
mnp ¼ 2�3ðkþjÞ=2I�j;�jþl;0

mnp : (5.13)

This makes the last scale index zero and the other two
negative. Since all of the other scale factors have a negative

exponent, we can use (5.8) and (5.9) to increase each of
them to zero:

I�j;�jþl;0
mnp ¼ X

m0n0
Hj

mm0 ðGHj�l�1Þnn0I0;0;0m0n0p (5.14)

where in (5.14) Hj
mm0 is the product of j factors of the

matrixHmn. While the matrixHmn is formally infinite, only
a finite number of terms in this sum contribute to a par-
ticular value of m, so the sums in (5.14) are finite. Similar
remarks apply to GHj�l�1. The integral on the right side
of (5.14) is

I0;0;0
m0n0p ¼

Z
sm0 ðxÞsn0 ðxÞ dsdx ðx� pÞdx: (5.15)

Note that the wavelet in (5.12) and (5.13) is replaced by a
scaling function because Eq. (5.8) expresses the scale 1=2l

wavelet as a linear combination of scale 1=2lþ1 scaling
functions.
Next we use translational invariance to transform the

first index to zero

I0;0;0
m0n0p ¼ I0;0;0

0;n0�m0;p�m0 : (5.16)

Thus we can express any of the integrals, Ik;kþl;kþj
mnp , in

terms of the ð2K � 2Þ2 nontrivial coefficients I0;0;00mn .

Because of the compact support of the scaling function

and its derivative, I0;0;00mn is nonvanishing only for values of

m, n satisfying

�2Kþ1<m;n<2K�1; jm�nj<2K�1: (5.17)

These integrals have the form

I0;0;00mn ¼
Z

sðxÞsðx�mÞ ds
dx

ðx� nÞdx: (5.18)

Next we use (5.7)–(5.9) and (5.11) and translational invari-
ance to get the following scaling equation:

I0;0;00mn ¼ 1ffiffiffi
2

p I�1;�1;�1
0mn ¼ 2ffiffiffi

2
p X

l0m0n0
Hll0Hmm0Hnn0I

000
l0m0n0

¼ ffiffiffi
2

p X
l0m0n0

Hll0Hmm0Hnn0I
000
0;m0�l0;n0�l0 (5.19)

which is a system of ð2K � 2Þ � ð2K � 2Þ homogeneous

equations for the values of I0;0;00mn with �2K þ 1<m; n <
2K � 1.
In order to solve this system we also need an inhomoge-

neous equation, which must be related to the normalization
condition on the scaling function. The Daubechies K ¼ 3
scaling function is defined so 1, x and x2 can be pointwise
expanded as linear combinations of scaling functions

1 ¼ X
n

ansnðxÞ and x ¼ X
n

bnsnðxÞ: (5.20)

The normalization condition (2.3) and the orthogonality
condition (2.16) give an ¼ 1 or
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1 ¼ X
n

snðxÞ; (5.21)

which is a restatement of the partition of unity property.
To calculate bn use the unitarity of D and the scaling
equation to get

bn ¼
Z

xsnðxÞdx ¼ nþ
Z

xsðxÞdx

¼ nþ
Z

D�1xD�1sðxÞdx

¼ nþ 1

2
ffiffiffi
2

p X
l

hl
Z

xsðx� lÞdx

¼ nþ 1

2
ffiffiffi
2

p X
l

lhl
Z

sðxÞdxþ 1

2
ffiffiffi
2

p X
l

hl
Z

xsðxÞdx

¼ nþ 1

2
ffiffiffi
2

p X
l

lhl þ 1

2

Z
xsðxÞdx; (5.22)

where we used (2.12) in (5.22). Setting n ¼ 0 gives

Z
xsðxÞdx ¼ 1ffiffiffi

2
p X

l

lhl: (5.23)

It follows that

bn ¼ nþ 1ffiffiffi
2

p X
l

lhl (5.24)

and

x ¼ X
n

nsnðxÞ þ 1ffiffiffi
2

p X
l

lhl: (5.25)

If we differentiate (5.25) we get a partition of unity for the
derivative of the scaling function,

1 ¼ X
ns0nðxÞ: (5.26)

Equation (5.26) implies that the coefficient functions
satisfy X

n

nI0mn ¼ �m0: (5.27)

This gives a nontrivial inhomogeneous equation whenm ¼
0. If we sum over the first index we get the equivalent
inhomogeneous equationX

mn

nI0mn ¼ 1: (5.28)

The next step is to identify a set of independent linear

equations, including (5.28), for the nonzero I0;0;00mn . Solving

these equations gives the nonvanishing I0;0;00mn .

Reversing these steps we get the following expression

for the general coefficient in terms of the coefficients I0;0;00mn :

Ik;kþl;kþj
mnp ¼ 2�3ðkþjÞ=2X

m0n0
Hj

mm0 ðGHj�l�1Þnn0I0;0;00;n0�m0;p�m0 :

(5.29)

This shows that the scaling properties lead to explicit
formulas for an infinite number of coefficients in terms

of the finite set of coefficients I0;0;00;m;n with �2K þ 1<

m; n;m� n < 2K � 1.
Given the above method to compute all of the integrals

without powers of x, it is easy to generalize the construc-
tion to treat integrands involving powers of x. This com-
putation uses the translations that appear in the scaling
equations to reduce the desired integral to one of the types
discussed above.
The basic trick is to combine (5.7)–(5.11). For example,

all of the moments,

hxmis ¼
Z

sðxÞxmdx hxmiw ¼
Z

wðxÞxmdx; (5.30)

can be constructed recursively from the normalization
condition

hx0is ¼
Z

dxsðxÞ ¼ 1 (5.31)

using the scaling equation

hxmis ¼
Z

D�1xmD�1sðxÞdx

¼ 1ffiffiffi
2

p 1

2m
X
l

hl
Z

xmsðx� lÞdx

¼ 1ffiffiffi
2

p 1

2m
X
l

hl
Z
ðxþ lÞmsðxÞdx

¼ 1ffiffiffi
2

p 1

2m
X
l

hl
Xm
k¼0

m!

k!ðm� kÞ! l
m�k

Z
xksðxÞdx:

(5.32)

Using
P

lhl ¼
ffiffiffi
2

p
, and moving the k ¼ m term to the left

side of Eq. (5.32) gives the recursion relation for the mth
moments in terms of k < m moments

Z
xmsðxÞdx ¼ 1

2m � 1

1ffiffiffi
2

p Xm�1

k¼0

m!

k!ðm� kÞ!

�
� X2K�1

l¼1

hll
m�k

�Z
xksðxÞdx: (5.33)

Moments of the wavelets are obtained by replacing hl in
(5.32) by gl:

hxmiw ¼
Z

wðxÞxmdx

¼ 1ffiffiffi
2

p 1

2m
X
l

gl
Xm
k¼0

m!

k!ðm� kÞ! l
m�k

Z
xksðxÞdx:

(5.34)
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This means the first moment can be expressed in terms of
the zeroth moment, which is 1 by the scale-fixing condi-
tion. This method can be generalized to calculate moments
multiplied by arbitrary products of scaling functions,
wavelets and their first derivatives. In the general case
one gets a linear system for the kth moment in terms of
the 0; 1; . . . ; k� 1st moments.

Using these methods all of the coefficients appearing in
the expressions for the Poincaré generators can be ex-
pressed in terms of the scaling coefficients, hl, and the
solution of a finite system of linear equations. The factors
of Hj and GHj�l�1 in (5.29) are dominated by the terms
involving j or j� l� 1 products of h1 ¼ g4 
 1:1, or
Hmn ! 1:1�1�n�2m;0 and Gmn ! 1:1�4�n�2m;0.

Calculations of (4.37)–(4.39) are done explicitly in the
Appendix.

These methods can be used to calculate all of the factors
that appear in the formal expressions for the Poincaré
generators. The scaling properties of these coefficients
can be read off using (5.2)–(5.5). For the coefficients
involving only the scale k scaling functions these coeffi-
cients have the following scaling properties:

Dk
mn ¼ 22kD0

mn (5.35)

P k
m;n ¼ 2kP0

m;n (5.36)

J k
m;n ¼ J0m;n (5.37)

F k
nm ¼ 1

2k
F0
nm (5.38)

G k
nm ¼ 2kG0

nm: (5.39)

VI. POINCARÉ SYMMETRY

There are three properties of the wavelet basis that are
useful for investigating Poincaré symmetry breaking in
discrete truncations of field theory. First, the scaling func-
tions on a fixed scale are a compactly supported, locally
finite partition of unity. This makes it possible to test the
Poincaré symmetry in finite volumes. Second, the scaling
functions and wavelets form a basis, which means that it is
possible to precisely identify the corrections that are
needed to restore Poincaré invariance in truncated theories.
Third, because it is possible to compute the coefficients of
the operators that restore the commutation relations to a set
of truncated generators, it is possible to identify and clas-
sify the size of all of the correction terms.

In this section we discuss these three properties in more
detail. First we consider the partition of unity property.
Up to an overall multiplicative constant the scaling func-
tions on a given scale, 1=2k, form a partition of unity that
has the form

1 ¼ X
m

2�3k=2skmðxÞ: (6.1)

While this sum is formally infinite, at any given point there
are at most ð2K � 2Þ3 nonvanishing terms in this sum.
The partition of unity can be utilized to decompose each

of the Poincaré generators into sums of localized operators.
To do this note that Noether’s theorem gives formal ex-
pressions for the Poincaré generators as integrals of local
densities (3.9) and (3.10) over the t ¼ 0 surface. The local
densities involve products of field operators and their
derivatives at the same space-time point.
The local density, OiðxÞ, of the ith Poincaré generator

satisfies

½Oiðx; 0Þ; Ojðy; 0Þ� ¼ i�ðx� yÞfijkOkðy; 0Þ (6.2)

where the fijk are the structure constants of the Poincaré
group. Generators are integrals of these densities over the
t ¼ 0 hyperplane

Oi :¼
Z

dxOiðx; 0Þ: (6.3)

These integrals are the conserved charges in Noether’s
theorem and formally become time independent after in-
tegrating over a fixed-time hyperplane. The Poincaré com-
mutation relations are obtained by integrating both sides of
Eq. (6.2) over a fixed-time hyperplane. This gives the
commutation relations

½Oi;Oj� ¼ ifijkOk Oi ¼
Z

dxOiðx; 0Þ: (6.4)

While the generators are not local operators, they in-
volve integrals of local densities over a three-dimensional
hyperplane, and the partition of unity for scale 1=2k scaling
functions can be used to express the commutation relations
in an almost local form. To do this we insert the partition of
unity, (6.1), in (6.3) to get

Oi ¼X
m

Z
Oki

m (6.5)

where the smeared density is

Oki
m :¼

Z
2�3k=2skmðxÞOiðx; 0Þdx (6.6)

and the integrals are over the t ¼ 0 hyperplane.
In this notation the exact commutation relations (6.4)

can be expressed in terms of the sums:X
mn

½Oki
m; O

kj
n � ¼ i

X
l

fijl
X
n

Okl
n : (6.7)

While these sums have an infinite number of terms, there
are no convergence problems because when (6.7) operates
on the dense set of states j�i constructed out of finite linear
combinations of products of creation operators smeared
against wavelets and scaling functions, whose support is
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necessarily contained in a bounded region, only a finite
number of terms in the sum (6.7) are nonzero, giving

X
mn

½Oki
m; O

kj
n �jc i ¼ i

X
l

fijl
X
n

Okl
n jc i: (6.8)

In (6.8) the sums are finite, withm and n running only over
the indices corresponding to scaling functions in the
partition of unity that have common support with the
smearing functions sknðxÞ and wl

jðxÞ used in the discrete

creation operators.
Equation (6.8) is an exact consequence of Poincaré

invariance, and if it is satisfied on the dense set of vectors
generated by finite numbers of discrete creation operators,
one recovers exact Poincaré invariance.

Thus Poincaré invariance can be tested by replacing the
infinite sums in (6.7) by a suitable finite sum of the
localized operators, Okl

n . Where approximations enter is
that the local densities Oiðx; 0Þ that appear in the defini-
tion of Okl

n are constructed out of normal products of field
operators. The fields that appear in these expressions can
all be expanded in the form (4.1) and (4.2). The partition
of unity projects the product of different scale discrete
fields on the scale 1=2k subspace. As long as there is no
truncation everything is exact. The problem is that for
normal products of more than one field, there are scale
1=2k contributions to the operator products that involve
fields on scales smaller than 1=2k. If we truncate the
theory by discarding all of the contributions to the field
operators associated with scales smaller than 1=2k, then
the discarded scale 1=2k contributions that come from
projection of products of smaller-scale field operators
are precisely the corrections that are needed to restore
Poincaré invariance.

To understand the structure of these discarded terms
consider the exact expression for the linear momentum of
a free field using the scale 1=2k scaling functions and
associated wavelets. The scalar density Oðx; 0Þ for the
momentum operator is (3.12) which is the normal product
of the �ðxÞ field and the gradient of the �ðxÞ field:

P ðxÞ ¼ �:�ðx; 0Þr�ðx; 0Þ:: (6.9)

Using the partition of unity (6.1) Eq. (3.12) can be
expressed exactly as

P ¼ X
m

Pk
m (6.10)

where

P k
m ¼ �

Z
:�ðx; 0Þr�ðx; 0Þ:2�3k=2skmðxÞdx: (6.11)

Alternatively, we can express Pk
m using the exact expan-

sion of each of the fields in the scale 1=2k wavelet basis and
smearing the result with the scale 1=2k partition of unity:

P k
m ¼ X

j;n

:�kðj; 0ÞPkkk
mnj�

kðn; 0Þ:

þ X
l;�;j;n

:�lðj; �; 0ÞPlkk
j;�;nm�

kðn; 0Þ:

þ X
l;�;j;n

:�kðn; 0ÞPklk
j;n;�;m�

lðn; �; 0Þ:

þ X
l;�;j;n

:�lðn; �; 0ÞPlsk
j;�;n;�;m�

sðn; �; 0Þ: (6.12)

where the expansion coefficients are

Pkkk
mnj ¼ �

Z
skmðxÞsknðxÞrskjðxÞdx (6.13)

Plkk
j;�;nm ¼ �

Z
wl

j;�ðxÞsknðxÞrskmðxÞdx (6.14)

Pklk
j;n;�;m ¼ �

Z
skmðxÞskjðxÞrwl

n;�ðxÞdx (6.15)

Plsk
j;�;n;�;m ¼ �

Z
wl

j;�ðxÞskmðxÞrws
n;�ðxÞdx: (6.16)

The coefficients above are numerical coefficients.
To understand the interpretation of these results we

note that (6.8) is an exact consequence of the commuta-
tion relations expressed in terms of the scale 1=2k par-
tition of unity. The expansion (6.12) is exact, and the
resulting operators satisfy (6.8). If the fields are replaced
by the resolution 1=2k approximations given by the first
term on the right-hand side of (4.1) and (4.2), then (6.12)
would be replaced by an ‘‘approximation’’ consisting of
only the first line of (6.12). This approximation would
violate the commutation relations (6.8).
The ‘‘corrections’’ defined by the second through fourth

line of (6.12) provide the missing physics from smaller
scales that is needed to restore the commutation relations.
Note that (6.8) only involves operators that act in a finite
volume, so any problems due to a volume truncation are
not relevant.
In the free-field case the generators (3.20)–(3.23) are

sums of normal products of one creation and one annihi-
lation operator. The commutator of two operators with
the structure akðmÞyakðnÞ leads to another operator
of the same form. In addition commutators of operators
of the structure akðmÞyblðn; �Þ with blðn; �ÞyakðjÞ also
lead to structures of the form akðmÞyakðjÞ.
The breaking of Poincaré invariance is related to the

question of how large are the corrections Plkk
j;�;nm,

Pklk
j;n;�;m and Plsk

j�n�m that restore the commutation rela-

tions relative to the coefficients Pkkk
mnj that define the

approximate generators in a model with a resolution
1=2k cutoff.
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These coefficients can all be computed exactly using the
methods of the previous section in order to identify the
largest correction terms.

VII. RENORMALIZATION GROUP

The wavelet basis decomposes the Hilbert space L2ðR3Þ
into an infinite orthogonal direct sum of infinite-
dimensional subspaces of successively finer resolution.

The Hamiltonian can be truncated at any resolution. The
resulting operator is similar to a Hamiltonian with integrals
over fields replaced by sums of fields averaged over lattice
blocks, except the averaging functions are products of
scaling functions of a given scale. In our free-field example
the resolution 1=2k truncated Hamiltonian has the form
HðaÞ in (4.34).

The scaling properties of the wavelet basis make it
natural for implementing renormalization group transfor-
mations. For the wavelet realization one starts with a
Hamiltonian truncated to a given fixed scale, 1=2k. The
truncated Hamiltonian is obtained from the formal expan-
sion for the ‘‘exact’’ Hamiltonian by discarding contribu-
tions from fields associated with scales smaller than 1=2k.
In practice there will also be a volume cutoff.

The truncated Hamiltonian defines a class of resolution
1=2k Hamiltonians depending on the choice of bare parame-
ters 
01 � � �
0n. The bare parameters can be initially fixed
by computing n scale 1=2k observables, Ok

i ð
01; . . . ; 
0nÞ,
and adjusting the bare parameters so they agree with fixed
‘‘experimental’’ values, Qk�

i , of these observables

Ok
i ð
�

01 � � �
�
0nÞ ¼ Ok�

i 1 � i � n: (7.1)

We assume that these equations can be solved and we denote
the solution of (7.1) by
�

10ðkÞ; . . . ; 
�
n0ðkÞ, where the factor k

indicates the resolution of the truncated Hamiltonian.
The next step of the renormalization program is to

consider the class of truncated Hamiltonians at resolution
1=2kþ1; i.e., increase the resolution by a factor of 2. These
Hamiltonians are still functions of the same n bare parame-
ters. Using (2.28) in (4.3) and (4.5) the fields can be ex-
pressed in terms of the scale 1=2k scaling-function fields
and the scale 1=2k wavelet fields. Eliminating the wavelet
field degrees of freedom results in a set of effective
Hamiltonians in the 1=2k resolution degrees of freedom
that include the effects of the eliminated resolution 1=2kþ1

degrees of freedom. The resulting effective Hamiltonians
are more complicated, but they are still parametrized by the
same bare parameters. One can again solve (7.1) with the
same observables associated with the new effective
Hamiltonian. This leads to new values of the bare parame-
ters by 
�

10ðkþ 1Þ; . . . ; 
�
n0ðkþ 1Þ.

We can repeat this process starting with the effective
Hamiltonians with scale 1=2k degrees of freedom that
include the effects of the eliminated scale 1=2kþ1 degrees
of freedom to construct new effective Hamiltonians
with scale 1=2k degrees of freedom that include the

effects of the eliminated scale 1=2kþ2 degrees of freedom.
Solving (7.1) again leads to a new set of bare parameters

�
0ðkþ 2Þ; . . .
�

n0ðkþ 2Þ. This process can be continued,

incorporating physics from successively smaller scales in
scale 1=2k Hamiltonian.
In this process it useful to work with a volume cutoff of

fixed size that is large enough to not impact the value of the
scale 1=2k ‘‘experimental’’ observables that determine the
sequence of bare coupling constants.
In general the bare parameters 
�

0ðlÞ will diverge or

vanish in the limit that 1=2kþl ! 0. Renormalization
expresses the bare parameters 
�

m0ðkþ lÞ in terms of the

renormalized parameters 
�
mðkþ lÞ multiplied by

1=2kþl-dependent factors that remove the leading scale
dependence from the bare parameters. For power-law
behavior, the renormalized and unrenormalized parameters
are related by 
�

mðkþ lÞ ¼ ð2lÞsm
�
m0ðkþ lÞ, where the

exponents sm are chosen to remove the leading scale
dependence from 
�

m0ðkþ lÞ as l ! 1.

If the renormalized parameters converge to finite fixed
points in the high-resolution limit, then the resulting scale
1=2k effective Hamiltonian is equivalent to one obtained
from the renormalized Hamiltonian by exactly eliminating
high-resolution degrees of freedom, where both the full and
effective Hamiltonians have finite renormalized parameters.
In what follows we discuss the role of the wavelet

basis in the formulation of the renormalization group trans-
formations that determine the dependence of the bare
coupling constants on resolution of the eliminated degrees
of freedom.
We begin by considering the relation of the free

Hamiltonians, HðaÞ, truncated on two different scales. To
do this we use the scaling equation in the form (2.22) to
obtain the following identities:

�mn ¼
Z

skmðxÞsknðxÞdx

¼ X
jl

hl�2mhj�2n

Z
skþ1
l ðxÞskþ1

j ðxÞdx

¼ X
jl

hl�2mhj�2n�jl ¼
X
j

hj�2mhj�2n (7.2)

and

Dk
mn ¼

Z
sk0mðxÞsk0n ðxÞdx

¼ X
jl

hl�2mhj�2n

Z
skþ10
l ðxÞskþ10

j ðxÞdx

¼ X
jl

hl�2mhj�2nD
kþ1
lj : (7.3)

Next we consider the individual terms in the resolution
1=2kþ1 truncated free-field Hamiltonian Hkþ1ðaÞ. This
Hamiltonian is the sum of the following three terms:

WAVELETS IN FIELD THEORY PHYSICAL REVIEW D 87, 116011 (2013)

116011-15



1

2

X
n

:�kþ1ðn; 0Þ�kþ1ðn; 0Þ:; (7.4)

X
mn

:�kþ1ðm; 0ÞDkþ1
mn �

kþ1ðn; 0Þ:; (7.5)

and

�2
X
n

:�kþ1ðn; 0Þ�kþ1ðn; 0Þ:Þ: (7.6)

The discrete fields in these terms have the form

�kþ1ðn; 0Þ ¼
Z

�ðx; 0Þskþ1
n1 ðxÞskþ1

n2 ðyÞskþ1
n3 ðzÞdx (7.7)

and

�kþ1ðn; 0Þ ¼
Z

�ðx; 0Þskþ1
n1 ðxÞskþ1

n2 ðyÞskþ1
n3 ðzÞdx: (7.8)

Using (2.24) these can be expressed in the form

�kþ1ðn; 0Þ ¼
Z

�ðx; 0Þskn1ðx1Þskn2ðx2Þskn3ðx3Þdx

¼
Z

�ðx; 0Þ
�X

j1

hn1�2j1s
k
j1
ðx1Þ þ

X
j1

gn1�2j1w
k�1
j1

ðx1Þ
�
�
�X

j2

hn2�2j2s
k
j2
ðx2Þ þ

X
j2

gn2�2j2w
k�1
j2

ðx2Þ
�

�
�X

j3

hn3�2j3s
k
j3
ðx3Þ þ

X
j3

gn3�2j3w
k�1
j3

ðx3Þ
�
dx (7.9)

�kþ1ðn; 0Þ ¼
Z

�ðx; 0Þskn1ðx1Þskn2ðx2Þskn3ðx3Þdx

¼
Z

�ðx; 0Þ
�X

j1

hn1�2j1s
k
j1
ðx1Þ þ

X
j1

gn1�2j1w
k�1
j1

ðx1Þ
�
�
�X

j2

hn2�2j2s
k
j2
ðx2Þ þ

X
j2

gn2�2j2w
k�1
j2

ðx2Þ
�

�
�X

j3

hn3�2j3s
k
j3
ðx3Þ þ

X
j3

gn3�2j3w
k�1
j3

ðx3Þ
�
dx: (7.10)

These expressions have the form

�kþ1ðn; 0Þ ¼ X
j

Y
i

hni�2ji�
kðj; 0Þ þ � � � (7.11)

�kþ1ðn; 0Þ ¼ X
j

Y
i

hni�2ji�
kðj; 0Þ þ � � � (7.12)

where the � � � terms represent terms where at least one scale k wavelet wk
nðxÞ appears in the integral. Using these

expressions in (7.4) gives

1

2

X
n

:�kþ1ðn;0Þ�kþ1ðn;0Þ :¼ 1

2

�X
n

:
X
j

Y
i

hni�2ji�
kðj;0ÞX

r

Y
m

hnm�2rm�
kðr;0Þ:þ���

�
¼ 1

2

�X
j

:�kðj;0Þ�kðj;0Þþ �� �
�

(7.13)

where we have used (7.2) three times. We see that this term in the resolution 1=2kþ1 Hamiltonian can be expressed as the
corresponding term in the resolution 1=2k Hamiltonian plus wavelet related corrections that restore the full 1=2kþ1 scale
physics.

Similarly we find the mass term has the same form

�2
X
n

:�kþ1ðn; 0Þ�kþ1ðn; 0Þ:Þ ¼ �2
X
n

:�kðn; 0Þ�kðn; 0Þ:þ � � � : (7.14)

Finally we consider the term (7.5)

X
mn

:�kþ1ðm; 0ÞDkþ1
mn �

kþ1ðn; 0Þ :¼ X
mn

:

�X
j

Y
i

hmi�2ji�
kðj; 0Þ þ � � �

�
�X

Dkþ1
mini

�X
l

Y
i

hni�2li�
kðl; 0Þ þ � � �

�
:

(7.15)

Using (7.2) and (7.3) this becomes
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X
mn

:�kðm; 0ÞDk
mn�

kðn; 0Þ:þ � � � : (7.16)

Taken together these calculations show that the resolu-
tion 1=2kþ1 free Hamiltonian is equal to the resolution
1=2k free Hamiltonian plus a correction that fills in the
missing degrees of freedom that appear in the scale 1=2kþ1

but not on scale 1=2k. The correction terms all involve
fields smeared with wavelets. An important observation is
that for free fields the derivative terms provide the coupling
between the two scales. A similar analysis can be used
to show that all of the free-field Poincaré generators have
the property that the resolution 1=2kþ1 operators are equal
to the resolution 1=2k generators plus wavelet field
corrections.

While we derived these results by considering the ex-
ample of a free field, the result also holds for interactions.
For example a scale 1=2kþ1 truncated

R
:�nðx; 0Þ:dx in-

teraction has the formX
m1���mn

:�kþ1ðm1; 0Þ � � ��kþ1ðmn; 0Þ:�kþ1
m1���mn

(7.17)

where

�kþ1
m1���mn

¼
Z

skþ1
m1

ðxÞ � � � skþ1
mn

ðxÞdx: (7.18)

It is straightforward to show, using (2.22) and (2.24), that

�k
m1���mn

¼ Y X
l1���ln

hl1i�2m1i
� � �hlni�2mni

�kþ1
l1���ln (7.19)

which when used with (7.11) and (7.12) givesX
m1���mn

:�kþ1ðm1; 0Þ � � ��kþ1ðmn; 0Þ�kþ1
m1���mn

¼ X
m1���mn

:�kðm1; 0Þ � � ��kðmn; 0Þ�k
m1���mn

þ � � �

(7.20)

where the � � � terms represent the contributions where at
least one of the expansion’s functions is a scale 1=2k

wavelet, wk
mðxÞ.

It follows that a resolution 1=2kþ1 Hamiltonian has the
form

Hkþ1ðaÞ ¼ HkðaÞ þHkðbÞ þHkðabÞ (7.21)

where HkðaÞ is the part of Hkþ1 that has only scale 1=2k

scaling-function fields, HkðbÞ has only scale 1=2k wavelet
fields and HkðabÞ contains the terms with at least one
wavelet and one scaling-function field. In the interacting
case the interaction also contributes to HkðabÞ.

The creation operators associated with scale 1=2k

scaling-function fields and the creation operators associ-
ated with at least one scale 1=2k wavelet field each generate
mutually orthogonal subspaces on the Fock space gener-
ated by the scale 1=2kþ1 scaling-function creation
operators.

One can then seek a unitary transformation that Block
diagonalizes Hkþ1ðaÞ on the subspace generated by the
scale 1=2k scaling-function creation operators. The result-
ing effective Hamiltonian will be a Hamiltonian in the
scale 1=2k degrees of freedom that includes the effects of
the eliminated scale 1=2kþ1 degrees of freedom. Both
Hamiltonians are different functions of the same coupling
constants and mass parameters. Renormalization of the
parameters in the Hamiltonian of the model is necessary
to keep the resolution 1=2k observables fixed. This gives a
new coarse-scale Hamiltonian that includes additional de-
grees of freedom at a finer scale.
Because the resolution 1=2k Hamiltonian has the same

form for any k, the starting scale is arbitrary so we can
repeat this process, successively eliminating degrees of
freedom associated with smaller and smaller scales, re-
normalizing the parameters in the Hamiltonian at each
step. At some point one can stop and the result will be an
effective theory that describes the scale 1=2k degrees of
freedom, including the effects of the eliminated scale
1=2kþl degrees of freedom, or one can proceed to try to
find a fixed point of this renormalization group equation.
The are a number of possible approaches that can be

used to eliminate the scale 1=2kþl degrees that appear in
the scale 1=2kþ1 Hamiltonian but not in the scale 1=2k

Hamiltonian.
One method is to use the similarity renormalization

group method [16]. This involves solving the differential
equation

dHð
Þ
d


¼ ½Hð
Þ½Hð
;HkðaÞ þHkðbÞ�� (7.22)

with initial condition

Hð0Þ ¼ HkþlðaÞ ¼ HkðaÞ þHkðbÞ þHkðabÞ: (7.23)

The resulting Hð
Þ will evolve to a Hamiltonian that does
not have coupling terms of the form Hða; bÞ. In principle
this can also be applied to the full Hamiltonian. It is easy to
see the iterative solution of this equation generates more
complicated interactions in the Hamiltonian with each
iteration. The iteration involves commutators of discrete
creation and annihilation operators multiplied by algebrai-
cally computable coefficients.
A second approach is to try to do this perturbatively.

In this case the Hamiltonian is expressed in the form

HðaÞ HI

ðHIÞy HcðaÞ

 !
(7.24)

where in this expression HðaÞ is the part of Hamiltonian
that maps the Fock space generated by the scale 1=2k

scaling-function creation operators into itself, Hc is the
projection of the resolution 1=2kþ1 Hamiltonian on the
orthogonal complement of this space, and HI and ðHIÞy
are the parts of the resolution 1=2kþ1 Hamiltonian that
couple these two spaces.
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A unitary transformation of the Okobu [17,18] form

U ¼ ðIa þ AyAÞ�1=2 �AyðIb þ AAyÞ�1=2

AðIa þ AyAÞ�1=2 ðIb þ AAyÞ�1=2

 !
(7.25)

with

A ¼ 0 0

AðbaÞ 0

 !
(7.26)

will block diagonalize the Hamiltonian on the Fock space
generated by the scale 1=2k creation operators provided A
satisfies

AHðaÞ �HcðaÞAþ ðHIÞy � AHIA ¼ 0: (7.27)

Equation (7.27) is a nonlinear equation for A that can be
solved perturbatively in HI. In this case we seek a solution
for 
 ¼ 1 of

AHðaÞ �HcðaÞAþ 
ðHIÞy � 
AHIA ¼ 0: (7.28)

with

A ¼ X1
n¼1


nAn (7.29)

An important feature of the wavelet method is that the
coupling of the scales proceeds through the terms HðabÞ.
These terms involve discrete operators multiplied by
coefficients that involve integrals over the product of scal-
ing functions, wavelets and their derivatives. Since these
coefficients can all be computed exactly (using finite linear
algebra) it is possible to identify the largest or most im-
portant terms and discard the smaller ones to get more
efficient approximate solutions.

VIII. GAUGE INVARIANCE

To motivate the implementation of local gauge invari-
ance in the wavelet representation of field theory we con-
sider the example of an SUð3Þ gauge field. The treatment of
full gauge invariance with respect to fields smeared over
four space-time variables or time-independent gauge trans-
formation restricted to a fixed-time hyperplane for fields
smeared over a basis for the hyperplane is similar. Since
most of our development has been for fields smeared over a
basis for the fixed-time hyperplane, we limit our discussion
of gauge transformations to time-independent gauge
transformations.

In the wavelet basis the basis functions are not local;
however if all of the basis functions are retained linear
combinations can be used to describe observables associ-
ated with arbitrarily small regions. Locally independent
gauge transformations can be built out of independent
gauge transformation associated with each of the individ-
ual discrete wavelet fields. To be specific we consider an
SUð3Þ color gauge group.

We consider transformations of the form

�k
cðn; tÞ ! �0k

c ðn; tÞ ¼
X
c0
Vk
cc0 ðn; tÞ�k

c0 ðn; tÞ (8.1)

�l
cðn; �; tÞ ! �0l

c ðn; �; tÞ ¼
X
c0
Vl
cc0 ðn; �; tÞ�l

c0 ðn; �; tÞ

(8.2)

where Vk
cc0 ðn; tÞ and Vl

cc0 ðn; �; tÞ are SUð3Þ valued func-

tions of the various parameters. They are independent for
each independent discrete field operator.
It is obvious that quadratic expressions of the formX
n;c

��k
cðn; tÞ�k

cðn; tÞ þ
X
l;�;c

��l
cðn; �; tÞ�l

cðn; �; tÞ (8.3)

are invariant with respect to the gauge transformations
(8.1) and (8.2).
The construction of a representation for the covariant

derivative can be deduced from the continuum covariant
derivative

� iDcc0 ¼ �ir�cc0 þAdðx; tÞ
d
cc0 (8.4)

where 
d
cc0 are the Gell-Mann matrices. The projection of

this operator on the wavelet basis gives matrix elements of
the form

� iDk
mn;cc0 ¼ �irk

mn;cc0 þ
X
d

Ak
mn;dðx; tÞ
d

cc0 (8.5)

� iDkl
mn�;cc0 ¼ �irkl

mn�;cc0 þ
X
d

Akl
mn�;dðtÞ
d

cc0 (8.6)

� iDlk
m�n;cc0 ¼ �irlk

m�n;cc0 þ
X
d

Alk
m�n;dðtÞ
d

cc0 (8.7)

� iDjl
m�n�;cc0 ¼ �irjl

m�n�;cc0 þ
X
d

Ajl
m�n�;dðtÞ
d

cc0 (8.8)

where the multi-index quantities appearing in (8.5)–(8.8)
are the matrix elements in the wavelet basis

r k
mn;cc0 ¼

Z
skmðxÞr�cc0s

k
nðxÞdx; (8.9)

A k
mn;d ¼

X
l

Z
skmðxÞAdðxÞsknðxÞdx; (8.10)

r kl
mn�;cc0 ¼

Z
skmðxÞr�cc0w

l
n�ðxÞdx; (8.11)

A kl
mn�;d ¼

X
l

Z
skmðxÞAdðxÞwl

n�ðxÞdx; (8.12)

r lk
m�n;cc0 ¼

Z
wl

m�ðxÞrcc0s
k
nðxÞdx; (8.13)
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A lk
m�n;d ¼

X
l

Z
wl

m�ðxÞAdðxÞsknðxÞdx; (8.14)

r jl
m�n�;cc0 ¼

Z
wj

m�ðxÞr�cc0w
l
n�ðxÞdx; (8.15)

A jl
m�n�;d ¼

X
l

Z
wj

m�ðxÞAdðxÞwl
n�ðxÞdx: (8.16)

This derivative will transform covariantly:

Vk
cc0 ðm; tÞDk

mn�;cc0 ¼ Dk0
mn;cc0V

k
cc0 ðn; tÞ; (8.17)

Vk
cc0 ðm; tÞDkl

mn�;cc0 ¼ Dkl0
mn�;cc0V

l
cc0 ðn; �; tÞ; (8.18)

Vl
cc0 ðm; �; tÞDlk

m�n;cc0 ¼ Dlk0
m�n;cc0V

k
cc0 ðn; �; tÞ; (8.19)

Vj
cc0 ðn; �; tÞDjl

m�n�;cc0 ¼ Dkl0
m�n�;cc0V

l
cc0 ðn; �; tÞ; (8.20)

provided the vector potential matrix transforms like

� iVk
cc0 ðm; tÞrk

mn þ
X
dc00

Vk
cc00 ðm; tÞAk

mn;d

d
c00c

¼ �irk
mnV

k
cc0 ðn; tÞ þ

X
dc00

A0k
mn;d


d
cc00V

k
c00cðn; tÞ (8.21)

� iVk
cc0 ðm; tÞrkl

mn� þX
dc00

Vk
cc00 ðm; tÞAkl

mn�;d

d
c00c

¼ �irkl
mn�V

l
cc0 ðn; �; tÞ þ

X
dc00

A0kl
mn;d


d
cc00V

l
c00cðn; �tÞ

(8.22)

� iVl
cc0 ðm; �; tÞrlk

m�n þ
X
dc00

Vl
cc00 ðm; �; tÞAlk

m�n;d

d
c00c

¼ �irlk
m�nV

k
cc0 ðn; tÞ þ

X
dc00

A0lk
m�n;d


d
cc00V

k
c00cðn; tÞ

(8.23)

� iVj
cc0 ðm; �; tÞrjl

m�n� þX
dc00

Vj
cc00 ðm; �; tÞAjl

m�n�;d

d
c00c

¼ �irjl
m�n�V

j
cc0 ðn; �; tÞ þ

X
dc00

A0jl
m�n�;d


d
cc00V

l
c00cðn; �; tÞ:

(8.24)

With these transformation properties the quantities

� i
X
mn

��k
cðm; tÞDk

mn;cc0
��k
cðn; tÞ; (8.25)

� i
X
m�n

��l
cðm; �; tÞDlk

m�n;cc0
��k
cðn; tÞ; (8.26)

� i
X
mn

��k
cðm; tÞDkl

mn�;cc0
��l
cðn; �; tÞ; (8.27)

� i
X
mn

��j
cðm; �; tÞDjl

m�n�;cc0
��l
cðn; �; tÞ; (8.28)

are invariant.
Because these are invariant, matrix element by matrix

element, the invariance is preserved by truncation. A
covariant field strength tensor is obtained by taking the
commutator of the covariant derivatives projected on
different axes.
Note that the generalization to 3þ 1 dimensions is a

direct extension of the three-dimensional results. The in-
teresting feature is that in the full theory the gauge invari-
ance is implemented by an infinite number of independent
nonlocal gauge transformations that act independently on
each degree of freedom.

IX. SUMMARYAND CONCLUSION

In this paper we discussed some of the advantages of
using the basis generated by Daubechies scaling functions
and wavelets to formulate exact discretizations of local
field theories. We emphasized the special properties of
the basis and how these could be useful in field-theoretic
applications. The most important properties are that the
basis functions have compact support, contain locally finite
partitions of unity, and are related to fixed points of a
renormalization group equation.
The working assumption is that it is possible to make

sense out of quantum fields smeared with a class of test
functions that are not infinitely differentiable, but instead
have a fractal character with a limited amount of smooth-
ness. The justification for this is that the integral of a
product of Daubechies K ¼ 3 scaling functions over the
Källén-Lehmann representation of a mass � two-point
Wightman function exists. This justifies the use of wavelet
smeared fields in free-field theories and more generally in
models with volume and resolution cutoffs.
Given this assumption the wavelet basis leads to an exact

representation of the local field as an infinite linear combi-
nation of smeared fields multiplied by compactly sup-
ported basis functions. The smeared field operators are
operators rather than operator valued distributions. They
generate a local algebra in the sense that in any open set of
space-time there are operators associated with smearing
functions that have support entirely in that open set.
In the wavelet representation products of local field

operators are replaced by infinite sums of well-defined
operators multiplied by products of wavelet basis functions
at different space-time points. In this representation singu-
larities in the operator products at nearby points are
replaced by convergence questions. For example, the local
composite fields in the Wilson-Zimmermann formulation
of the operator product expansion [19] are recursively
constructed by identifying and ordering the most singular
matrix elements as the separation between points vanishes.
In the wavelet representation these matrix elements are
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represented by infinite sums of products of basis functions
at different points with well-defined expectation values of
discrete field operators. The identification of the singular-
ity class of a given matrix element depends on the asymp-
totic properties of the series as a function of the separation
between points.

The discussions in this paper are focused on fields
smeared only over wavelet basis functions in three dimen-
sions at a fixed time. This representation is more conve-
nient for dealing with the Hamiltonian formulation of the
dynamics as well as the treatment of the Poincaré symme-
try. In this representation, if the basis is truncated to a finite
number of degrees of freedom (equivalent to a volume and
resolution cutoff), then the interactions in the Hamiltonian
become well-defined operators and one can in principle
solve for the truncated dynamics. Because the basis func-
tions are related to fixed points of a renormalization group
equation, Hamiltonians with fine-scale degrees of freedom
are equal to identical Hamiltonians with coarse-scale de-
grees of freedom plus additional operators with additional
fine-scale degrees of freedom. Eliminating the fine-scale
degrees of freedom, rescaling and adjusting the parameters
of the theory leads to a renormalization group transforma-
tion. While the calculations are not trivial, implementation
of the decoupling using the similarity renormalization
group method involves commutators of discrete canonical
fields and algebraically computable coefficients. Methods
for computing these coefficients were discussed in Sec. V
and implemented in the Appendix for the parts of the free
Hamiltonian that couple different scales.

Another important property of the wavelet basis is that
the scaling functions on any fixed scale are up to an overall
constant, a locally finite, compactly supported partition of
unity. When inserted in the formal expressions for the
Poincaré generators, expressed as integrals of the energy
momentum and angular momentum densities over a fixed
time surface, the generator is decomposed into a sum of
operators that act in different spatial volumes at a given
time. This allows one to exactly test the Poincaré commu-
tation relations in finite volumes. These exact finite-volume
components of the generators can be expressed in terms of
the discrete wavelet fields by replacing each field that
appears in the generator by its expansion in wavelet
smeared fields. When these expansions are truncated, by
eliminating small-scale degrees of freedom, the commuta-
tion relations are violated because the products of the small-
scale degrees of freedom couple to the large-scale degrees
of freedom. In the wavelet basis these corrections can be
identified and their relative importance can be calculated.

A final important property of the wavelet basis is the
ability to reduce all of the quadratures that are needed in
the theory to finite algebra. This requires replacing con-
ventional computational techniques that depend on func-
tions looking smooth on small scales by new methods
based on the renormalization group.

We also demonstrated that SUð3Þ gauge invariance
could be implemented exactly in wavelet truncated theo-
ries. While our discussion was limited to some illustrative
topics, there are a number of other topics where the wavelet
representation might have some advantages. These include
the wavelet representation of the operator product expan-
sion and wavelet representations of the Poincaré Lie alge-
bra in momentum space.
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APPENDIX: OVERLAP INTEGRALS

In this appendix we compute the overlap integrals Dk
mn

that appear in the free-field Hamiltonian. These are the
terms responsible for the coupling of the degrees of free-
dom associated with different scales.
The general coefficients are products of the matrices

below in the x, y and z variables. There are nine
combinations.

Dk
mn¼

Z
sk0mðxÞsk0n ðxÞdx¼22k

Z
s0ðx�mÞs0ðx�nÞ¼2kDmn

(A1)

Dkl
mn ¼

Z
sk0mðxÞwl0

nðxÞdx ¼ 22ðlþ1ÞX
m0n0

Hlþ1�k
mm0 Gnn0Dm0n0

(A2)

Djl
mn ¼

Z
wj0

mðxÞwl0
nðxÞdx¼ 22ðlþ1ÞX

m0n0
ðGHl�jÞmm0Gnn0Dm0n0

ðl� jÞ: (A3)

The above expressions show that each of these integrals
are linear combinations of the matrices

Dlm ¼
Z

s0lðxÞs0mðxÞdx: (A4)

We can use translational invariance to write Eq. (A4) as

Dlm ¼ D0;m�l ¼
Z

s0ðxÞs0m�lðxÞdx: (A5)

Because of the support conditions on the scaling functions
these vanish unless jn�mj � 4. It is difficult to get an
inhomogeneous equation for Dlm because the obvious
choice, using the partition of unity (5.26), satisfies
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X
l

lD0;m�l ¼ 0 (A6)

for any m. This is because what remains is the integral of
the derivative of a continuous function with compact sup-
port. To get around this problem we use the partition of
unity (2.21) to get the relation

D0;m�l ¼ Dlm ¼ X
n

Dnlm ¼ X
n

Z
snðxÞs0lðxÞs0mðxÞdx:

(A7)

This expresses the coefficients Dmn as linear combinations
of Dlmn. Using the methods discussed in Sec. V we find
that coefficients Dnlm ¼ D0;l�n;m�n satisfy the homogene-

ous equations

D0lm ¼ 4
ffiffiffi
2

p X
n;k;j

H0nHl;kþnHm;jþnD0kj (A8)

and X
m

D0lm ¼ 0 D0lm �D0ml ¼ 0 (A9)

and the inhomogeneous equation

X
l

lDnlm ¼
Z

snðxÞs0mðxÞdx ¼ �nm ¼ �0;m�n: (A10)

An independent subset of these equations can be solved for
the nonzeroD0lm s in terms of the �0n. The coefficients �0n

satisfy the homogeneous equations

�0l ¼ 2
X
m;n

H0mHl;nþm�0n (A11)

and X
n

n�0n ¼ 1 (A12)

where we have used the partition of unity (5.26). These
equations can be solved for the nonzero �0n and the

TABLE II. Overlap integrals: D0m.

D0–4 �5:357� 10�3

D0–3 �1:143� 10�1

D0–2 8:762� 10�1

D0–1 �3:390
D00 5.268

D01 �3:390
D02 8:762� 10�1

D03 �1:143� 10�1

D04 �5:357� 10�3

TABLE IV. Overlap integrals: D0mn.

D0�4�4 4:056756� 10�5 D0�1�2 �6:544856� 10�1 D012 1:758631� 10�1

D0�4�3 1:620980� 10�4 D0�1�1 2.323493 D013 1:299066� 10�2

D0�4�2 �6:227505� 10�4 D0�10 �2:071142 D014 �8:819594� 10�5

D0�4�1 9:394026� 10�4 D0�11 3:284401� 10�1 D02�2 1:773552� 10�3

D0�40 �5:193176� 10�4 D0�12 3:304668� 10�2 D02�1 3:304668� 10�2

D0�3�4 1:620980� 10�4 D0�13 �3:892382� 10�4 D020 �8:023148� 10�2

D0�3�3 1:782152� 10�2 D00�4 �5:193176� 10�4 D021 1:758631� 10�1

D0�3�2 �4:290543� 10�2 D00�3 �8:962795� 10�3 D022 �1:066658� 10�1

D0�3�1 4:009720� 10�2 D00�2 5:753018� 10�1 D023 �2:400100� 10�2

D0�30 �8:962795� 10�3 D00�1 �2:071142 D024 2:149391� 10�4

D0�31 �6:212589� 10�3 D000 2.364229 D03�1 �3:892382� 10�4

D0�2�4 �6:227505� 10�4 D001 �7:734980� 10�1 D030 �5:168265� 10�3

D0�2�3 �4:290543� 10�2 D002 �8:023148� 10�2 D031 1:299066� 10�2

D0�2�2 2:549910� 10�1 D003 �5:168265� 10�3 D032 �2:400100� 10�2

D0�2�1 �6:544856� 10�1 D004 �9:550006� 10�6 D033 1:703740� 10�2

D0�20 5:753018� 10�1 D01�3 �6:212589� 10�3 D034 �4:695561� 10�4

D0�21 �1:340525� 10�1 D01�2 �1:340525� 10�1 D040 �9:550006� 10�6

D0�22 1:773552� 10�3 D01�1 3:284401� 10�1 D041 �8:819594� 10�5

D0�1�4 9:394026� 10�4 D010 �7:734980� 10�1 D042 2:149391� 10�4

D0�1�3 4:009720� 10�2 D011 3:965574� 10�1 D043 �4:695561� 10�4

D044 3:523629� 10�4

TABLE III. Overlap integrals: �0m.

�0–4 �3:424658� 10�4

�0–3 �1:461187� 10�2

�0–2 1:452055� 10�1

�0–1 �7:452055� 10�1

�00 �5:116622� 10�16

�01 7:452055� 10�1

�02 �1:452055� 10�1

�03 1:461187� 10�2

�04 3:424658� 10�4
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solutions can be used to calculate D0lm from which one
can derive D0m using (A7). These can be used to calculate
(A1)–(A3) and products of these quantities give the coef-
ficients (4.37)–(4.39) for any combination of indices. The

results of the calculation of the nine nonvanishing D0m are
given in Table II.
The results of the calculation of the nonzero �0n and

D0mn are given in Tables III and IV.
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