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The T-odd triple-product (TP) asymmetries in B decays to a pair of vector mesons are treated as a good

probe of CP violation because of the CPT symmetry. If CPT is no longer a good symmetry, such

correlations between T-odd and CP-odd observables do not exist, and one might get unexpected nonzero

TP asymmetries as a signal for CPT violation. We give a general formalism of TP asymmetries in the

presence of CPT violation, either in decay or in neutral meson mixing. We also discuss how the

observables depending on the transversity amplitudes are modified, and compare our expressions with

the LHCb results, showing that the study of TP asymmetries might turn out to be one of the best probes for

CPT violation.
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I. INTRODUCTION

Triple-product (TP) correlations are known to be a good
probe of CP violation in B decays [1–5]. Consider a B
meson decaying into two vector mesons V1 and V2:

BðpÞ ! V1ðk1; "1Þ þ V2ðk2; "2Þ; (1)

where k and � are respectively the four-momentum and
polarization of the vector mesons. Suppose one constructs

an observable � � ~k1:ð ~"1 � ~"2Þ, where we have taken out
the spatial components of the respective four-vectors. The
asymmetry

�ð�> 0Þ � �ð�< 0Þ
�ð�> 0Þ þ �ð�< 0Þ (2)

is odd under the time-reversal operator T as � itself is
T-odd. As CPT is supposed to be a good symmetry of the
Hamiltonian, the asymmetry is CP-odd too, and can be
taken as a probe and measure of CP violation.

TP asymmetries are also an excellent probe of new
physics (NP) beyond the Standard Model (SM). There
are many TP asymmetries which are either zero or tiny in
the SM but can go up to observable range under some new
physics (NP) dynamics. Also, true TP asymmetries, unlike
direct CP asymmetries, are nonzero even if the strong
phase difference between two competing amplitudes is
small or even zero. Of course, TP asymmetries can be
faked by a sizable strong phase difference. The authors
of Ref. [4] have discussed in detail the conditions for
observation of TP asymmetries, and also the feasibility of
measuring such asymmetries for different decay channels.
The analysis has been extended by the authors of Ref. [5]
for 4-body final states.

A crucial ingredient of extracting CP-violating signals
from TP asymmetries is the CPT theorem: the combined
discrete symmetry CPT, taken in any order, is an exact
symmetry of any local axiomatic quantum field theory [6].
Experiments have put stringent limits on CPT violation
(CPTV), as all tests performed so far to probe CPTV [7]

yielded null results [8]. Still, one should try to measure
CPTV in B systems in as many ways as possible, irrespec-
tive of the theoretical dogma, as CPTV can be a flavor-
dependent phenomenon, and the constraints obtained from
the K system [9] may not be applicable to the B systems.
One might also want to know whether any tension between
data and the SM expectation is due to CPT conserving
canonical NP, or just due to CPTV.
The issue of CPTV has started to receive significant

attention due to the growing phenomenological importance
of CPTV scenarios in neutrino physics and cosmology
[10]. A comprehensive study of CPTV in the neutral K
meson system, with a formulation that is closely analogous
to that in the B system, may be found in Ref. [11]. CPTV in
the B systems and its possible signatures, including differ-
entiation from CPT conserving NP models, have been
already investigated by several authors [12–15]. It was
shown that the lifetime difference of the two mass eigen-
states, or the direct CP asymmetries and semileptonic
observables, may be affected by such new physics. The
experimental limits are set by both BABAR, who looked for
diurnal variations of CP-violating observables [16], and
Belle, who looked for lifetime differences of Bd mass
eigenstates [17]. This makes it worthwhile to look for
possible CPTV effects in the Bs system (by Bs we generi-

cally mean both B0
s and B0

s mesons).
In this paper, we would like to develop the formalism

of TP asymmetries with possible CPTV terms in the
Lagrangian. Thus, T violation and CP violation are no
longer correlated. We will show, in detail, how and where
deviations occur from the standard CPT conserving
cases. In particular, it will be shown that some decay
channels where TP asymmetries are not expected might
show some new surprises. We will also relate the TP-
violating observables with the transversity amplitudes [4],
and discuss the implications of the LHCb results [18]
on Bs ! ��.
At this point, we note that violations of different con-

servation rules lead to different signals. For example,
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violation of �B ¼ �Q keeping CPT invariant would lead
to some interesting time-integrated dilepton asymmetries
[19]. While a systematic study of the inverse problem
(i.e. going from the signal to the underlying model) in
the B sector is worthwhile, it is outside the ambit of this
paper. We would like to refer the reader to [15] for ways to
differentiate between CPT-conserving and CPT-violating
NP under certain conditions; such a differentiation is not
always possible.

The paper is arranged as follows. In Sec. II, we discuss
the essential formalism of TP asymmetries when CPTV
terms are present in the decay amplitudes. In Sec. III, we
show how the transversity amplitudes are modified by the
CPTV terms. Section IV is devoted to the case where
CPTV terms are present in the neutral B meson mixing
Hamiltonian but not in the subsequent decay processes. In
Sec. V, we correlate the expressions with the data from
LHCb. In Sec. VI, we summarize and conclude. Some
calculational details and a compendium of relevant expres-
sions, not strictly necessary to catch the main flow of the
paper, have been relegated to the two appendixes.

II. FORMALISM

Following Ref. [4], we can write the decay amplitude for
BðpÞ ! V1ðk1; "1Þ þ V2ðk2; "2Þ as

M ¼ aS þ bDþ icP

¼ a"�1 � "�2 þ
b

m2
B

ðp � "�1Þðp � "�2Þ

þ i
c

m2
B

�����p
�q�"��1 "��2 ; (3)

where q � k1 � k2. Terms are normalized with a factor
m2

B, so that each of a, b and c is expected to be of the same
order of magnitude. The a, b and c terms correspond to
combinations of s-, d- and p-wave amplitudes for the final
state, denoted by S, D, and P respectively. The quantities
a, b and c are complex and will in general contain both
CP-conserving strong phases and CP-violating weak
phases.

Similarly, the amplitude for the CP-conjugate process
�BðpÞ ! �V1ðk1; "1Þ þ �V2ðk2; "2Þ can be expressed as

�M ¼ �a"�1 � "�2 þ
�b

m2
B

ðp � "�1Þðp � "�2Þ

� i
�c

m2
B

�����p
�q�"��1 "��2 ; (4)

where, considering CPT conservation, �a, �b and �c can be
obtained from a, b and c by changing the sign of the
weak phases.

In that case, one can write

a ¼ X
i

aie
i�a

i ei�
a
i ; �a ¼ X

i

aie
�i�a

i ei�
a
i ;

b ¼ X
i

bie
i�b

i ei�
b
i ; �b ¼X

i

bie
�i�b

i ei�
b
i ;

c ¼ X
i

cie
i�c

i ei�
c
i ; �c ¼ X

i

cie
�i�c

i ei�
c
i ;

(5)

where �a;b;c
i (�a;b;ci ) are weak (strong) phases of the

respective amplitudes. The relevant quantities for true
T-violating TP asymmetries are ½Imðac�Þ � Imð �a�c�Þ� and
½Imðbc�Þ � Imð �b�c�Þ�, which we get by adding T-odd
asymmetries in jMj2 and j �Mj2. One can show [4] that
TPs would be nonzero in B ! V1V2 decays as long as
Imðac�Þ or Imðbc�Þ is nonzero. For that, both B ! V1

and B ! V2 channels must be present with different
weak phases, following a naive factorization argument,
detailed in Appendix A following Ref. [4].
There are two ways to introduce CPT violation in the

formalism, namely,
(1) CPTV in the decay amplitude, and
(2) CPTV in the mixing amplitude.

We will discuss the former here and postpone the latter for
Sec. IV. However, note that even if CPTV is present in the
decay amplitudes, one can still have a mixing-induced
CPT violation, characterized by time-dependent TP
asymmetries, as discussed below.

A. CPTV in decay

Let us start with the first option, which can be subdi-
vided into two categories.

1. Type I: CPTV present only in the p-wave amplitude

We introduce the CPTV parameter f � ReðfÞ þ iImðfÞ
in the following way:

c ¼ X
i

cie
i�c

i ei�
c
i ð1� fÞ; �c ¼ X

i

cie
�i�c

i ei�
c
i ð1þ f�Þ;

(6)

and other amplitudes remain the same. This is the simplest
way to introduce CPTV; a channel-dependent CPTV
parameter fi would only complicate the calculation with-
out giving any extra insight.
The relevant quantity for TP is

1

2
½Imðac�Þ � Imð �a�c�Þ�
¼ X

i;j

aicj½sin ð�a
i ��c

jÞ cos ð�ai � �cj Þ

� ReðfÞ cos ð�a
i ��c

jÞ sin ð�ai � �cj Þ
� ImðfÞ sin ð�a

i ��c
jÞ sin ð�ai � �cj Þ�: (7)

A similar expression is obtained for 1
2 ½Imðbc�Þ �

Imð �b�c�Þ�. Even if the weak phase difference vanishes,
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these are still nonzero because of the second term, so the
TP asymmetry will essentially probe ReðfÞ.

2. Type II: Universal CPTV present in all amplitudes

In this case, the coefficients from Eqs. (3) and (4) are
modified as

ða;b; cÞ ! ða;b; cÞð1� fÞ;
ð �a; �b; �cÞ ! ð �a; �b; �cÞð1þ f�Þ:

(8)

Thus, the relevant expression for TP becomes

1

2
½Imðac�Þ � Imð �a�c�Þ�
¼ X

i;j

aicj½sin ð�a
i ��c

jÞ cos ð�ai � �cj Þ

� 2ReðfÞ cos ð�a
i ��c

jÞ sin ð�ai � �cj Þ�: (9)

Here too, only the second term remains in absence of weak
phase.

Following Eq. (A5) taken from [4], one finds the cases
where no TP asymmetry is expected in the SM. On the
other hand, introduction of CPTV may induce nonzero TP
asymmetries for some of the cases as follows:

(1) In order to have a TP correlation in a given decay,
both of the amplitudes in Eq. (A2) must be present;
otherwise either X or Y becomes zero. This re-
mains true for CPTV of type II, but for type I,
even in the absence of either X or Y, TPs can be
generated.

(2) For the same reason as above, CPTV of type I can
produce nonzero TPs even if V1 and V2 have iden-
tical flavor wave functions (same meson, or an
excited state). Such nonzero TPs are not allowed
in the SM as then a, b, and c are all proportional to
the same factor and there is no relative phase.

(3) In the SM (or in any NP model with CPT con-
servation), two kinematical amplitudes must have
different weak phases for a nonzero TP asymme-
try. Thus, if the quark-level decay is dominated
by a single decay amplitude, a nonzero TP can
never be generated. This is again not necessarily
true for CPTV of either type I or type II, as we
have seen from Eqs. (7) and (9) that even in the
absence of weak phase difference, one of the
terms in the relevant expressions can have a non-
zero value.

3. Effects of type I and type II CPTV in mixing

There could be another way to induce CPTV. Let us
suppose CPTV to be present only for B ! V1 and not for
B ! V2. As can be seen from Eq. (A3), this changes only
the terms with the same phase in the expressions for a, b,
and c. Thus, jfj is absorbed in the form factors and arg ðfÞ

in the phase. Obviously, this scenario does not produce any
TP even if CPTV is present.
Now let us consider the special case where V1 can be

accessed from B but not from �B, and vice versa. Let us also
take, for simplicity, B ! V1 and �B ! V2 to be single-
amplitude processes. For B ¼ Bd;s, there will be a

mixing-induced TP because the B meson can oscillate
into �B and hence decay to V2, thus providing the second
amplitude. The relevant T-violating terms, as shown in
Ref. [4], are proportional to the a-c (and b-c) interference
contributions, and are given by

jMj2ac þ j �Mj2ac � Imðac�Þ � Imð �a�c�Þ
¼ cos 2

�
�Mt

2

�
Imða1c�1 � �a1 �c

�
1Þ

þ sin 2

�
�Mt

2

�
Imða2c�2 � �a2 �c

�
2Þ

þ sin

�
�Mt

2

�
cos

�
�Mt

2

�
Re½e�2i�Ma2c

�
1

� e2i�M �a2 �c
�
1 � e2i�Ma1c

�
2 þ e�2i�M �a1 �c

�
2�; (10)

where �M is the mass difference of the two eigenstates,
and following Eq. (3),

AðB ! V1V2Þ ¼ a1S þ b1Dþ ic1P ;

Að �B ! V1V2Þ ¼ a2S þ b2Dþ ic2P ;

AðB ! �V1
�V2Þ ¼ �a2S þ �b2D� i�c2P ;

Að �B ! �V1
�V2Þ ¼ �a1S þ �b1D� i�c1P ;

(11)

so that

M � AðBðtÞ ! V1V2Þ ¼ e�iðM�i
2�Þt½aS þ bDþ icP �;

�M � Að �BðtÞ ! �V1
�V2Þ ¼ e�iðM�i

2�Þt½ �aS þ �bD� i�cP �;
(12)

with

a ¼ a1 cos

�
�Mt

2

�
� ie�2i�M sin

�
�Mt

2

�
a2;

�a ¼ �a1 cos

�
�Mt

2

�
� ie2i�M sin

�
�Mt

2

�
�a2;

b ¼ b1 cos

�
�Mt

2

�
� ie�2i�M sin

�
�Mt

2

�
b2;

�b ¼ �b1 cos

�
�Mt

2

�
� ie2i�M sin

�
�Mt

2

�
�b2;

c ¼ c1 cos

�
�Mt

2

�
� ie�2i�M sin

�
�Mt

2

�
c2;

�c ¼ �c1 cos

�
�Mt

2

�
� ie2i�M sin

�
�Mt

2

�
�c2:

(13)
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Note that amplitudes like a1 are complex, with relevant
weak and strong phases:

a1 ¼ a1e
i�a

1ei�
a
1 : (14)

The first term in Eq. (10) describes the time evolution
of the TP in B ! V1V2 and the second term, generated
due to B- �B mixing, describes the time evolution of the TP
in �B ! V1V2. The third term can potentially generate a TP
due to B- �Bmixing even in the absence of TP in B ! V1V2.
This term can be rewritten after explicitly writing down a1,
a2 etc. following Eq. (5):

� ðsin�MtÞ½a2c1 sin ð�a
2 ��c

1 � 2�MÞ sin ð�a2 � �c1 Þ
� a1c2 sin ð�a

1 ��c
2 þ 2�MÞ sin ð�a1 � �c2 Þ�: (15)

This expression goes to zero in the absence of strong
phase differences, which is intuitively obvious as strong
phase differences are related in part to kinematics, and
the TP vanishes if the kinematics of �B ! V2 is identical
to B ! V1.
However, in the presence of CPTV of type I, the ex-

pression in (15) is modified to

� ðsin�MtÞ½a2c1 sin ð�a
2 ��c

1 � 2�MÞ sin ð�a2 � �c1 Þ � a1c2 sin ð�a
1 ��c

2 þ 2�MÞ sin ð�a1 � �c2 Þ�
� 2ReðfÞ½a2c1 cos ð�a

2 ��c
1 � 2�MÞ cos ð�a2 � �c1 Þ � a1c2 cos ð�a

1 ��c
2 þ 2�MÞ cos ð�a1 � �c2 Þ�

� ImðfÞ½a2c1 sin ð�a
2 ��c

1 � 2�MÞ cos ð�a2 � �c1 Þ � a1c2 sin ð�a
1 ��c

2 þ 2�MÞ cos ð�a1 � �c2 Þ�; (16)

while for CPTV of type II, the same expression takes the
form

� ðsin�MtÞ½a2c1 sin ð�a
2 ��c

1 � 2�MÞ sin ð�a2 � �c1 Þ
� a1c2 sin ð�a

1 ��c
2 þ 2�MÞ sin ð�a1 � �c2 Þ�

� 2ReðfÞ½a2c1 cos ð�a
2 ��c

1 � 2�MÞ cos ð�a2 � �c1 Þ
� a1c2 cos ð�a

1 ��c
2 þ 2�MÞ cos ð�a1 � �c2 Þ�: (17)

The last two equations show that in the presence of
CPTV, we can get a nonzero TP from mixing, even if
the strong phase differences vanish. Only if the final
state is self-conjugate, the third term in Eq. (10) is
zero and the first two terms add up, so the TP in B !
V1V2 is time-independent and this remains true even in
the presence of CPTV.

III. RELATION TO TRANSVERSITYAMPLITUDES

The angular momentum amplitudes are related to the
tranversity amplitudes by the following relations [4]:

Ak ¼
ffiffiffi
2

p
a; A0 ¼ �ax�m1m2

m2
B

bðx2 � 1Þ;

A? ¼ 2
ffiffiffi
2

p m1m2

m2
B

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
:

(18)

Let us consider, following Ref. [5], the channels in which
each of the two vector mesons in B ! V1V2 further decays
into two pseudoscalar mesons. The decay angular distri-
bution in three dimensions is given in terms of the three
transversity amplitudes. We take 	1 (	2) to be the angle
between the direction of motion of P1 (P2) in the V1 (V2)
rest frame and that of V1 (V2) in the B rest frame. The angle
between the planes defined by P1P

0
1 and P2P

0
2 in the B rest

frame is denoted by ’. One obtains [5]

d�

dcos	1dcos	2d’
¼N

�
jA0j2cos2	1cos 2	2þjAkj2

2
sin2	1sin

2	2cos
2’þjA?j2

2
sin2	1sin

2	2sin
2’

þReðA0A
�
kÞ

2
ffiffiffi
2

p sin2	1 sin2	2 cos’� ImðA?A�
0Þ

2
ffiffiffi
2

p sin2	1 sin2	2 sin’� ImðA?A�
kÞ

2
sin2	1sin

2	2 sin2’

�
;

d ��

dcos �	1dcos �	2d �’
¼N

�
j �A0j2cos2 �	1cos 2 �	2þj �A?j2

2
sin 2 �	1sin

2 �	2sin
2 �’þj �Akj2

2
sin 2 �	1sin

2 �	2cos
2 �’

þReð �A0
�A�
kÞ

2
ffiffiffi
2

p sin2 �	1 sin2 �	2 cos �’þ Imð �A? �A�
0Þ

2
ffiffiffi
2

p sin2 �	1 sin2 �	2 sin �’þ Imð �A? �A�
kÞ

2
sin2 �	1sin

2 �	2 sin2 �’

�
:

(19)

Integrating these over 	1 and 	2 gives a T-odd asymmetry involving sin 2’ [4]

Að2Þ
T � �ðsin 2’> 0Þ � �ðsin 2’< 0Þ

�ðsin 2’> 0Þ þ �ðsin 2’< 0Þ ¼ � 4




ImðA?A�
kÞ

jA0j2 þ jA?j2 þ jAkj2
: (20)
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Similarly, we may define an asymmetry with respect to the values of sin’, assigning it the sign of cos	1 cos 	2 and
integrating over all angles,

Að1Þ
T � �½signðcos	1 cos	2Þ sin’> 0� � �½signðcos	1 cos	2Þ sin’< 0�

�½signðcos	1 cos	2Þ sin’> 0� þ �½signðcos	1 cos	2Þ sin’< 0� ¼ �2
ffiffiffi
2

p



ImðA?A�
0Þ

jA0j2 þ jA?j2 þ jAkj2
: (21)

One can define similar asymmetries �Að1Þ
T and �Að2Þ

T by inte-
grating the second part of Eq. (19) and proceeding in a
similar manner. As the p-wave amplitude in �M changes
sign relative to that of M [Eqs. (3) and (4)], the sign of the
T-odd asymmetry in j �Mj2 is opposite that in jMj2. The true
T-violating asymmetry is therefore found by adding
the T-odd asymmetries in jMj2 and j �Mj2 [2]:

AT � 1

2
ðAT þ �ATÞ: (22)

This essentially means that instead of ImðA?A�
i Þ, we

should look for expressions involving ImðA?A�
i þ �A? �A�

i Þ
in search of true TP-violating asymmetries. If we consider
specifically the decay Bs ! ��, following Ref. [5], we
notice that final states are flavorless and accessible to both
Bs and �Bs. As a result of Bs- �Bs oscillation, the angular
decay distributions become time-dependent. Using stan-
dard notations for Bs- �Bs mixing, and assuming no CP
violation in mixing (jq=pj ¼ 1) and decay (j �Akj ¼ jAkj),
one has [20]

q

p

�Ak

Ak

¼ �ke
�2i�k : (23)

Here �k is the CP parity for a state of transversity
k (�0 ¼ �k ¼ ��? ¼ þ1), while �k is the weak phase
involved in an interference between mixing and decay
amplitudes. Denoting the CP conserving strong phase
of Ak by �k, one can write Ak ¼ jAkjei�kei�k , so that
�Ak ¼ ðp=qÞ�ke

i�ke�i�k . One thus has for i ¼ 0; k :

ImðA?A�
i þ �A? �A�

i Þ ¼ jA?jjAijIm½ei��ðei�� � e�i��Þ�
¼ 2jA?jjAij cos ð��Þ sin ð��Þ; (24)

where we define the notations for our future references:

�� ¼ �? � �i; �� ¼ �? ��i; �þ ¼ �? þ�i:

(25)

One finds from Eq. (18) that expressions such as ImðA?A�
0Þ

are proportional to linear combinations of terms like
Imða�cÞ and Imðb�cÞ. Now, as per Eq. (A5), they are all
zero for decays like Bs ! ��; thus, Að1Þ

T , Að2Þ
T , and con-

sequently all of their combinations are zero. This can also
be seen from Eq. (24) if the weak phases for all the
tranversity amplitudes are the same. So, any nonzero val-
ues to any of these observables unambiguously point to
new physics.

Let us assume the NP to be CPT violating in nature, and
parametrize the amplitudes following Eqs. (5) and (18):

A? ¼ X
l

jAl
?jei�

l
?ei�

l
?ð1� fÞ;

Ai ¼
X
m

jAm
i jei�mi ei�m

i ;

�A? ¼ �?
X
l

jAl
?je�i�l

?ei�
l
?ð1þ f�Þ;

�Ai ¼
X
m

jAm
i jei�mi e�i�m

i ; ði ¼ 0; kÞ:

(26)

Using the notation ��l;m ¼ ð�l? � �mi Þ and ��
l;m ¼

ð�l
? ��m

i Þ, we obtain

ImðA?A�
i þ �A? �A�

i Þ ¼ 2
X
l;m

jAl
?jjAm

i j½sin ð��
l;mÞ cos ð��l;mÞ

� ReðfÞ sin ð��l;mÞ cos ð��
l;mÞ

þ ImðfÞ sin ð��
l;mÞ sin ð��l;mÞ�: (27)

For f ¼ 0 this reduces to Eq. (24). On the other hand, even
if ��

l;m ¼ 0, we still get a nonzero result:

ImðA?A�
i þ �A? �A�

i Þ¼�2
X
l;m

jAl
?jjAm

i jReðfÞsinð��l;mÞ: (28)

A. Time dependence of the transversity amplitudes

Next, let us consider the time dependence of transversity
amplitudes; we will use a formalism closely following
Ref. [5]. The states B and �B evolve in time as

BðtÞ ¼ fþðtÞBþ ðq=pÞf�ðtÞ �B;
�BðtÞ ¼ ðp=qÞf�ðtÞBþ fþðtÞ �B;

(29)

where

fþðtÞ¼1

2
ðe�i�ðqÞ

1
tþe�i�ðqÞ

2
tÞ

¼1

2
ðe�im1t�ð�1t=2Þþe�im2t�ð�2t=2ÞÞ

f�ðtÞ¼1

2
ðe�i�ðqÞ

1
t�e�i�ðqÞ

2
tÞ

¼1

2
ðe�im1t�ð�1t=2Þ�e�im2t�ð�2t=2ÞÞ;

jf�ðtÞj2¼ðe��t=2Þ½coshð��t=2Þ�cosð�MtÞ�;
f�þðtÞf�ðtÞ¼ ðe��t=2Þ½sinhð��t=2Þ� isinð�MtÞ�; (30)

�M and �� being the mass and width differences of the
stationary states respectively.
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Time dependence of transversity amplitudes, Ak �
hkjBi, �Ak � hkj �Bi (k ¼ 0; k;? ), is given by

AkðtÞ � hkjBðtÞi ¼ fþðtÞAk þ ðq=pÞf�ðtÞ �Ak;

�AkðtÞ � hkj �BðtÞi ¼ ðp=qÞf�ðtÞAk þ fþðtÞ �Ak:
(31)

Let us calculate the interference terms A�
i ðtÞAkðtÞ

and �A�
i ðtÞ �AkðtÞ, where i ¼ 0; k; k ¼?. Inserting A�

i Ak¼
jAijjAkjð1�fÞexp½ið�k��iÞ�exp½ið�k��iÞ�, and �A�

i
�Ak¼

�i�kjAijjAkjð1þf�Þexp½ið�k��iÞ�exp½�ið�k��iÞ�, one
gets, using Eq. (25),

Im½A?ðtÞA�
i ðtÞþ �A?ðtÞ �A�

i ðtÞ�¼ 2jA?jjAije��t½fcosð��Þsinð��Þ� sin ð��ÞðReðfÞcosð��Þ
� ImðfÞsin ð��ÞÞgcosh ð��t=2Þþfcosð��Þsinð�þÞþ sin ð��ÞðReðfÞcosð�þÞ
þ ImðfÞsin ð�þÞÞgsinh ð��t=2Þ�: (32)

This, again, agrees with Eq. (24) at t ¼ 0, f ¼ 0. When CPT is conserved, it shows the variation of a genuine
CP-violating quantity with time which requires no strong phase differences. The CPTV contribution is nonzero even if the
weak phase difference vanishes but the strong phase difference �� must be nonzero.

If there is more than one decay channel contributing to the transversity amplitudes, Eq. (32) can be generalized to

Im½A?ðtÞA�
i ðtÞ þ �A?ðtÞ �A�

i ðtÞ� ¼
X
l;m

2jAl
?jjAm

i je��t½fcos ð��l;mÞ sin ð��
l;mÞ � sin ð��l;mÞ½ReðfÞ cos ð��

l;mÞ

� ImðfÞ sin ð��
l;mÞ�g cosh ð��t=2Þ þ fcos ð��l;mÞ sin ð�þ

l;mÞ
þ sin ð��l;mÞ½ReðfÞ cos ð�þ

l;mÞ þ ImðfÞ sin ð�þ
l;mÞ�g sinh ð��t=2Þ�: (33)

The two ‘‘true’’ CP-violating time-integrated triple product asymmetries (i ¼ 0; k ) for untagged decays are propor-
tional to

�
Z 1

0
Im½A?ðtÞA�

i ðtÞþ �A?ðtÞ �A�
i ðtÞ�dt¼

X
l;m

2jAl
?jjAm

i j½fcos ð��l;mÞ sin ð��
l;mÞ� sin ð��l;mÞðReðfÞcos ð��

l;mÞ� ImðfÞ sin ð��
l;mÞÞg

þ fcos ð��l;mÞ sin ð�þ
l;mÞþ sin ð��l;mÞðReðfÞcos ð�þ

l;mÞþ ImðfÞ sin ð�þ
l;mÞÞgð��=2�Þ

þO½ð��=2�Þ2��: (34)

In the limit �� 	 �, one can neglect everything apart from the first term in Eq. (34) and find

A ð1Þuntagged
T ¼ � 4

ffiffiffi
2

p



X
l;m

jAl
?jjAm

0 j½cos ð�0�l;m Þ sin ð�0�
l;mÞ � sin ð�0�l;m ÞðReðfÞ cos ð�0�

l;mÞ � ImðfÞ sin ð�0�
l;mÞÞ�

ðjA0j2 þ jA?j2 þ jAkj2Þ þ ðj �A0j2 þ j �A?j2 þ j �Akj2Þ
þO½ð��=2�Þ�

Að2Þuntagged
T ¼ � 8




X
l;m

jAl
?jjAm

k j½cos ð�k�l;m Þ sin ð�k�
l;mÞ � sin ð�k�l;m ÞðReðfÞ cos ð�k�

l;mÞ � ImðfÞ sin ð�k�
l;mÞÞ�

ðjA0j2 þ jA?j2 þ jAkj2Þ þ ðj �A0j2 þ j �A?j2 þ j �Akj2Þ
þO½ð��=2�Þ�;

(35)

where �i�l;m ¼ ð�l? � �mi Þ and �i�
l;m ¼ ð�l

? ��m
i Þ for i ¼

0; k , and the coefficients of the ��=2� terms can be easily
found out from Eq. (34).

In the absence of weak phase difference, �? ¼ �0 ¼
�k, i.e. �i�

l;m ¼ 0, the asymmetries vanish in the leading

order if CPT is conserved [5] but are nonzero if CPT is
violated. Again, a nonzero strong phase difference �i�l;m is

obligatory for this.
In the SM, all three transversity amplitudes have

approximately equal and very small weak phases. Thus,
one expects the asymmetries to be quite small. On the other
hand, if CPTV is present, these asymmetries, measured in

self-tagged decays to final CP eigenstates, need not be
nonzero; thus, measurements of such asymmetries may
either put stringent limits on the CPT-violating parameter
f, or indicate physics beyond SM.

IV. CPT VIOLATION IN MIXING

One can also consider the case where CPTV is
present not in decay but in B- �B mixing, and parametrize
the 2� 2 Hamiltonian matrix with the introduction of an
extra complex parameter 
 which incorporates CPT vio-
lation [14]:
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 ¼ H22 �H11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H12H21

p ; (36)

so that

M ¼
"

M0 � 
0 M12

M�
12 M0 þ 
0

 !
� i

2

�0 �12

��
12 �0

 !#
; (37)

where 
0 is defined by


 ¼ 2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H12H21

p : (38)

We work within the Wigner-Weisskopf approximation
which is a reliable one after a time scale of �1=MB.
Violation of this approximation, which has nevertheless
been considered in the literature [21], would change all the

subsequent expressions, and we refrain from considering
such a possibility. This will give, akin to the Bell-
Steinberger analysis [22], a way to measure the
CPT-violating parameter 
 in terms of the interference
amplitudes which are supposed to be good probes of CP
violation.
Eq. (31) can be written as

AiðtÞ � hkjBðtÞi ¼ fþðtÞAi þ �1f�ðtÞ �Ai;

�AiðtÞ � hkj �BðtÞi ¼ f�ðtÞ
�2

Ai þ �fþðtÞ �Ai;
(39)

where f�ðtÞ, �fþðtÞ and �ð1;2Þ are defined in Appendix B.

Using Eq. (25), one gets

Im½A?ðtÞA�
i ðtÞ þ �A?ðtÞ �A�

i ðtÞ� ¼ 2e��tjAijjA?j
�
cosh ð��t=2Þ

�
cos �� sin�� � 1

4
Im
 cos�þð1þ sin ��Þ

�

þ sinh ð��t=2Þ
�
cos ��

�
sin�þ � 1

2
Re
 sin��

�
� 1

2
Re
 sin �� cos��

�

þ 1

2
cos ð�MtÞIm
 cos �� cos�þ � 1

2
sin ð�MtÞIm
 sin �� cos��

�
: (40)

If there are multiple decay channels, one can generalize the above expression, by replacing ��, ��, �þ with ��l;m etc.,

jAijjA?j with jAm
i jjAl

?j and then taking a summation over l and m.

Then the two ‘‘true’’ CP-violating time-integrated triple product asymmetries (i ¼ 0; k ) for untagged decays are
proportional to

�
Z 1

0
Im½A?ðtÞA�

i ðtÞ þ �A?ðtÞ �A�
i ðtÞ� ¼

X
l;m

2jAm
i jjAl

?j
��
cos ��l;m sin��

l;m � 1

4
Im
 cos�þ

l;mð1þ sin ��l;mÞ
�

þ
�
��

2�

��
cos ��l;m

�
sin�þ

l;m � 1

2
Re
 sin��

l;m

�
� 1

2
Re
 sin ��l;m cos��

l;m

�

þ 1

2

�
1

1þ ð�M� Þ2
�
Im
 cos ��l;m cos�þ

l;m � 1

2

� �M
�

1þ ð�M� Þ2
�
Im
 sin ��l;m cos��

l;m

�
: (41)

In the limit �M=� 	 1, one can neglect the last term and
simplify the expression considerably.

We also note that even in the case ��l;m ¼ ��
l;m ¼ 0, i.e.

when all strong and weak phase differences cancel out
individually, there is a nonzero TP asymmetry that gives
a clean measurement of Im
:

�
Z 1

0
Im½A?ðtÞA�

i ðtÞ þ �A?ðtÞ �A�
i ðtÞ�


 X
l;m

1

2
jAm

i jjAl
?jIm
 cos�þ

l;m; (42)

where we have used �M=� 
 0 and neglected the sub-
leading ��=� terms.

V. Bs ! �� AT LHCB

The LHCb collaboration has recently measured the
transversity amplitudes for the decay Bs ! �� [18],
which is a pure penguin process and hence dominated by
a single amplitude in the SM. Thus, for all l, m, Al

i ¼ Am
i

(for i ¼ 0, k ,? ). The analysis also assumes that the weak
phases of the three polarization amplitudes are all equal;
thus, all �i�

l;m (for i ¼ 0, k ) in our notation become zero.

The correspondence between our notation and that of
Ref. [18] is as follows:

Að2Þuntagged
T ! AU; Að1Þuntagged

T ! AV

ð�? � �kÞ ! 
1; ð�? � �0Þ ! 
2;

ð�k � �0Þ ! 
k � ð
2 � 
1Þ:
(43)
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With the standard normalization of the transversity
amplitudes, viz. jA0j2 þ jA?j2 þ jAkj2 ¼ j �A0j2 þ j �A?j2 þ
j �Akj2 ¼ 1, Eq. (35) becomes

AV ¼ � 2
ffiffiffi
2

p



jA?jjA0j½� sin ð
2ÞðReðfÞÞ
þ fcos ð
2Þ sin ð2�sÞ þ sin ð
2ÞðReðfÞ cos ð2�sÞ
þ ImðfÞ sin ð2�sÞÞgð��=2�Þ� þO½ð��=2�Þ2�

AU ¼ � 4



jA?jjAkj½� sin ð
1ÞReðfÞ þ fcos ð
1Þ sin ð2�sÞ

þ sin ð
1ÞðReðfÞ cos ð2�sÞ
þ ImðfÞ sin ð2�sÞÞgð��=2�Þ� þO½ð��=2�Þ2�:

(44)

We will use the following numbers from Ref. [18]:

jA0j2 ¼ 0:365� 0:022ðstatÞ � 0:012ðsystÞ;
jA?j2 ¼ 0:291� 0:024ðstatÞ � 0:010ðsystÞ;
jAkj2 ¼ 0:344� 0:024ðstatÞ � 0:014ðsystÞ;

cos ð
kÞ ¼ �0:844� 0:068ðstatÞ � 0:029ðsystÞ;
AU ¼ �0:055� 0:036ðstatÞ � 0:018ðsystÞ
AV ¼ 0:010� 0:036ðstatÞ � 0:018ðsystÞ:

(45)

For our analysis, we use Eqs. (43)–(45), and keep terms
only up to the first order in ��=�. Even for the Bs system,
this is a good approximation. All �iþ

l;ms in Eq. (34) (for

i ¼ 0,k) are now equal to 2�s, where �s is the weak
CP-violating phase which is the same for the three polar-
ization amplitudes, and very small in the SM (�s � 0:02

[23,24] based on QCD factorization).1 Even if there is
some new physics making �s large, the effects will be
suppressed by ��=�, so we do not expect much sensitivity
on the precise value of �s. One may note that this phase
has recently been measured by the LHCb Collaboration
[25] to be between �2:46 and �0:76 rad with 68% con-
fidence level, which is not exactly in total conformity with
the SM prediction.
As is evident from Eq. (44), if we neglect higher order

terms in ��=�, both AU and AV are zero in the SM; thus,
any definite nonzero value for these observables would
point to the presence of some NP. Considering CPT vio-
lation as the source of NP, one sees that there is a definite
deviation from zero even at the zeroth order of ��=�;
unfortunately, the shift depends only on ReðfÞ, as ImðfÞ
comes as a coefficient of sin ð2�sÞ in the subleading order.
Figure 1 shows the allowed ranges for AU and AV when the
input parameters are varied over their experimental ranges.
We have varied the three transversity amplitudes over their
allowed ranges keeping the normalization to unity fixed,
and also varied the strong phase differences 
1 and 
2 over
the entire range of ½0:2
� keeping the constraint on
cos ð
kÞ. This gives a bound on AU and AV , although this

is quite weak at present (however, note that if we take the
1� region on AU seriously, small values of ReðfÞ are ruled
out, as is the SM). The allowed region will shrink consid-
erably with more data.
In Fig. 2 we show the allowed region in the AU-AV plane

for large and small values of ReðfÞ, varying all other input
parameters as above. Again, with more data, the elliptic
figures are bound to shrink, as well as the horizontal and
vertical bands, constraining CPT violation. If finally the
intersection of the bands settles outside the ellipses, that

FIG. 1 (color online). Left panel: Allowed values of AU for �1 � ReðfÞ � 1. The inner wedge is for the input parameters varied in
their 1� ranges; the outer wedge is for 2� variation. Also shown are the 1� and 2� experimental bands for AU, and the allowed region
for a smaller range of ReðfÞ, namely, jReðfÞj � 0:1. Right panel: Same plot for AV .

1This should not be confused with the phase �s relevant for
Bs- �Bs mixing and defined as �s ¼ arg ð�M12=�12Þ.
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will rule out CPT violation in this channel at least, but that
will also rule out the pure-SM explanation and call for
some other NP.

VI. CONCLUSIONS

The role of TP asymmetries as a probe of CP violation
crucially hinges on the CPT theorem which relates a
possible T-violating observable to a CP-violating one. If
CPT is not conserved, there is no such relationship, and
observables that are not supposed to show any TP asym-
metries in the SM might do so. For example, if CPT
violation is present in one or more decay amplitudes, there
will be a nonzero TP asymmetry even if the weak phases of
all the amplitudes are equal. The same trend persists in the
time dependence of the TP asymmetries.

One might trade the s-, p-, and d-wave amplitudes with
the transversity amplitudes, which are directly accessible
to the experiments. Some of the interference terms between
these anplitudes are CP violating only if the corresponding
weak phases are different; in the presence of CPT
violation, we again observe that a nonzero signal can be
observed even if all the weak phases are equal. The
observables AU and AV , as measured by LHCb, are sup-
posed to be zero in the SM for channels like Bs ! ��.
We show how one gets nonzero and possibly large values
for these observables with CPT violation; a more canoni-
cal NP that contributes only to the B- �B mixing and
hence modifies the weak CP-violating phase �s in the
decay can hardly generate such large values as all
�s-dependent terms are suppressed by ��=�. The other
side of the coin is that with more data, one can successfully
constrain the parameter space for the CPT-violating
parameters.
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APPENDIX A: FACTORIZATION

Following Ref. [4], we briefly describe the main results
of naive factorization. The prediction of naive factoriza-
tion, that most TP asymmetries with ground state vector
mesons are expected to be small in the SM, will necessarily
hold in perturbative QCD (PQCD) or QCD factorization
too.
The starting point for factorization is the SM effective

Hamiltonian for B decays [26]:

Hq
eff ¼

GFffiffiffi
2

p ½VfbV
�
fqðc1Oq

1fþc2O
q
2fÞ

�X10
i¼3

ðVubV
�
uqc

u
i þVcbV

�
cqc

c
i þVtbV

�
tqc

t
iÞOq

i �þH:c:;

(A1)

where the superscripts u, c, t indicate the internal quark,
f can be the u or c quark, and q can be either a d or s
quark.
Within factorization, the amplitude forB ! V1V2 can be

written as

AðB ! V1V2Þ ¼
X
O;O0

fhV1jOj0ihV2jO0jBi

þ hV2jOj0ihV1jO0jBig; (A2)

FIG. 2 (color online). Left panel: Allowed region in the AU-AV plane when all the input parameters are varied over their 1� ranges.
The outer ellipse is for �1 � ReðfÞ � 1 and the inner green ellipse is for �0:1 � ReðfÞ � 0:1. The 1� bands for AU and AV are
shown as dashed lines. Right panel: The same plot when the input parameters are varied over 2�; also, the 2� bands are shown. The
left edge of the AU band coincides with the left edge of the plot.
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where O and O0 are some relevant four-fermion operators.
The first amplitude, hV1jOj0i, is proportional to the
polarization vector of V1, namely, "�1. The second ampli-
tude, hV2jO0jBi, can be written in terms of the usual vector
and axial-vector form factors. Thus, the first term of
Eq. (A2) is given by

X
O;O0

hV1jOj0ihV2jO0jBi

¼ �ðmB þm2Þm1gV1
XAð2Þ

1 ðm2
1Þ"�1 � "�2

þ 2
m1

mB þm2

gV1
XAð2Þ

2 ðm2
1Þ"�2 � p"�1 � p

� i
m1

ðmB þm2ÞgV1
XVð2Þðm2

1Þ�����p
�q�"��1 "��2 :

(A3)

All phase information is contained within the factor X,
which is common to all three independent amplitudes.
Thus, these quantities must have the same phase.

A similar treatment for the second term in Eq. (A2) gives

X
O;O0

hV2jOj0ihV1jO0jBi

¼ �ðmB þm1Þm2gV2
YAð1Þ

1 ðm2
2Þ"�1 � "�2

þ 2
m2

mB þm1

gV2
YAð1Þ

2 ðm2
2Þ"�2 � p"�1 � p

� i
m2

ðmB þm1ÞgV2
YVð1Þðm2

2Þ�����p
�q�"

��
1 "��2 ;

(A4)

where the phase information is contained in the common
factor Y, which need not be the same as X.

We can now express the quantities a, b and c of Eq. (3)
as follows:

a ¼ �m1gV1
ðmB þm2ÞAð2Þ

1 ðm2
1ÞX

�m2gV2
ðmB þm1ÞAð1Þ

1 ðm2
2ÞY

b ¼ 2m1gV1

mB

ðmB þm2ÞmBA
ð2Þ
2 ðm2

1ÞX

þ 2m2gV2

mB

ðmB þm1ÞmBA
ð1Þ
2 ðm2

2ÞY

c ¼ �m1gV1

mB

ðmB þm2ÞmBV
ð2Þðm2

1ÞX

�m2gV2

mB

ðmB þm1ÞmBV
ð1Þðm2

2ÞY: (A5)

Thus, nonzero TP asymmetries are generated from
Imðac�Þ or Imðbc�Þ if and only if both X and Y are present
with different phases. Thus, if V1 ¼ V2, there cannot be
any TP asymmetry in the SM.

APPENDIX B: CPT VIOLATION IN MIXING

This closely follows Ref. [14] with a couple of
typographical errors corrected. Consider the 2� 2
Hamiltonian matrix with an explicit CPT-violating term

. Let us define

�1 ¼ q1
p1

¼
�
yþ


2

�
�; �2 ¼ q2

p2

¼
�
y�


2

�
�; !¼�1

�2

;

(B1)

and

f�ðtÞ ¼ 1

ð1þ!Þ ðe
�i�1t � e�i�2tÞ;

fþðtÞ ¼ 1

ð1þ!Þ ðe
�i�1t þ!e�i�2tÞ;

�fþðtÞ ¼ 1

ð1þ!Þ ð!e�i�1t þ e�i�2tÞ:

(B2)

Thus,

jf�ðtÞj2 ¼ 2e��t

j1þ!j2
�
cosh

�
��t

2

�
� cos ð�MtÞ

�

 e��tð1� Re
Þ

2

�
cosh

�
��t

2

�
� cos ð�MtÞ

�
;

jfþðtÞj2 ¼ e��t

j1þ!j2
�
cosh

�
��t

2

�
ð1þ j!j2Þ þ sinh

�
��t

2

�
ð1� j!j2Þ þ 2Reð!Þ cos ð�MtÞ � 2Imð!Þ sin ð�MtÞ

�
;


 e��t

2

�
cosh

�
��t

2

�
� sinh

�
��t

2

�
Re
þ cos ð�MtÞ � Im
 sin ð�MtÞ

�
;

j �fþðtÞj2 ¼ e��t

j1þ!j2
�
cosh

�
��t

2

�
ð1þ j!j2Þ � sinh

�
��t

2

�
ð1� j!j2Þ þ 2Reð!Þ cos ð�MtÞ þ 2Imð!Þ sin ð�MtÞ

�
;


 e��t

2

�
cosh

�
��t

2

�
þ sinh

�
��t

2

�
Re
þ cos ð�MtÞ þ Im
 sin ð�MtÞ

�
;

SUNANDO KUMAR PATRA AND ANIRBAN KUNDU PHYSICAL REVIEW D 87, 116005 (2013)

116005-10



f�þðtÞf�ðtÞ ¼
e��t

j1þ!j2
�
cosh

�
��t

2

�
ð1�!�Þ þ sinh

�
��t

2

�
ð1þ!�Þ þ cos ð�MtÞð�1þ!�Þ � i sin ð�MtÞð1þ!�Þ

�
;


 e��t

4

�
cosh

�
��t

2

�
ð�Re
þ iIm
Þ þ sinh

�
��t

2

�
ð2� Re
� iIm
Þ þ cos ð�MtÞðRe
� iIm
Þ

� sin ð�MtÞðIm
þ ið2� Re
ÞÞ
�
;

�fþðtÞf��ðtÞ ¼ e��t

j1þ!j2
�
cosh

�
��t

2

�
ð!� 1Þ þ sinh

�
��t

2

�
ð1þ!Þ þ cos ð�MtÞð1�!Þ þ i sin ð�MtÞð1þ!Þ

�


 e��t

4

�
cosh

�
��t

2

�
ðRe
þ iIm
Þ þ sinh

�
��t

2

�
ð2� Re
þ iIm
Þ � cos ð�MtÞðRe
þ iIm
Þ

þ i sin ð�MtÞð�Im
þ ið2� Re
ÞÞ
�
; (B3)

where we take y 
 1, �1ð2Þ 
 ð1þ ð�Þ 
2Þ, ! 
 ð1þ 
Þ, j!j2 
 ð1þ 2Re
Þ, j1þ!j�2 
 1
4 ð1� Re
Þ, j�1ð2Þj2 


ð1þ ð�ÞRe
Þ.
This gives

A�
i ðtÞAkðtÞ ¼ ½f�þA�

i þ��
1f

�� �A�
i �½fþAkþ�1f� �Ak�

¼ A�
i Ak½jfþj2þ�1ð �Ak=AkÞf�þf��þ �A�

i
�Ak½j�1j2jf�j2þ��

1ðAk= �AkÞfþf���

¼ e��t

2

�
A�
i Akfcosh ð��t=2Þþ cos ð�mtÞ�Re
 sinh ð��t=2Þ� Im
sin ð�mtÞg

þ�ke
�2i�k

2
A�
i Akf2sinh ð��t=2Þ� 2i sin ð�MtÞþ ð�Re
þ iIm
Þcosh ð��t=2Þþ ðRe
� iIm
Þcos ð�MtÞg

þ �A�
i
�Akfcosh ð��t=2Þ� cos ð�MtÞgþ�ke

2i�k

2
�A�
i
�Akf2sinh ð��t=2Þþ 2i sin ð�MtÞ

þ cosh ð��t=2Þð�Re
� iIm
Þþ ðRe
þ iIm
Þcos ð�mtÞg
�
;

�A�
i ðtÞ �AkðtÞ ¼

�
f��
��
2

A�
i þ �f�þ �A�

i

��
�fþ �Ak þ f�

�2

Ak

�

¼ A�
i Ak

�jf�j2
j�2j2

þ ð �Ak=AkÞ
�fþf��
��
2

�
þ �A�

i
�Ak

�
j �fþj2 þ ðAk= �AkÞ f�

�f�þ
�2

�

¼ e��t

2

�
A�
i Akfcosh ð��t=2Þ � cos ð�MtÞg þ �ke

�2i�k

2
A�
i Akf2 sinh ð��t=2Þ þ 2i sin ð�MtÞ

þ ðRe
þ iIm
Þ cosh ð��t=2Þ � ðRe
þ iIm
Þ cos ð�MtÞg þ �A�
i
�Akfcosh ð��t=2Þ þ cos ð�MtÞ

þ Re
 sinh ð��t=2Þ þ Im
 sin ð�MtÞg þ �ke
2i�k

2
�A�
i
�Akf2 sinh ð��t=2Þ � 2i sin ð�MtÞ

þ ðRe
� iIm
Þ cosh ð��t=2Þ � ðRe
� iIm
Þ cos ð�MtÞg
�
: (B4)
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