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We investigate QCD magnetic susceptibility �q for light-flavor SU(2) at finite temperature (T) beyond

the chiral limit, using the liquid instanton model for Nc ¼ 3, defined in Euclidean space and modified by

the T-dependent caloron solution. The background electromagnetic fields are included in the QCD

vacuum, employing the Schwinger method. We first compute the scalar (chiral) and tensor condensates as

functions of T and the current-quark mass m, signaling the correct universal chiral restoration patterns. It

turns out that �q, given by the ratio of the two condensates, is a smoothly decreasing function of T,

showing about 20% reduction of its strength at the chiral transition T � T0, in comparison to that at

T ¼ 0, and decreases almost linearly beyond T0 for m � 0. We observe that the present numerical results

are in qualitatively good agreement with other theoretical results, including the lattice simulations.

Finally, we examine the effects of the external magnetic field on the tensor-polarization VEV, which plays

the role of the chiral order parameter.
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I. INTRODUCTION

The low-energy quantum chromodynamics (QCD),
showing nonperturbative effects, have been investigated
extensively in many different ways, such as the lattice
QCD (LQCD), effective QCD-like models, QCD sum
rule (QCDSR), and so on. To understand the nonperturba-
tive features of QCD, it is necessary to scrutinize the QCD
vacuum structure, which governs the breakdown of rele-
vant symmetries of QCD and the phase transitions of the
QCD matter. Note that, recently, the electromagnetic (EM)
properties of the QCD vacuum at finite temperature (T)
and/or finite quark chemical potential (�q) have attracted

much attention from experiments [1] as well as theories
[2–4], being together with the progress of the heavy-ion
collision experiments. Among the relevant physical quan-
tities, which are sensitive to the U(1) EM interactions, the
QCD magnetic susceptibility is one of the important ones,
due to its impact in theories and experiments. The QCD
magnetic susceptibility for a quark flavor q,�q is stands for

a response of the scalar (chiral) condensate to the external
EM background field, and defined in terms of the vacuum
expectation value (VEV) for the tensor-polarization opera-
tor (TP-VEV), hqy���qiEM, in Euclidean space [5,6]:

hqy���qiEM ¼ eqF��hiqyqi�q; (1)

where eq and F�� denote the quark electric charge and the

EM field strength tensor. The subscript EM in the left-hand
side of Eq. (1) stands for the existence of the external
EM field. Note that TP-VEV is a linear function of F��

in the leading order. The magnetic susceptibility is also
pertinent to the photon distribution amplitude [7,8] as well
as the anisotropy in terms of the paramagnetism or

diamagnetism [9]. This physical quantity was studied up
to now in QCDSR [10–12], effective quark models [5,13],
holographic QCD (hQCD) [14,15], operator product
expansion with the pion dominance (OPEþ PD) [16]
LQCD [17–19], and so on. Note that, in the previous
work, we computed �q using the liquid-instanton model

(LIM) [20,21] at finite density [22], in which we noticed
that �q > 0 with the Euclidean metric, indicating the dia-

magnetic matter (�q < 0 for the Minkowski metric).

Taking the present heavy-ion collision experiments at
low quark density into account, in the present work, we are
focusing on the QCD magnetic susceptibility for the light-
flavor SU(2), SUð2fÞ, at finite T and �q ¼ 0, using LIM

for Nc ¼ 3, modified by the T-dependent caloron solution
[23,24]. We note that the present theoretical framework
works properly for the SUð2fÞ light-flavor sector, and one

needs more modifications for the model parameters [25]
and the large-Nc corrections for the heavier flavors, such as
the strange quark, whose mass is ms ��QCD � 200 MeV
[23]. Moreover, we confine ourselves to the Nc ¼ 3 case,
which corresponds to the real world. Although the Nc ¼ 2
case would show interesting theoretical implications
as have been studied in the various LQCD simulations,
we want to leave this possibility for future works, since
this is beyond our scope here. All the calculations
are performed in Euclidean space, in which the instanton
solution is defined properly. The relevant instanton
parameters, such as the average (anti)instanton size ��
and inter-(anti)instanton distance �R are modified as func-
tions of temperature, employing the trivial-holonomy
(Harrington-Shepard) caloron solution [26–28]. As a re-
sult, these modifications show the partial restoration of the
spontaneous breakdown of the chiral symmetry (SB�S) as
T increases. Relating to those model parameters, it is
worth mentioning that our model (renormalization) scale*sinam@kias.re.kr
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is taken as � � ffiffiffi
2

p
= �� � 0:85 GeV at T ¼ 0 [23]. The

T-dependent effective quark mass is computed numerically
as an order parameter for SB�S, employing the T-modified
effective thermodynamic potential [28]. By doing that, we
observe correct universal chiral restoration patterns for the
zero and finite current-quark masses, i.e., the second-order
and crossover chiral restoration patterns, respectively.

Being equipped with those ingredients, we present the
numerical results for the chiral condensates hiqyqi, tensor
condensate hqy�qi, their ratio corresponding to the mag-
netic susceptibility hqy�qi=hiqyqi � �q, and TP-VEV

hqy���qiEM. Here, we write the definitions of the tensor

condensate as follows:

hqy�qi � hqy���qiEM
eqF��

¼ �qhiqyqi for F�� � 0: (2)

For instance, in Ref. [19], the authors defined the tensor
condensate as hqy�qi � ��q.

From the numerical calculations, it turns out that the
chiral condensate exhibits the correct chiral restoration
patterns as expected from those of the effective quark
mass as mentioned above. The chiral transition T is given
as T0 ¼ ð166; 170Þ MeV for the zero and finite current-
quark masses, i.e., m ¼ 0 and 5 MeV, considering the
SUð2fÞ flavor symmetry. Note that the values for the chiral

condensates are obtained as hiqyqi ¼ ð258; 260 MeVÞ3 for
m ¼ ð0; 5Þ MeV at T ¼ 0. These values are well compat-
ible with its empirical one ð240� 10 MeVÞ3. Using
the same parameter sets, we also compute the tensor
condensates, which also manifest the universal chiral res-
toration patterns. At zero temperature, we have hqy�qi ¼
ð52; 49Þ MeV for m ¼ ð0; 5Þ MeV at T ¼ 0. Interestingly,
we observe bump structures in the tensor condensate
curves for m � 0 at T ¼ ð50� 60Þ MeV, due to the non-
trivial interference between the constituent-quark and
current-quark masses. These values are again well compat-
ible with the known theoretical estimations [5,8,11–13,19].
When we compare the temperature-dependent behavior of
the present numerical results with the lattice data [19,29],
extrapolated to the physical u-quark mass, at the renormal-
ization scale � ¼ 1 GeV, we observe qualitatively good
agreement with them, but sizable deviations also appear in
the vicinity of the chiral transition temperature T0. At the
chiral phase transition T, T0 ¼ 170 MeV, the tensor con-
densate for m � 0 becomes 21 MeV, whereas it is zero for
the chiral limit.

It turns out that the magnetic susceptibilities decrease
steadily with respect to T. We obtain their typical
values, estimated as �q ¼ ð3:03; 2:77Þ GeV�2 for m ¼
ð0; 5Þ MeV at T ¼ 0. Again, these values are well matched
with those from the LQCD and other effective models.
Beyond T0 ¼ 170 MeV, the curve for the magnetic sus-
ceptibility behave almost as a linearly decreasing one as T
increases. At T0, we observe about 20% decreases in their
strengths, in comparison to those at T ¼ 0. TP-VEV is a

linear function of the external magnetic field (eqB) in the

leading order. The slope of the TP-VEV line with respect to
eqB decreases as T increases, since the tensor condensate

plays the role for its slope value, signaling the (partial)
restoration of SB�S. Thus, TP-VEV can be considered as a
chiral order parameter. Consequently, we observe that it
vanishes at T0 ¼ 166 MeV in the chiral limit, whereas
remains finite beyond T0 for m � 0, because of the cross-
over chiral phase transition.
We organize the present work as follows: In Sec. II, we

briefly introduce the LIM and how to compute the mag-
netic susceptibility in terms of the field theoretical manner.
In Sec. III, the temperature modifications of the relevant
model parameters are performed using the trivial caloron
solution. We also show the correct universal chiral resto-
ration patterns, computed within the present model. The
numerical results for the chiral and tensor condensates as
functions of temperature are presented with relevant dis-
cussions in Sec. IV. In addition, the magnetic susceptibility
is estimated and compared with other theoretical estima-
tions. The final section is devoted to the summary, con-
clusion, and future perspectives.

II. EFFECTIVE ACTION VIA THE
INSTANTON-VACUUM CONFIGURATION

In this section, we introduce the LIM briefly as a theo-
retical framework to study the magnetic susceptibility.
Details on the present framework can be found in
Refs. [20,28]. The effective action for SUð2fÞ via the

instanton vacuum can be written in Euclidean momentum
as follows [5,20]:

S eff½m;A�;T���¼�Spc;f;� ln½i 6Dþ im̂þ iMð@2Þþ� �T�;
(3)

where Spc;f;� represent the functional trace running over

the color (c), flavor (f), and Lorentz (�) indices. The U(1)
covariant derivative reads iD� ¼ i@� þ eqA�, in which eq
stands for the electric charge of a quark. m̂ stands for the
current-quark mass matrix for SUð2fÞ, diagðmu;mdÞ.
Throughout this work, we assume the SUð2fÞ symmetry

for the quark masses, i.e.,mu � md � m ¼ 5 MeV for the
cases beyond the chiral limit. The effective quark mass
Mð@2Þ is generated from the nontrivial interactions be-
tween the quarks and (anti)instanton via the quark zero
mode [20], and it reads

Mð@2Þ ¼ M0F
2ð@2Þ ¼ M0

�
2

2þ ��2j@j2
�
2 ! Mðk2Þ

¼ M0

�
2

2þ ��2k2

�
2 � Mk: (4)

Here, �� denotes the average (anti)instanton size [20], and
M0 indicates the constituent-quark mass at zero virtuality.
In the last step of Eq. (4), wewrote the effective mass in the

SEUNG-IL NAM PHYSICAL REVIEW D 87, 116003 (2013)

116003-2



Euclidean momentum space. We defined the antisymmet-
ric tensor ��� ¼ ið���� � ����Þ=2 with the external

tensor source field T��. From the effective action in
Eq. (3), one can write the chiral condensate space by
performing the functional derivative of the effective action
with respect to m as follows:

hiqyqi ¼ 4Nc

Z
k

� �Mk

k2 þ �M2
k

� m

k2 þm2

�
; (5)

where we assign as
R
k �

R
d4k
ð2�Þ4 for convenience and

Nc ¼ 3 denotes the number of colors. We also have used
a simplified notation �Mk ¼ mþMk. Note that the ultra-
violet (UV) divergence in Eq. (5) are regularized by the
momentum dependent quark mass in Eq. (4), and the
second term in the square bracket will cancel the diver-
gence in the first term proportional to m. The vacuum
values for �� and �Rwere estimated by the LQCD simulation
ð ��; �RÞ � ð0:36; 0:89Þ fm [30], variational method ð ��; �RÞ �
ð0:35; 0:95Þ fm [20], and phenomenological way ð ��; �RÞ �
ð1=3; 1Þ fm [31]. Among them, we choose the phenome-
nological values for all the numerical calculations,
considering about 10% uncertainties in those estimations.
Note that M0 for vacuum is determined to reproduce
various low-energy constants (LECs) with the instanton
parameters [20]. For instance, using M0 � 350 MeV, one
has the pion weak-decay constant F� � 93 MeV, which is
very close to its empirical value F� ¼ 93:2 MeV [32].
Employing these values for the model parameters, we
obtain hiqyqi � ð250 MeVÞ3 in the chiral limit. Note that
this value is well compatible with its empirical values [33].

Similarly, the matrix element in the left-hand side of
Eq. (1), i.e., TP-VEV can be evaluated by performing the
functional derivative with respect to T�� in the presence of
the EM background field, induced by the Schwinger
method [5,22,34]:

hqy���qiEM|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
TP-VEV

¼ 1

Nf

@Seff½m;A�; T
���

@T��

��������T¼0
: (6)

By expanding Eq. (6) in terms of eq, we obtain the follow-

ing expression in the leading order / OðeqÞ, according to

enq � 1 for n 	 2 [5,22]:

hqy���qiEM
¼ 4NcðeqF��Þ

Z d4k

ð2�Þ4
� �Mk þ Nk

ðk2 þ �M2
kÞ2

� m

ðk2 þm2Þ2
�

� eqF��hqy�qi: (7)

Here, we assign hqy�qi as a tensor condensate for conve-
nience as mentioned previously. Here, � stands for a scalar
operator to satisfy Eq. (7), and its analytic form does not
make any impact on the final results of the present work. It
is worth mentioning that the tensor condensate is defined

alternatively as hqy�qi � ��q with the Minkowski metric

[19]. The mass-derivative term Nk is defined as

Nk � �k2
@Mk

@k2
¼ 8M0ð ��2k2Þ

ð2þ ��2k2Þ3 : (8)

Notice that TP-VEV in Eq. (7) is a linear function of the
field-strength tensor F�� in the leading order expansion of

eq. This observation is consistent with other theoretical

studies [6]. Details of the derivation of Eqs. (7) and (8) can
be found in our previous work [22] and references therein.
Substituting Eqs. (7) and (5) into Eq. (1), we have the
following equation for the QCD magnetic susceptibility:

�q ¼ hqy�qi
hiqyqi

¼
�Z

k

� �Mk þ Nk

ðk2 þ �M2
kÞ2

� m

ðk2 þm2
qÞ2

��



�Z

k

� �Mk

k2 þ �M2
k

� m

k2 þm2
q

���1
: (9)

III. TEMPERATURE-DEPENDENT EFFECTIVE
QUARK MASS FOR FLAVOR SUð2f Þ

In this section, we would like to briefly discuss how to
compute the effective quark mass M0 in Eq. (4) as a
function of T, and to develop the T-dependence for the
model parameters. In Ref. [28], we derived it by using the
caloron distribution with trivial holonomy, i.e., Harrington-
Shepard caloron [26,27]. Firstly, we want to explain briefly
how to modify �� and �R as functions of T, using the caloron
solution. Details can be found in Ref. [28]. An instanton
distribution function for arbitrary Nc and Nf can be written

with a Gaussian suppression factor as a function of T and
an arbitrary instanton size � for pure-glue QCD [27]:

dð�; TÞ ¼ CNc
�b

RS	̂
Nc|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

C

�b�5 exp ½�ðANc
T2 þ �	�n ��2Þ�2�:

(10)

We note that the CP-invariant vacuum was taken into
account in Eq. (10), and we assumed the same analytical
form of the distribution function for both the instanton and
anti-instanton. Note that the instanton number density
(packing fraction) N=V � n � 1= �R4 and �� have been
taken into account as functions of T implicitly. For sim-
plicity, we take the numbers of the anti-instanton and
instanton are the same, i.e., NI ¼ N �I ¼ N. We also as-
signed the constant factor in the right-hand side of the
above equation as C for simplicity. The abbreviated nota-
tions are also given as:
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	̂¼�b ln ½�RS�cut�; �	¼�b ln ½�RShRi�;

CNc
¼ 4:60e�1:68
RSNc

�2ðNc � 2Þ!ðNc � 1Þ! ; ANc
¼ 1

3

�
11

6
Nc� 1

�
�2;

�¼ 27

4

�
Nc

N2
c � 1

�
�2; b¼ 11Nc � 2Nf

3
: (11)

Note that we defined the one-loop inverse charge 	̂ and �	
at certain phenomenological cutoff �cut and hRi � �R. �RS

denotes a scale, depending on a renormalization scheme,
whereas V3 for the three-dimensional volume. Using the
instanton distribution function in Eq. (10), we can compute
the average value of the instanton size ��2 straightforwardly
as follows [35]:

�� 2ðTÞ ¼
R
d��2dð�; TÞR
d�dð�; TÞ ¼ ½A2

Nc
T4 þ 4� �	�n�12 � ANc

T2

2 �	�n
;

(12)

where � ¼ ðb� 4Þ=2. It can be easily shown that Eq. (12)
satisfies the following asymptotic behavior [35]:

lim
T!0

��2ðTÞ ¼
ffiffiffiffiffiffiffiffiffiffi
�
�	�n

s
; lim

T!1 ��2ðTÞ ¼ �

ANc
T2

: (13)

Here, the second relation of Eq. (13) indicates a correct
scale-temperature behavior at high T, i.e., 1= �� � � / T.
Substituting Eq. (12) into Eq. (10), the caloron distribution
function can be evaluated further:

dð�; TÞ ¼ C�b�5 exp ½�F ðTÞ�2�;

F ðTÞ ¼ 1

2
ANc

T2 þ
�
1

4
A2
Nc
T4 þ � �	�n

�1
2
:

(14)

The instanton packing fraction n can be computed self-
consistently, using the following equation:

n
1
�F ðTÞ ¼ ½C�ð�Þ�1�; (15)

where we replaced NT=V3 ! n, and �ð�Þ stands for the �
function with an argument �. Note that C and �	 can be
determined easily using Eqs. (12) and (15), incorporating
the vacuum values for n � ð200 MeVÞ4 and �� �
ð600 MeVÞ�1: C � 9:81
 10�4 and �	 � 9:19. Finally,
in order for estimating the T dependence ofM0, one needs
to consider the normalized distribution function, defined as
follows:

dNð�; TÞ ¼ dð�; TÞR
d�dð�; TÞ ¼

�b�5F �ðTÞ exp ½�F ðTÞ�2�
�ð�Þ :

(16)

Here, the subscript N denotes the normalized distribution.
For brevity, we want to employ the large-Nc limit to
simplify the expression for dNð�; TÞ. In this limit, as under-
stood from Eq. (16), dNð�; TÞ can be approximated as a �
function:

lim
Nc!1dNð�; TÞ ¼ �½�� ��ðTÞ�: (17)

The numerical results for ��ðTÞ (solid line) and 1= �RðTÞ
(dotted line) are given in the panel (a) in Fig. 1. Here, we
choose ��ð0Þ � 1=3 fm and �R � 1 fm for all the numerical
calculations. These values are phenomenologically pre-
ferred in the present model [20]. The curve for ��ðTÞ shows
that the average (anti)instanton size smoothly decreases
with respect to T, indicating that the instanton ensemble
gets diluted and the nonperturbative effects via the
quark-instanton interactions are diminished. At T ¼
ð150� 200Þ MeV, which is close to the chiral phase tran-
sition T, the instanton size decreases by about ð10� 20Þ%
in comparison to its vacuum value. Considering that
the instanton size corresponds to the scale parameter of

the model, i.e., UV cutoff mass, �� � 1=ð ffiffiffi
2

p
�Þ, the

T-dependent cutoff mass is a clearly distinctive feature in
comparison to other low-energy effective models, such as
the Nambu-Jona-Lasinio (NJL) model. In addition, we also

(a) (b)

FIG. 1 (color online). Average (anti)instanton size �� � 1=� ½fm� and (anti)instanton packing fraction ðN=VÞ1=4 ½GeV� as functions
of T, computed from the Harrington-Shepard caloron distribution for Nc ¼ 3 [26,27] in the panel (a). Effective quark mass at zero
virtuality, M0 computed from Eq. (19) as functions of T for m ¼ 0 (solid line) and m ¼ 5 MeV (dotted line), signaling the second-
order and crossover chiral phase transitions, respectively, in the panel (b). The vertical lines indicate the chiral-phase transition
temperatures T0 ¼ ð166; 170Þ MeV for m ¼ ð0; 5Þ MeV.
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show the T dependence of the average (anti)instanton
number density or (anti)instanton packing fraction,N=V �
1= �R4, in the panel (a) of Fig. 1. Again, the instanton
number density get decreased as temperature increases;
the instanton ensemble gets diluted. We will use these
two temperature-dependent quantities for computing the
chiral and tensor condensates, and TP-VEV in the next
section.

Now, we are in a position to discuss the T dependence of
the constituent quark mass M0 as a chiral order parameter.
As in Ref. [28], the LIM thermodynamic potential per
volume in the leading large-Nc contributions at zero quark
chemical potential can be written as follows:

�LIM¼N

V

�
1� ln

N

�VM

�
þ2�2

�2NcNf

Z 1

0

d3k

ð2�Þ3
�
Ekþ2T ln

�
1þe�

Ek
T

��
; (18)

where � and M represent a Lagrange multiplier to expo-
nentiate the effective quark-instanton action and an
arbitrary massive parameter to make the argument for the
logarithm dimensionless. � stands for the VEV for
the isosinglet scalar meson field corresponding to the
effective quark mass. The quark energy is defined by E2

k ¼
k2 þ �M2

k. In the leading large-Nc contributions, we have

the relation 2�2 ¼ N=V [28]. The gap equation can be
derived from Eq. (18) by differentiating �LIM by the
Lagrange multiplier �:

@�LIM

@�
¼ 0 ! Nf

�M0

N

V
� 2NcNf

Z 1

0

d3k

ð2�Þ3 F
4
k

M0

Ek



"
1� 2e�

Ek
T

1þ e�
Ek
T

#
¼ 0: (19)

Note that one can write the instanton packing fraction in
terms of the effective quark mass M0 and �� [20]:

N

V
¼ C0NcM

2
0

�2 ��2
: (20)

The value of C0 locates in (1=3� 1=4) for 1= �� �
600 MeV, M0 � ð300 � 400Þ MeV, and N=V �
ð200 � 260 MeVÞ4 for vacuum [36]. We choose
C0 ¼ 0:27 to reproduce M0 ¼ ð340� 350Þ MeV at
ðT;�Þ ¼ 0 in the chiral limit. After solving Eq. (19) with
respect toM0 numerically, the numerical results forM0 as a
function of T are given in the panel (b) of Fig. 1 for the zero
and finite current quark mass: m ¼ 0 (solid line) and m ¼
5 MeV (dotted line). These results indicate correct univer-
sal patterns for the chiral phase transition like the those of
the Ising model, i.e., the second-order chiral phase tran-
sition for the massless fermion and the crossover for the
finite mass. From those numerical results, the phase tran-
sition T for the two chiral restorations are obtained as
T0 � ð166; 170Þ MeV for m ¼ ð0; 5Þ MeV. The transition

temperatures are indicated by the thin solid vertical lines in
the panel (b) of Fig. 1. Detailed discussions for the chiral
phase structure within the present model is given in
Ref. [37].
To evaluate �q as a function of T, we redefine Eq. (9)

with the fermionic Matsubara formula. The integral over
the fourth momentum, k4, is compactified into a summa-
tion over the Matsubara frequency:

�q ¼ hqy�qi
hiqyqi

¼
�
T

X1
n¼�1

Z
k

� �Mk þ Nk

ðw2
n þ E2

kÞ2
� m

ðw2
n þ E2

0Þ2
��



�
T

X1
n¼�1

Z
k

� �Mk

w2
n þ E2

k

� m

w2
n þ E2

0

���1
; (21)

where the fermionic Matsubara frequency wn ¼
ð2nþ 1Þ�T and the three-dimensional integral is given

in a simplified notation
R
k �

R
d3k
ð2�Þ3 . Here, we use the

notation E2
0 ¼ k2 þm2, whereas k denotes the three mo-

mentum of the quark. Here is one caveat: Introducing the
Matsubara frequency, we assume that the effective quark
mass in Eq. (4) is simplified by k4 ! 0,

Mk ! Mk ¼ M0

�
2

2þ ��2k2

�
2
; (22)

and the same for Nk ! Nk in Eq. (8). We have verified that
this simplification makes the problem in hand more con-
venient and simplified for the analytic as well as the
numerical calculations, and does not represent significant
deviations in comparison to the full numerical calculations
without the simplification, as shown in many successful
applications [23,24,28]. Then, the summations over wn in
Eq. (21) can be analytically performed, and we defined the
following functions:

f2ðEÞ � 1

8TE3
sech2

�
E

2T

	�
T sinh

�
E

T

	
� E

�
;

f1ðEÞ � 1

4E
tanh

�
E

2T

	
:

(23)

Using Eqs. (23) and (21), can be then rewritten finally as

�q ¼ hqy�qi
hiqyqi

¼
�Z

k
½ð �Mk þ NkÞf2ðEkÞ �mf2ðE0Þ�

�



�Z

k
½ �Mkf1ðEkÞ �mf1ðE0Þ�

��1
: (24)

Note that all the quantities, �q, and chiral and tensor

condensates, are positive-real valued functions of T and
m in the present work with the Euclidean metric. Hence,
our theoretical results exhibit the diamagnetism, consider-
ing that �M

q < 0 for the Minkowski (M) metric.
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IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we demonstrate the numerical results
with relevant discussions. First, we show them for the
chiral condensates hiqyqi as functions of T in the panel
(a) of Fig. 2. The (solid, dashed) curves correspond to the
condensates with m ¼ ð0; 5Þ MeV. In what follows, nu-
merical values given in the form of ðx; yÞ represents the
theoretical results form ¼ ð0; 5Þ MeV, respectively, unless
otherwise stated. The vertical straight lines denote the
chiral transition T, T0 ¼ ð166; 170Þ MeV. At T ¼ 0, we

observe hiqyqi1=3 ¼ ð258 MeV; 260 MeVÞ at T ¼ 0.
Here, we only observe small deviations depending on m.
These numerical values are slightly larger than the empiri-
cal values hiqyqi ¼ ð240� 10 MeVÞ3, but still in qualita-
tive agreement with them. As for the curve for m ¼ 0, it
shows the second-order chiral phase transition as expected
and understood by Eq. (5), which is proportional toM0. On
the contrary, m becomes finite, the curves manifest the
crossover transition, satisfying the universal class pattern
of the chiral restoration. At T0 ¼ 170 MeV, we have
hiqyqi � ð209 MeVÞ3 for m ¼ 5 MeV, showing about
20% reduction, in comparison to that for T ¼ 0.

In the panel (b) of Fig. 2, we depict the tensor conden-
sate hqy�qi � ��q with the same manner of the panel (a).

Again, the condensates show the proper chiral restoration
patterns depending on m. Interestingly, there appear bump
structures in the curves for m � 0 at T ¼ ð50� 60Þ MeV,
due to the nontrivial interference between the constituent-
and current-quark mass terms in Eq. (7). We find hqy�qi ¼
ð52; 49Þ MeV at T ¼ 0. From these values, we conclude
that the tensor condensate decreases with respect to m
which is consistent with the observation of Ref. [38].
Here, we want to mention other theoretical estimations
for the tensor condensate for SUð2fÞ for T ¼ 0. Using

QCDSR techniques, it was studied in Refs. [8,11,12],

which estimated it as ð40� 70Þ MeV, depending on the
different renormalization scales � ¼ 0:5 GeV or � ¼
1 GeV. In Ref. [5], employing the same instanton model
for vacuum, with slightly different model parameters, the
authors calculated it in the chiral limit, resulting in
ð45� 50Þ MeV, which is well compatible with ours by
construction. Employing the NJL model and quark model
(QM), it was estimated as 69 and 65 MeV, respectively, in
Ref. [13] which is about 10% larger than ours. From the
quenched LQCD simulations for SUð2cÞ [17] and SUð3cÞ
[18], they observed 46 MeVand�52 MeV at� ¼ 2 GeV.
A full SUð3cÞ lattice simulation was performed in
Ref. [19], and provided (38:9� 40:7) for the chiral limit
and physical current-quark mass at � ¼ 2 GeV.
Considering that the renormalization constant for the ten-
sor condensate with the running scale � ¼ ð1� 2Þ GeV is
close to unity as will be shown below, our present estima-
tions for the tensor condensates are well compatible with
other theoretical results. The comparisons with other stud-
ies are summarized in Table I.
Now, we are in a position to discuss the T dependence of

the tensor condensate. Bali et al. [19] estimated the T
dependence of the tensor condensate via the full SUð3cÞ
lattice simulation with tree-level Symanzik improved
gauge action. They also performed renormalization-group
analyses, resulting in the renormalization constants for the
chiral (scalar) (S) and tensor (T) condensates for the run-
ning scale � ¼ ð2 ! 1Þ GeV as follows, considering
�q ¼ hqy�qi=hiqyqi:

Z S
MS

� 0:76; ZT
MS

� 1:13: (25)

Note that in their lattice simulation, they renormalized all
the quantities at � ¼ 2 GeV with ðmu þmdÞ �
6:94 MeV, which gives h �qqi ¼ �ð269 MeVÞ3. Using
ZS
MS

in Eq. (25), this chiral condensate value becomes

(a) (b)

FIG. 2 (color online). (a) Chiral condensate hiqyqi ¼ �h �qqi for Nc ¼ 3 in Eq. (24) for m ¼ ð0; 5Þ MeV in the (solid, dashed) lines,
respectively. The vertical lines indicate the chiral phase transition T, T0 ¼ ð166; 170Þ MeV for (m ¼ 0,m � 0). The horizontal shaded
area denotes the range of hiqyqi ¼ ð250� 260 MeVÞ3, which corresponds to its empirical value. (b) Tensor condensate hqy�qi �
��q in Eq. (24), represented in the same manner with the panel (a). The lattice QCD data at the renormalization scale � ¼ 1 GeV are

taken from Ref. [19], and indicates the continuum extrapolation for the u quark with the errors containing all statistical and systematic
errors. The data for the d quark are still within the u-quark errors.
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�ð245 MeVÞ3 at � ¼ 1 GeV. Since our renormalization

scale is about 0:85 GeV� ffiffiffi
2

p
= ��, for appropriate compari-

son, one needs to evolve their data at � ¼ 2 GeV to those
at � ¼ 1 GeV. After the scale evolution, just multiplying
ZT
MS

to the data, the continuum extrapolated data for the u

quark are given with the open dot with the sum of the
statistical and systematic errors in the panel (b) of Fig. 2.
Note that the lattice data locates between the curves for
m ¼ 0 and m ¼ 5 MeV. Although there appear quantita-
tive differences between the lattice data and ours, the
overall tendency and strength are qualitatively comparable.
Note that the chiral transition T was given T0 � 162 MeV
in the lattice simulation which is a only few percent smaller
than ours T0 ¼ 170 MeV. At the chiral phase transition T,
T0 ¼ 170 MeV, the tensor condensate for m ¼ 5 MeV
becomes 21 MeV from our calculations, showing about
two-times reduction.

In the panel (a) of Fig. 3, we show the numerical results
for �q as functions of T for m ¼ ð0; 5Þ MeV in the (solid,

dashed) lines. Since �q is the ratio of the chiral and tensor

condensates as shown in Eq. (9), we can not define it in the
chiral limit beyond T0, while �q form � 0 has finite values

for T 	 T0 as shown in the panel (a). The typical values for
�q at T ¼ 0 are given by �q ¼ ð3:03; 2:77Þ GeV�2. Note

that we have �q ¼ ð2:85� 5:7Þ GeV�2 from the QCDSR

methods [8,11,12], and these values are well compatible
with our estimations. The LQCD simulations also esti-
mated comparable values with ours [17–19] as shown in
Table I. However, the hQCD [15] and OPEþ PD [16]
calculations showed considerably larger values for them:
�q ¼ 11:5 and 8.91, respectively. The effective quark mod-

els, such as NJL and QM, evaluated �q � 4:3 and 5.25,

depending on each models. From these observations, we
can conclude that our model estimations are compatible
qualitatively with other theoretical ones. At T ¼ 0, we
depict some LQCD results in the panel (a) of Fig. 3. The
solid square and circle are the estimations at � ¼ 1 GeV
from the full SUð3cÞ LQCD simulation for m ¼ 5 MeV
after a proper scale evolution by multiplying ZT

MS
=ZS

MS
¼

1:49. It turns out that the LQCD data match with the
present numerical curve for m ¼ 0 approximately, and
larger than that for m ¼ 5 MeV by about 10%. The

SUð2cÞ quenched LQCD data at � ¼ 2 GeV are also
shown with the solid triangle and diamond for different T
[17]. Although their estimation at 0:82Tc with Tc ¼
313 MeV (triangle) is comparable to ours, one must be
careful about that the simulations were done for Nc ¼ 2 at
a relatively larger renormalization scale without dynamic
quarks. Note that their value at T ¼ 0 (diamond) is much
smaller than ours as well as the SUð3cÞ LQCD simulation
[19]. It was suggested that the magnetic susceptibility can
be parameterized in terms of OPEþ PD, using the Gell-
Mann-Oakes-Renner relation, as follows [16]:

�q ¼
c�q

Nc

8�2f2�
¼ 2:22c�q

GeV�2 for Nc ¼ 3; (26)

where we have chosen the normalization f� ¼ ffiffiffi
2

p
F� with

F� ¼ 92:4 MeV and c�q
stands for a positive real constant.

We list the (average) values for c�q
for the various theory

calculations in Table I. Approximately, its value amounts
to (1:0� 2:0) for various calculations, whereas the
OPEþ PD and hQCD still give larger values than others
as the magnetic susceptibility.
Finally, we want to examine the external magnetic field

dependence for TP-VEV in Eq. (1). As already mentioned,
in the leading order of eq, TP-VEV is a linear function of

the field strength tensor F��. Choosing a certain configu-

ration for F��, we can write the following equation from

Eq. (1):

hqy�abqiEM ¼ eqBhqy�qi; (27)

where the Lorentz indices a and b are understood to pick
up the magnetic field from the field strength tensor in
Euclidean space. B denotes the strength of the external
magnetic field B ¼ jBj. Considering the positive quark
charge, u quark for instance, one can parameterize eqB

as a real positive variable in the unit of GeV2. Note that the
tensor condensate in the right-hand side of Eq. (27) has
been already computed as above. In the panel (b) of Fig. 3,
we show TP-VEV as functions of eqB for different T. The

thick and thin lines denote the those for m ¼ 0 and
m ¼ 5 MeV, respectively. It turns out that, as T increases,
the slope of the lines decreases for the both current-quark

TABLE I. Various theoretical estimations for the tensor condensate hqy�qi ½MeV� and magnetic susceptibility �q ½GeV�2� for
certain renormalization scale � ½GeV� and the current-quark mass [MeV] at T ¼ 0. All the listed values are converted to those for

Euclidean space. The notation LQCDðf;qÞ
ð2;3Þ indicates the (full, quenched) LQCD simulations for Nc ¼ ð2; 3Þ. �c�q

denotes the average

value over possible �q.

Present LIM [5] NJL [13] LQCDf
3 [19] LQCDq

2 [17] LQCDq
3 [18] SR [8,11,12] OPEPD [16] hQCD [15] QM [13]

� 0.85 0.85 0.627 2.0 2.0 2.0 0 0.5 � 1:15 0.560

m (0, 5) 5 5 0, 3.47 0 0 Physical Physical 0 5

hqy�qi (52, 49) 40� 45 69 38:9� 40:7 46 �52 40� 70 � � � � � � 65

�q (3.03, 2.77) 2:5� 0:15 4.3 1:93� 2:16 1.547 4:24� 0:18 2:85� 5:7 8.91 11.5 5.25

�c�q
1.26 1.12 1.94 0.92 1.045 1.91 1.95 4.01 5.18 2.36
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masses. This behavior signals the (partial) chiral restora-
tion, due to the decreasing of the tensor condensate, which
plays the role of the slope of the line here. Note that this
observation is consistent with that from the SUð3cÞ LQCD
simulation [19], although the strength of the lines are
different by about two times and the LQCD data show
nonlinearity as T increases which is not shown for the
present leading-order calculations. The strength difference
can be understood by the different renormalization scales,
i.e., � � 0:85 for ours and � ¼ 2 GeV for the LQCD
simulation. If we go beyond the leading order OðeqÞ, it is
sure that there appears nonlinearity in TP-VEV. However,
we will not discuss this issue in the present work, and leave
it for the future works. Comparing the lines for the chiral
limit and finite quark mass, the line slope get diminished
much for m ¼ 0 with respect to T, since TP-VEV also
plays the role of the chiral order parameter. In other words,
TP-VEV in the chiral limit becomes zero for even finite
eqB at the chiral transition T. To see this situation clearly,

in Fig. 4, we show TP-VEVas functions of eB as well as T
for m ¼ 0 (left panel) and m ¼ 5 MeV (right panel). As
shown in the left panel, TP-VEV behaves linearly with
respect to eB, and decreases its strength as T increases.
Then, it vanishes at T0 ¼ 166 MeV. In contrast, due to the
crossover chiral phase transition, TP-VEV form ¼ 5 MeV
remains finite even beyond T0 ¼ 170 MeV.

V. SUMMARYAND CONCLUSION

In the present work, we have investigated the QCD
magnetic susceptibility for SUð2fÞ as a function of tem-

perature, beyond the chiral limit. For this purpose, we
employed the LIM, being modified by the trivial-holonomy
caloron solution. We calculated the chiral hiqyqi and
magnetic hqy�qi condensates, QCD magnetic suscepti-
bility �q, and TP-VEV hqy����qiEM, numerically in

Euclidean space. We compared our results with vari-
ous theoretical estimations for those nonperturbative

(a)

(b)

FIG. 3 (color online). (a) Magnetic susceptibility �q for Nc ¼ 3 as functions of T for m ¼ ð0; 5Þ MeV in the (solid, dashed) lines,
respectively. The SUð3cÞ lattice QCD data at the renormalization scale � ¼ 1 GeV are taken from Ref. [19] for the u quark and d
quark, given in the solid square and circle. The SUð2cÞ quenched LQCD data at � ¼ 2 GeV are also shown with the solid triangle and
diamond [17]. The vertical lines indicate the chiral phase transition T, T0 ¼ ð166; 170Þ MeV for m ¼ ð0; 5Þ MeV. (b) TP-VEV
hqy�xyqiEM as functions of eqB for different T and m values. See the text for details.
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FIG. 4 (color online). TP-VEV hqy�abqiEM ½GeV3� for Nc ¼ 3 as a function of T and eqB for the chiral limit (left panel) and
m ¼ 5 MeV (right panel). See the text for details.
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quantities. Important observations in the present work are
given as follows:

(i) The chiral and tensor condensates manifest the role
of the chiral order parameter, showing correct chiral
restoration patters. We observe hqy�qi ¼ ð52; 49Þ
for m ¼ ð0; 5Þ MeV at T ¼ 0. These values are
well comparable with the widely accepted one
�50 MeV. The T dependence of the tensor conden-
sates are also compared with the LQCD data, and
show qualitative agreement. At the chiral phase tran-
sition T, T0 ¼ 170 MeV, the tensor condensate for
m � 0 becomes 21 MeV, whereas it is zero for the
chiral limit.

(ii) We find that themagnetic susceptibility is a smoothly
decreasing function of T. The typical values for them
are estimated as �q ¼ ð3:03; 2:77Þ GeV�2 for m ¼
ð0; 5Þ MeV at T ¼ 0. Again, these values are well
compatiblewith the results from theLQCD and other
effective models. Beyond T0 ¼ 170 MeV, the curve
for the magnetic susceptibility behave almost as a
linearly decreasing one with respect to T. At T0, we
observe about 20% decreases in their strengths, in
comparison to those at T ¼ 0.

(iii) TP-VEV is a linearly increasing function of the
external magnetic field (eqB) in the leading order.

The slope of the TP-VEV line with respect to eqB

decreases as T increases, since the tensor conden-
sate plays the role for its slope, signaling the (par-
tial) restoration of SB�S. In that way, TP-VEV can
be considered as a chiral order parameter. Hence,
we find that it vanishes at T0 ¼ 166 MeV in the
chiral limit, whereas it remains finite beyond T0

for m � 0, due to the crossover chiral phase
transition.

From the above observations, we can conclude that the
present model calculations have revealed meaningful and
reliable results. Since the effects of the EM fields to QCD
vacuum has been one of the most progressing objects
nowadays, it is meaningful to study more various non-
perturbative quantities, being sensitive to the gauge field,
such as the mixed quark-gluon condensate h �q� � GqiEM,
where G�� represents the gluon field strength tensor, for

instance. Moreover, as discussed in the previous section,
calculations beyond the linearity on the magnetic field, i.e.,
beyond the leading order, can provide interesting modifi-
cations to the present results. It is worth mentioning that,
by considering the inversemagnetic catalysis, shown in the
recent LQCD simulations at finite T [9,29,39,40] with
the sea-quark contributions as a back reaction of from the
quarks to the non-Abelian gauge fields, the present con-
clusion about the magnetic fields can be changed.
Although the inclusion of those sea-quark contributions
is a challenging task within the present model, it must an
interesting task to be done. Related works are in progress
and appear elsewhere.
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