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Dark matter (DM) self-interactions have important implications for the formation and evolution of

structure, from dwarf galaxies to clusters of galaxies. We study the dynamics of self-interacting DM via a

light mediator, focusing on the quantum resonant regime where the scattering cross section has a

nontrivial velocity dependence. While there are long-standing indications that observations of small

scale structure in the Universe are not in accord with the predictions of collisionless DM, theoretical study

and simulations of DM self-interactions have focused on parameter regimes with simple analytic solutions

for the scattering cross section, with constant or classical velocity (and no angular) dependence. We devise

a method that allows us to explore the velocity and angular dependence of self-scattering more broadly, in

the strongly coupled resonant and classical regimes where many partial modes are necessary for achieving

the result. We map out the entire parameter space of DM self-interactions—and implications for structure

observations—as a function of the coupling and the DM and mediator masses. We derive a new analytic

formula for describing resonant s-wave scattering. Finally, we show that DM self-interactions can be

correlated with observations of Sommerfeld enhancements in DM annihilation through indirect detection

experiments.
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I. INTRODUCTION

Dark matter (DM) is five times as prevalent as ordinary
matter, and yet its particle physics nature remains elusive.
Efforts are under way to detect it through its nongravita-
tional interaction with ordinary matter via direct scattering
off nuclei in underground experiments, annihilation to
standard model by-products in the galaxy today, and direct
production in terrestrial collider experiments. There are
well-motivated theoretical reasons to think that DM may
reveal itself through these means, shedding light on the
underlying theory of DM. On the other hand, all evidence
for DM thus far has been obtained through its gravitational
interactions, and it remains important to continue explor-
ing the nature of DM through its effects on structure in the
Universe.

The formation of structure in the Universe gives critical
information about the nature of the DM sector. As is well
known, the collisionless cold DM (CCDM) paradigm has
been highly successful in accounting for large scale struc-
ture of the Universe. However, it is far from clear that this
paradigm can also successfully explain the small scale
structure of the Universe. Precision observations of dwarf
galaxies show DM distributions with cores [1], in contrast
to cusps predicted by CCDM simulations. It has also been
shown that the most massive subhalos in CCDM simula-
tions of Milky Way (MW) size halos are too dense to host
the observed brightest satellites of the MW [2,3]. Lastly,
chemodynamic measurements in at least two MW dwarf
galaxies show that the slopes of the DM density profiles are
shallower than predicted by CCDM simulations [4].

These small scale anomalies, taken at face value, may
indicate that other interactions besides gravity play a role

in structure formation. An interesting possibility is that
DM carries self-interactions [5]. In this scenario, heat can
be conducted from the hotter outer to the cooler inner parts
of the halo through DM collisions, which softens the
density profile in the central regions of the halo. Recent
simulations show that the typical cross section needed
to flatten the cores of galaxies is �� 10�24 cm2 �
ðmX=GeVÞ [6–8], where mX is the DM mass. Since it is
far larger than the typical weak-scale cross section, ��
10�36 cm2, DM candidates cannot be usual weakly inter-
acting massive particles. On the other hand, a light dark
force, denoted �, can provide the required large cross
section. A perturbative calculation for the scattering cross
section gives (in the small velocity limit)
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where the coupling �X is the DM analog of the fine
structure constant. Equation (1) shows that light dark force
with electromagnetic strength coupling can ameliorate
discrepancies in small scale structure observations.
Interestingly, light mediators exist in many DM models
which are motivated to solve completely different prob-
lems [9–17].
Light forces, mediated by a Yukawa potential, can have

rich dynamics. The DM self-scattering cross section may
be velocity dependent, in contrast to the original model
where a constant cross section is assumed [5]. In the
regime where �XmX=m� * 1, Eq. (1) breaks down and

the nonperturbative effect plays a key role in DM scatter-
ing. When the momentum transfer is much larger than the
mediator mass, scattering occurs in the Coulomb limit and
the cross section is proportional to �1=v4 with v as the
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DM relative velocity [18,19]. While in the quantum reso-
nant regime, the scattering cross section can be enhanced
and scale as 1=v2 due to the formation of quasibound states
[20]. This is the same mechanism that leads to resonant
Sommerfeld enhancements in DM annihilation [20]. These
features have important consequences for DM halo dynam-
ics because scattering is enhanced on dwarf galaxy scales
compared to MW and cluster scales. It provides a natural
mechanism to evade constraints from large scales such as
elliptical DM halo shapes and the Bullet Cluster. It has
been shown that most of the parameter space of interest for
thermal DM is in this nonperturbative regime [20].

While self-interacting DM has been the subject of
astrophysical interest and numerical simulation, the par-
ticle physics aspects have been comparatively little exam-
ined. Studies have so far limited themselves to regions
that can be approximated analytically through classical or
Born formulas [21–25], or else have considered a limited
range of parameter space [26]. The purpose of this paper
is to study the full range of effects of light dark force
dynamics on halo structure, and is intended as a compan-
ion paper to [20]. In [20], we have laid out a model of
self-interacting DM that satisfies relic density considera-
tions while giving rise to a rich structure in the scattering,
including the presence of velocity dependent resonances.
Here we delve into many more details. We discuss the
method that we use for an improvement in the numerical
efficiency for solving the Schrödinger equation such that
we are able to reach regions of scattering parameter space
where many partial wave ‘ modes are required. This
method allows us to explore the strongly coupled resonant
and classical regimes. We are able to verify numerically
the classical formula, which has never been done before.
We are also able to examine the angular dependence of
the scattering cross section in the classical and strongly
coupled regimes, observing the transition to the weakly
coupled regime with forward-peaked Rutherford scatter-
ing. We examine in detail s- and p-wave resonances in
the strongly coupled regime, and provide benchmark
points for simulations.

The outline of this paper is as follows. First, we discuss
the case for self-interacting DM, summarizing the current
status of DM simulations and observations of small scale
structure. Then we describe our setup, diving into technical
details of solving the dynamics of strongly coupled sys-
tems. We show the results of our method, encapsulating the
Born, resonant, and classical regimes, and we examine the
velocity and angular dependent scattering effects on halo
structure. We then present a new analytic result for the
s-wave resonant regime before connecting our method to
relic density calculations, explicitly including the effect of
the Sommerfeld enhancement. Lastly, we discuss connec-
tions to observation in indirect detection experiments,
showing how the enhancement in self-scattering can also
be important for DM annihilation. We then conclude.

II. SELF-INTERACTING DARK MATTER AND
SMALL SCALE STRUCTURE

For some time there has been debate about whether the
paradigm of CCDM accurately describes the observed
small scale structure in the Universe. Small scale objects
(e.g., dwarf galaxies) are typically DM dominated, and
therefore offer potentially cleaner laboratories to test
CCDM predictions compared to systems with higher
baryon densities. Here, we describe three discrepancies,
and show how two of themmay point beyond CCDM in the
form of DM self-interactions. We emphasize, however, that
the situation remains far from clear, and ultimately more
detailed numerical simulations including baryonic effects
are required before drawing definitive conclusions [27,28].

A. Core-vs-cusp problem

The central density profiles of dwarf galaxy halos in-
dicate a long-standing discrepancy between steep cusps
predicted by CCDM-only simulations [29–31] compared
to flat cores inferred from observed galaxy rotation curves
[1,32–35]. Observations of larger galaxies and clusters of
galaxies may also exhibit cored profiles [36–39]. Baryonic
effects may provide an astrophysical mechanism for flat-
tening the DM density profile in the center of a galaxy (or
cluster of galaxies), which are often baryon dominated. It
has been argued that feedback from (dissipational) bar-
yonic matter leads to further contraction of the central DM
cusp [40], further exacerbating the discrepancy. However,
simulations have shown this mechanism to be less effective
than previously thought [41,42]. Moreover, supernova
feedback may have the opposite effect: supernova energy
injected into the interstellar medium leads to baryonic
outflow, which can gravitationally disrupt the central
cusp, resulting in lower DM densities compared to
CCDM-only simulations [43–48]. However, this mecha-
nism seems unlikely to explain central cores in metal-poor
galaxies with limited star formation rates [34].

B. Missing satellites problem

There has been an order of magnitude discrepancy be-
tween the number of observed and expected satellites of
the Milky Way (MW) [49–52]. Baryonic processes such as
supernova feedback and/or photoionization may play im-
portant for suppressing star formation in dwarf galaxies,
explaining the observed (weak) baryon content of these
small galaxies [53]. Recently, the Sloan Digital Sky Survey
has discovered many faint galaxies, such that it is evident
that as many as a factor of 5–20 of the known dwarf
galaxies could be still undiscovered due to faintness, lu-
minosity bias and limited sky coverage [54–56].
Consensus is thus shifting toward the view that the number
of MW subhalos is not an issue for the predictions of
CCDM, at least for smaller subhalos.
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C. Too-big-to-fail problem

Detailed studies of the brightest MW dwarf spheroidal
(dSph) galaxies, which are DM dominated at all radii,
show discrepancies with CCDM-only predictions (see,
e.g., [57]). These satellites are expected to be hosted by
the largest subhalos in the MW halo, as they have the
largest velocity dispersions observed from their rotation
curves. However, the most massive subhalos predicted by
CCDM-only simulations are too massive, with central
densities too large, to host the brightest observed satellites
[2,3,58]. Simulations predict Oð10Þ subhalos with maxi-
mum circular velocity Vmax > 30 km=s, whereas the MW
dSphs have Vmax < 25 km=s.1 This discrepancy may share
a common resolution with the core-vs-cusp problem; these
massive subhalos can be reconciled with the observed
dSphs if their central densities are reduced compared to
CCDM predictions. Indeed, analyses of stellar subpopula-
tions within several dSphs indicate cored central density
profiles [4,59–62] (except for Draco [63]). Several studies
using hydrodynamical simulations have suggested that
baryonic physics—i.e., feedback from star formation and
supernovae, as well as ram pressure and tidal stripping
from the host halo—may induce dSph cores [64–67], while
Ref. [68] found a smaller impact from baryonic effects.
Additionally, the severity of this problem can be reduced
by taking into account statistical variation in the formation
of MW-sized halos [69], as well as uncertainty in the
MW halo mass which sets the normalization of the subhalo
mass spectrum. Larger MW halo masses lead to a larger
discrepancy between simulation and observed MW satel-
lites. For example, Ref. [65] used a MW mass of 8�
1011M� and saw no too-big-to-fail problem. On the other
hand, Ref. [70] argued that a larger MW mass, around 2�
1012M�, is warranted. Whether this larger estimate or
smaller ones advocated in [71,72] prevails will have im-
portant implications for the too-big-to-fail problem.

Given these persistent questions about the accordance of
observations with the predictions of CCDM, it is interest-
ing to look beyond the paradigm of cold and collisionless
DM. One of the first attempts to do this was to give DM
some kinetic energy, i.e., to make it warm. Warm DM
predicts a suppression in the halo mass function at small
scales, below the free-streaming length. Thus, warm DM
effectively removes substructure, and predicts a reduced
number of satellites in a galaxy such as the MW. On the
other hand, warm DM halos may be less concentrated than
CCDM halos on scales of order the free-streaming length,
but they are still cuspy [73,74]. As a result, warm DM
solves only the missing satellites problem, which is con-
sidered the least severe discrepancy, but not the remaining
problems.

The other known mechanism for changing the structure
of DM halos is self-interactions. Self-interacting DM was
introduced as a solution to the core-vs-cusp and missing
satellites problems in Ref. [5]. Self-interactions cause en-
ergy transfer from the hotter outer halo to the colder central
region, thereby forming a core. At the same time, colli-
sional stripping of dwarf subhalos within the hotter MW
host halo can deplete the abundances of satellites. Early
simulations, which focused primarily on the case of a
constant (velocity-independent) scattering cross section,
found that �=mX � 1–10 cm2=g flattened the central den-
sities in dwarf galaxies in accordance with observations
and �=mX � 10 cm2=g reduced significantly the number
of MW subhalos [75].
Subsequent studies, however, found rather serious prob-

lems with self-interacting DM due to conflicts with other
observations. The simulation of Ref. [76] concluded that
�=mX & 0:1 cm2=g is required to avoid core formation
in cluster halos in conflict with gravitational lensing
observations of cluster CL 0024þ 1654. Reference [77]
argued that �=mX & 0:02 cm2=g is required by cluster
ellipticity constraints, while Ref. [78] showed that
�=mX � 0:3–104 cm2=g is excluded by requiring that el-
liptical galaxy halos do not evaporate within hot cluster
halos. Lastly, Ref. [79] obtained �=mX & 1 cm2=g from
the x-ray and lensing observations of the Bullet Cluster.
More recently, there have been two major developments

leading to a revival of self-interacting DM. First, DM self-
interactions need not have a cross section that is constant in
velocity [18–23]. For light dark force mediators, once the
momentum transfer becomes comparable to the mediator
mass, the cross section begins to decrease rapidly (analo-
gous to Rutherford scattering). Since larger halos have
larger characteristic velocities, the cross section can be
large in dwarf galaxies (v� 10 km=s), but negligible on
cluster scales (v� 1000 km=s) to evade the aforemen-
tioned constraints.
Second, considerable progress has been made in numeri-

cal simulations of self-interacting DM [6–8,80]. In particu-
lar, the issue of self-interacting DM constraints from
galaxy clusters was recently revisited in Refs. [7,80]. In
these simulations, a very different conclusion was reached
from earlier simulations. In particular, the constraints from
cluster halo triaxiality were found to be much weaker than
previously estimated. They conclude that previous works
did not take into account that the observed ellipticity has
contributions from regions well outside the core, and this
region retains its triaxiality. They also find that the residual
triaxiality is larger than previously estimated [75], and that
the remaining discrepancy can be accounted for in the
ellipticity scatter between different DM halos.
Furthermore, the authors also find that the tendency of
subhalos to evaporate is not significant for �=m�
1 cm2=g. Lastly, the cluster CL 0024þ 1654 used by
Ref. [76] is now known to be undergoing a merger along

1These predicted most massive subhalos are ‘‘too big to fail’’
in forming stars, unlike shallower potentials of much smaller
subhalos.
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the line of sight, making it less useful as a comparison case
with nonmerging simulation data.

Overall, while the situation for self-interacting DM
is not yet resolved, much progress has been made. The
most recent simulations have shown that �=mX �
0:1–10 cm2=g on dwarf scales is sufficient2 to solve the
core-vs-cusp and too-big-to-fail problems [6–8,80], while
constraints on MW and cluster scales require �=mX &
0:1–1 cm2=g [6,7,80]. It appears that all the data may be
accounted for with a constant scattering cross section
around �=mX � 0:5 cm2=g. On the other hand, particle
physics models of self-interacting DM generically predict
a velocity-dependent scattering cross section over a wide
range of parameter space, as we discuss below.

III. DARK FORCES AND DARK
MATTER SCATTERING

In order to explain astrophysical observations on
dwarf galaxy scales, the DM elastic scattering cross section
must be

�� 1 cm2ðmX=gÞ � 2� 10�24 cm2ðmX=GeVÞ; (2)

which is much larger than a typical weak-scale cross
section �� 10�36 cm2. Therefore, this suggests the exis-
tence of a dark force boson � that is much lighter than the
weak scale.

In this work, we consider a phenomenological approach
where nonrelativistic DM scattering is described by a
Yukawa potential

VðrÞ ¼ ��X

r
e�m�r; (3)

which can be either repulsive (þ) or attractive (�). This
interaction arises for � as a vector or scalar mediator, with
interaction

L int ¼
�
gX �X��X�� vector mediator

gX �XX� scalar mediator
(4)

and dark fine structure constant �X ¼ g2X=ð4�Þ. Scalar
interactions are purely attractive, while a vector interaction
is both attractive (X �X scattering) and repulsive (XX or �X �X
scattering). Thus, in the vector case, asymmetric DM
(X only) will have purely repulsive interactions, while
symmetric DM (equal X, �X) will have both attractive and
repulsive interactions, with the total effective cross section
given by the average of the two.

Numerical N-body simulations have investigated the
impact of DM self-interactions on structure formation.
The relevant input is the differential cross section
d�=d�, as a function of the DM relative velocity v.
Since simulations track particle trajectories before and
after collisions, the angular distribution over the scattering

angle � is important. However, to compare across different
parameter regions, with different angular dependencies,
it is useful to consider an integrated cross section that
captures the relevant physics. The usual quantity is the
standard cross section � ¼ R

d�ðd�=d�Þ. However, for
light mediators, � receives a strong enhancement in the
forward-scattering limit ( cos� ! 1), and for the purposes
of affecting the DM distribution this enhancement is
spurious since the DM particle trajectories are unchanged.
In the plasma literature, two additional cross sections
are defined to parametrize transport [81], the transfer
cross section �T and the viscosity (or conductivity) cross
section �V :

�T ¼
Z
d�ð1�cos�Þd�

d�
; �V ¼

Z
d�sin2�

d�

d�
: (5)

The transfer cross section is weighted by (1� cos �), the
fractional longitudinal momentum transfer, while the vis-
cosity cross section is weighted by the energy transfer in
the transverse direction, sin 2�. The transfer cross section
has been used in the DM literature to regulate the forward-
scattering divergence. On the other hand, the viscosity
cross section weighs forward and backward scattering
evenly. It takes into account that forward and backward
scattering affect the DM halo equally, since DM particles
simply exchange trajectories that they would have had in
the absence of a collision. It also takes into account that we
expect that perpendicular scattering is most efficient for
‘‘thermalizing’’ the DM halo and affecting structure
observables.
In addition, the transfer cross section obviously fails if

DM scattering occurs between identical particles. Taking
quantum indistinguishability into account, both forward
and backward scattering diverges, corresponding to poles
in the t- and u-channel diagrams. �T regulates only the
forward divergence, making it an inadequate description
for the case of quantum indistinguishable particles. Since
both forward and backward scattering leave the DM dis-
tribution unchanged, the relevant cross section should
regulate both divergences, which�V does, but�T does not.
In order to make contact with previous work, however,

we focus on �T , rather than �V . Under the assumption of
classical distinguishability in scattering, we find that �T

and �V differ by less than a factor of 2, with �V for
distinguishable and indistinguishable particles differing
by another Oð1Þ number. Thus, the overall effect both of
distinguishability and of the transfer versus viscosity cross
section is Oð1Þ. For the purpose of presenting our results,
we assume classical distinguishability and take �T as a
suitable measure for the effects of DM scattering on halo
shapes. Of course, a full-scale N-body simulation should
make use of the angular information in the differential
scattering cross section, d�=d�, and do away with the
proxy of a transfer or viscosity cross section altogether,
though in most cases the difference between the results

2Reference [8] found that �=mX ¼ 0:1 cm2=g is too small,
although the precise lower bound is unknown.

SEAN TULIN, HAI-BO YU, AND KATHRYN M. ZUREK PHYSICAL REVIEW D 87, 115007 (2013)

115007-4



using �V or �T versus d�=d� will be small. In Sec. IVC
below, we discuss the angular dependence in more detail
and present benchmarks for simulation.

The transfer cross section, computed perturbatively in
�X from Eq. (3), is given by

�Born
T ¼8��2

X

m2
Xv

4

�
logð1þm2

Xv
2=m2

�Þ�
m2

Xv
2

m2
�þm2

Xv
2

�
; (6)

for both attractive and repulsive potentials [21], where v
is the relative velocity. This perturbative expression is
valid only within the Born approximation, requiring
�XmX=m� � 1. Outside this limit, the Born approxima-

tion is not valid and nonperturbative corrections become
crucially important.

Within the nonperturbative regime, analytic formulas
for �T have been obtained only within the classical
limit (mXv=m� � 1) [21,82,83], given for an attractive

potential by

�clas
T ¼

8>>>>>><
>>>>>>:

4�
m2

�

�2 lnð1þ��1Þ �&10�1

8�
m2

�

�2=ð1þ1:5�1:65Þ 10�1&�&103

�
m2

�

�
ln�þ1� 1

2ln
�1�

�
2
�*103;

(7)

where � 	 2�Xm�=ðmXv
2Þ. Many previous works

[21–23,25], including recent N-body simulations [6],
have focused specifically on the case where DM scattering
is described by an attractive, classical cross section, given
by Eq. (7). We emphasize, however, that this case is just
one out of many possibilities, and in general the nonper-
turbative regime remains largely unexplored. We collect,
for reference, the analytic formulas in the Appendix for
the Born, attractive and repulsive classical, and s-wave
resonance cases.

For a large parametric range of interest for DM
self-interactions, both quantum mechanical and nonpertur-
bative effects become important, and neither the Born nor
classical approximations are valid. The onset of these
effects is governed by the conditions �XmX=m� * 1 and

mXv=m� & 1, respectively. We denote this region of

parameter space as the ‘‘resonant regime,’’ since one
important effect is the appearance of quantum mechanical
resonances in �T corresponding to (quasi)bound states in
the potential.

Within the resonant regime, there exists no analytic
formula for �T , and it must be computed by solving the
Schrödinger equation directly using a partial wave analy-
sis. The differential scattering cross section is given by

d�

d�
¼ 1

k2

��������
X1
‘¼0

ð2‘þ 1Þei	‘P‘ðcos�Þ sin	‘

��������
2

; (8)

where 	‘ is the phase shift for a partial wave ‘. In terms of
the phase shifts, the transfer cross section is given by

�Tk
2

4�
¼ X1

‘¼0

ð‘þ 1Þsin 2ð	‘þ1 � 	‘Þ: (9)

To obtain 	‘, one must solve the Schrödinger equation
for the radial wave function R‘ðrÞ for the reduced DM
two-particle system, given by

1

r2
d

dr

�
r2
dR‘

dr

�
þ

�
k2 � ‘ð‘þ 1Þ

r2
� 2�VðrÞ

�
R‘ ¼ 0;

(10)

with reduced mass � ¼ mX=2 and momentum k ¼ �v.
The phase shift 	‘ parametrizes the asymptotic solution for
R‘ðrÞ, given by

lim
r!1R‘ðrÞ / cos	‘j‘ðkrÞ � sin	‘n‘ðkrÞ; (11)

where j‘ (n‘) is the spherical Bessel (Neumann) function.

IV. NUMERICAL SCATTERING RESULTS

In this section, we present our numerical results. First,
we describe our numerical method for computing the DM
self-interaction cross section �T . Next, we investigate the
velocity dependence and angular dependence of DM scat-
tering. For realistic particle physics models of self-
interacting DM, scattering can possess a wide range of
nontrivial dependence on velocity and scattering angle,
whereas N-body simulations have considered isotropic
scattering with constant or particular choices of velocity
dependencies.

A. Numerical method

To solve the Schrödinger equation, it is useful to define
the variables [26]


‘ 	 rR‘; x 	 �XmXr;

a 	 v

2�X

; b 	 �XmX

m�

;
(12)

such that Eq. (10) can be expressed as

�
d2

dx2
þ a2 � ‘ð‘þ 1Þ

x2
� 1

x
e�x=b

�

‘ðxÞ ¼ 0: (13)

To compute �T , we first compute 	‘ for given ða; b; ‘Þ as
follows.
(1) We impose an initial condition for 
‘ and 
0

‘ at

a point x¼xi close to the origin. For xi�b,
ð‘þ1Þ=a, Eq. (13) is dominated by the angular
momentum term, and we expect 
‘ðxÞ / x‘þ1.
Thus, we take 
‘ðxiÞ ¼ 1 and 
0

‘ðxiÞ ¼ ð‘þ 1Þ=xi;
the overall normalization is irrelevant.

(2) We solve Eq. (13) numerically within the domain
xi 
 x 
 xm. The matching point xm is determined
by the condition a2 � exp ð�xm=bÞ=xm, where
the potential term is suppressed compared to the
kinetic term.
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(3) At x ¼ xm, we match 
‘ (and its first derivative)
onto the asymptotic solution, given by


‘ðxÞ / xei	‘ðcos	‘j‘ðaxÞ � sin	‘n‘ðaxÞÞ: (14)

Inverting Eq. (14), the phase shift is given by

tan	‘ ¼ axmj
0
‘ðaxmÞ � �‘j‘ðaxmÞ

axmn
0
‘ðaxmÞ � �‘n‘ðaxmÞ ;

�‘ ¼ xm

0
‘ðxmÞ


‘ðxmÞ � 1
(15)

in terms of our numerical solution for 
‘ at xm. Our
numerical method makes an initial guess for ðxi; xmÞ
and computes 	‘, and then successively decreases
(increases) xi (xm) until 	‘ converges at 1%.

(4) The last step is computing �T by summing Eq. (9)
over ‘, truncating at ‘max . We iterate ‘max until �T

converges to 1% and 	‘max
< 0:01 through ten suc-

cessive iterations. This condition is quite conserva-
tive, typically summing many more ‘ modes than
required.

For a given ða; bÞ, we can then express �T in terms of the
physical parameters ðmX;m�; �X; vÞ. Our numerical code

for this solution was written using MATHEMATICA.
With our numerical method in hand, we performed a

fine-grained scan over 2� 105 parameter points ða; bÞ.
Figure 1 gives a birds-eye view of our full numerical data
set, with the colored points showing the parameters ða; bÞ
in our scan. In the left panel, the different colors corre-
spond to the computed value of �Tk

2=ð4�Þ obtained from
Eq. (9), with the corresponding value of ‘max shown in the
right panel. The white region (upper right) was omitted
from our scan. The solid lines at b ¼ 1 and 2ab ¼ 1
delineate the Born regime (b � 1), the classical regime
(2ab � 1), and the resonant regime (b * 1 and 2ab & 1).
The latter exhibits a pattern of resonances in �T .

There is an important difference between our method
and that of Ref. [26], which performed a similar calculation
of �T within the resonant regime, albeit for a limited
choice of parameters. Reference [26] obtained 	‘ by

matching onto an asymptotic form 
‘ðxÞ /
sin ðax� �‘=2þ 	‘Þ, which is equivalent to Eq. (14) for
x ! 1. For finite x, this form is valid only if both the
Yukawa and angular momentum terms in Eq. (13) are
suppressed compared to the kinetic term, whereas
Eq. (14) requires only the Yukawa term to be suppressed.
Therefore, as ‘ is increased, the method of Ref. [26] re-
quires integrating Eq. (13) to much larger x than in our
method, and is therefore much less efficient. Thus,
Ref. [26] truncates at ‘max ¼ 5 in their calculation,
whereas we are able to perform efficient calculations
with ‘max � 1000. We demonstrate this point in Fig. 2,
showing how�T depends on ‘max for one parameter choice
in the classical regime. Our numerical calculation (solid
line) converges for ‘max * 1000, in good agreement with
the classical cross section (dashed line).3

We can also see the convergence to classical and Born
analytic formulas in the right panel of Fig. 2. The dashed
gold and dotted pink lines show the results for the Born and
classical analytic formulas, and we see that in the regime of
validity, our numerical results (solid blue line) agree well
with the analytic formulas. In the quantum resonant
regime, neither of the analytic formulas reproduce the
behavior of the resonant peaks and antiresonant valleys.
Also note that the Born approximation overestimates the
cross section in the classical regime.

B. Velocity dependence in dark matter scattering

The most important feature that emerges from our nu-
merical study is the highly nontrivial velocity dependence
of �T within the resonant regime. While previous studies
have focused on either constant �T or specific v depen-
dencies, a rich array of possibilities can arise in general,
and the velocity behavior can be rather complicated.

FIG. 1 (color online). Colored regions show parameter points ða; bÞ within our numerical scan, with the corresponding values of
�Tk

2=ð4�Þ (left) and ‘max (right) at each point. The classical, Born, and resonant regimes are delineated by solid lines.

3The reader should not be troubled by the fact that �T can be
negative for certain values of ‘max . Because of the fact that the
momentum and orbital angular momentum operators do not
commute, the transfer cross section, defined in terms of momen-
tum eigenstates, is a physical quantity only in the limit
‘max ! 1, not for a particular value of ‘.
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In Fig. 3, we show the cross section as a function of
velocity for an attractive potential with �X ¼ 10�2. Each
curve corresponds to a different value for b (where b 	
�XmX=m�), as indicated by the numerical values in the

figures. The quantity �Tm
2
X is a useful normalization for

the cross section since, for fixed �X, it depends on v and
mX=m� only (as opposed tomX andm� separately). Thus, to

obtain the required level scattering in dwarf halos, each curve
can be normalized to �T=mX�1 cm2=g at v�10 km=s by
choosing mX appropriately, which also fixes m�.

4

The cross sections shown inFig. 3 exhibit awidevariety of
behaviors and features. The sequence of different cross sec-
tions, ascending from b ¼ 1 to b� 1000, illustrates the
onset of resonance features beyond the Born regime (b �
1). Increasing b, we first see the appearance of an s-wave
resonance for b ¼ 1:68; the phase shift behaves as j	0j !
�=2 for v ! 0, and so the cross section becomes strongly
enhanced, growing as �T ! 16�=ðm2

Xv
2Þ on-resonance.

Moving to larger values of b, the cross section becomes
reduced, and we see the appearance of an s-wave antireso-
nance for b ¼ 4:52, where the cross section is strongly sup-
pressed at low velocity. Higher ‘-mode resonances appear as
peaks at finitevwhere�T is enhanced. Forb ¼ 17:6wenote
the appearance of a p-wave resonance at v � 30 km=s, and
for higherb, spectral features become increasingly prevalent.
At high velocity, all cross sections converge to the same
Coulomb result, �Tm

2
X / v�4, independent ofm�=mX.

In Fig. 4, we show a similar set of results for the
cross section arising from a repulsive interaction, with
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FIG. 3 (color online). Velocity dependence of the scattering cross section for an attractive potential with �X ¼ 10�2, computed
numerically (solid lines), for various values of b labeling each curve. Numerical values indicate �XmX=m� chosen for each curve.

Dashed lines show extrapolation using classical formulas. Each curve can be normalized to �T=mX � 1 cm2=g on dwarf halo scales
(v � 10 km=s) by dividing by m3

X for a particular choice of mX.
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FIG. 2 (color online). Left: Numerical calculation of �T=mX, truncated at fixed ‘max , showing the convergence with increasing ‘max

(solid). The parameter point chosen corresponds to the classical regimewith an attractive potential. The convergence to the classical analytic
result is shownby the dashed line.The dotted line showsanalternate formula for�T=mX derived inRef. [26],where ð‘þ 1Þsin 2ð	‘þ1 � 	‘Þ
in Eq. (9) is replaced by ð2‘þ 1Þsin 2	‘ � 2ð‘þ 1Þ sin	‘ sin	‘þ1 cos ð	‘þ1 � 	‘Þ. While these formulas are equivalent for ‘max ! 1,
Eq. (9) converges much faster with ‘max. Right: Numerical calculation (solid blue) of �T=mX versus m�, showing convergence to the

classical analytical formula (dotted pink) and Born approximation (dashed gold) in the classical and Born regimes.
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FIG. 4 (color online). Velocity dependence of the scattering
cross section, as Fig. 3, but for a repulsive potential.

4Although the cross sections shown in Figs. 3 and 4 have fixed
�X ¼ 10�2, these results can be generalized to other values of
�X by a shift in the horizontal and vertical axes. Effectively, this
shift amounts to relabeling the axes by v ! v� ð10�2=�XÞ and
�Tm

2
X ! �Tm

2
X � ð�X=10

�2Þ2.

BEYOND COLLISIONLESS DARK MATTER: PARTICLE . . . PHYSICAL REVIEW D 87, 115007 (2013)

115007-7



�X ¼ 10�2. Unlike the attractive case, no resonances arise
in the ‘‘resonant’’ regime, since there are no bound states in
the potential. However, the cross section exhibits a clear
velocity dependence where scattering on dwarf scales can
be enhanced compared to larger scales. Larger values of b
(i.e., smaller m�, for fixed mX) correspond to a longer

range force, enhancing �T .

C. Angular dependence in dark matter scattering

Since N-body simulations track particle trajectories be-
fore and after collisions, it is required to know the differ-
ential cross section and its dependence on the scattering
angle �. Although for s-wave scattering, d�=d� is iso-
tropic, more complicated angular dependencies arise in a
wide range of parameter space. In general, if DM scattering
is velocity dependent, then often the differential cross
section carries a nontrivial angular dependence.

First, we investigate the impact of anisotropic scattering
within the classical regime. The numerical simulation of
Ref. [6] considered a velocity-dependent cross section
given by Eq. (7), corresponding to an attractive interaction.
Here, we consider one specific benchmark point from this
work (denoted therein as ‘‘RefP2’’), shown to solve small
scale structure anomalies. This benchmark is parametrized
phenomenologically by �max

T =mX ¼ 3:5 cm2=g and
vmax ¼ 30 km=s; these quantities are related to the under-
lying parameters ðmX;m�; �XÞ by �max

T 	 22:7=m2
� and

v2
max 	 2m��X=ð�mXÞ.5 We emphasize that Ref. [6] as-

sumed in their simulation an isotropic differential cross
section given by d�=d� ¼ �T=ð4�Þ. With our numerical
solution in hand, we can check whether this approximation
is justified.

In Fig. 5 (left), we present our results for d�=d� for the
RefP2 benchmark point, with each panel corresponding to
a different velocity. The horizontal black lines show the
isotropic approximation d�=d� ¼ �T=ð4�Þ adopted by
Ref. [6]. The solid curves show our numerical calculation
of d�=d�. Although vmax and �max

T =mX are fixed, an
additional input is required to fix the three parameters
ðmX;m�;�XÞ. We have taken mXv=m� ¼ 10 (thick blue

curve) and mXv=m� ¼ 50 (thin green curve)6; to the ex-

tent that these curves overlap, d�=d� does not depend on
this additional parametric freedom. The dashed red line
shows the usual Rutherford formula d�=d� ¼
�2
X=ðm2

Xv
4sin 4�=2Þ. From these plots, we conclude:

(I) At small velocity, d�=d� has a nontrivial angular
dependence, with many small-scale angular features
oscillating about a nearly flat profile. Since astro-
physical structure observables are likely insensitive

to small-angle features, we conclude that the iso-
tropic approximation appears well justified in this
regime. This behavior is expected since � � 1 cor-
responds to the strong coupling limit, and the
Yukawa potential approaches the hard sphere limit
with radius set by m�1

� , with d�=d� flat.

(II) At large velocity, d�=d� becomes peaked for
forward scattering ( cos � ! 1). This behavior
is expected since � � 1 corresponds to the
Coulomb limit, and d�=d� is well approximated
by the Rutherford formula. We conclude that an
isotropic approximation is not valid in this limit.
However, since the cross section is suppressed at
larger velocity, this discrepancy may not be
important.

Similar conclusions apply to other parameter points in the
classical regime: scattering is approximately isotropic for
� * 1, but becomes forward peaked for � & 1.
Next, we consider a benchmark parameter point within

the resonant regime: mX ¼ 100 GeV, m� ¼ 17 MeV,

�X ¼ 3� 10�3. These parameters have been chosen to
give a p-wave resonance on dwarf scales, with a peak at
v ¼ 10 km=s with �T=mX ¼ 22:5 cm2=g. In Fig. 5
(right), we show our numerical results for d�=d� (solid
blue curves), with each panel corresponding to a different
velocity, compared to the isotropic approximation
d�=d� ¼ �T=ð4�Þ (horizontal black lines). At small v,
scattering is predominantly s-wave, with d�=d� nearly
flat. At v ¼ 10 km=s, the ‘ ¼ 1 term dominates, enhanc-
ing the scattering cross section and giving an angular
dependence of d�=d� / cos 2�. For larger v, higher ‘
modes become important, and d�=d� becomes forward
peaked, approaching the Rutherford formula. For a p-wave
resonance, it is clear that the angular dependence is crucial.
Although �T=mX may be strongly enhanced on dwarf
scales, the impact on astrophysical structure observables
is likely less pronounced. The p-wave angular distribution
is weighted toward forward or backward scattering,
whereas we expect structure observables to be more sensi-
tive to perpendicular scattering ( cos � � 0).

V. PARAMETER SPACE FOR SELF-INTERACTING
DARK MATTER

In this section, we show how bounds from astrophysical
observations of structure map onto the underlying DM
particle physics parameter space. Within our simple frame-
work, there are only three parameters ðmX;m�;�XÞ, as
well as one overall sign corresponding to a repulsive or
attractive potential in Eq. (3). For a given parameter
choice, we compute �TðvÞ either numerically or using
the Born or classical analytic approximations (where
valid). However, the DM scattering probability within
a halo is determined not by one fixed v, but rather by a
convolution over different velocities and densities as a
DM particle traverses the halo, requiring detailed N-body

5To clarify this notation, we note that the quantity �Tv is
maximized at v ¼ vmax , at which �T ¼ �max

T [23].
6For visual clarity, we have smoothed these curves by averag-

ing each point over an interval �cos� ¼ �0:01 to eliminate
small-angle features.
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simulations which are beyond the scope of our work.

Instead, we consider the velocity-averaged transfer cross

section h�Ti as a suitable proxy for the quantity being

constrained by astrophysical bounds. Averaging over the

initial DM velocities ~v1;2 with exponential weight, we have

h�Ti ¼
Z d3v1d

3v2

ð�v2
0Þ3

e�v2
1=v

2
0e�v2

2=v
2
0�Tðj ~v1 � ~v2jÞ

¼
Z d3v

ð2�v2
0Þ3=2

e�1
2v

2=v2
0�TðvÞ; (16)

FIG. 5 (color online). Left: Numerical solution for d�=d�m�1
X for Ref. [6] benchmark point for mXv=m� ¼ 10 (thick blue) and 50

(thin green). Right: Numerical solution for d�=d�m�1
X for benchmark point with p-wave resonance at v � 10 km=s (solid blue).

Exact results are compared to the isotropic approximation d�=d� ¼ �T=ð4�Þ (flat black) and the Rutherford formula (dashed red).
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where v0 is the most probable velocity and v ¼ j ~v1 � ~v2j
is the relative velocity. We choose v0 to be characteristic of

different size halos, described below. Although velocity-

averaging is clearly irrelevant for a constant cross section,

it is especially important for strongly velocity-dependent

cross sections, e.g., resonant features).
Our results for h�Ti are presented in Fig. 6. For both

attractive (left) and repulsive (right) potentials, we show
the allowed range of ðmX;m�Þ for �X ¼ 10�1, 10�2, 10�3.

Astrophysical bounds on different scales are indicated as
follows:

(i) Blue regions show 0:1< h�T=mXi< 1 cm2=g
(light) and 1< h�Ti< 10 cm2=g (dark) on dwarf
scales (v0 ¼ 10 km=s), required for solving small
scale structure anomalies.

(ii) Red contours show h�Ti=mX ¼ 0:1 and 1 cm2=g on
MW scales (v0 ¼ 200 km=s).

(iii) Green contours show h�Ti=mX ¼ 0:1 and 1 cm2=g
on cluster scales (v0 ¼ 1000 km=s).

The dashed lines indicate where we use analytic formulas
for �T , given in Eq. (7), to interpolate our results into the
classical (top) and Born (bottom) regimes. The fact that our
numerically computed contours match well onto these
regimes demonstrates the consistency between the numeri-
cal and analytic results.

Since N-body simulations have been performed for only
a limited choice of cross sections, the precise numerical
values of these constraints are open to interpretation. For a
constant cross section, Ref. [7] found that �T=mX ¼
1 cm2=g is too large, causing too-small central densities
in dwarf spheroidals and clusters and is marginally con-
sistent with ellipticity constraints on MW scales, while
�T=mX ¼ 0:1 cm2=g satisfies all constraints including on
dwarf scales. On the other hand, simulations with a
velocity-dependent cross section (assuming a classical,
attractive form for �T) have favored larger values on dwarf
scales, �T=mX � 10 cm2=g [6]. Therefore, we expect that
the actual astrophysical bound on MW (cluster) scales lies
between the red (green) lines between h�Ti=mX ¼
0:1–1 cm2=g, with the area to the left excluded, while the
blue regions are favored by solving small scale structure
anomalies. More precise limits require future N-body
simulations utilizing the full velocity-dependent form for
�TðvÞ, as a function of the DM parameters.

The most striking features emerging from our numerical
calculation are the pattern of quantum mechanical reso-
nances and antiresonances for the attractive potential case
(absent for the repulsive case). For fixed h�Ti=mX, the
(anti)resonances favor larger (smaller) mX, corresponding
to peaks pointing to the upper right (lower left) in Fig. 6.
These features are more pronounced for smaller v and
larger �X since the conditions mXv=m� & 1 and

�XmX=m� * 1 govern the onset of quantum mechanical

and nonperturbative effects, respectively. It is clear that the
resonant regime corresponds to a large region of parameter

space, mX � GeV–TeV, where �T is computed numeri-
cally. In the next section, we will derive an analytical
formula for �T in the resonant regime.
Our main conclusion from Fig. 6 is that for a wide range

of ð�X;mXÞ, self-interacting DM can explain small scale
structure anomalies while remaining consistent with other
astrophysical bounds.
(i) A wide range for the DM mass mX is allowed, from

sub-GeV to multi-TeV or beyond.
(ii) A wide range of perturbative couplings �X are

allowed; we explicitly showed results for �X

between 10�1 and 10�3.
(iii) For fixed ðmX;�XÞ, the mediator mass is determined

within an order of magnitude by astrophysical
bounds. Generally, formX < TeV, we requirem� �
1–100 MeV, with smaller m� for mX > TeV.

Future observations on MW and cluster scales can play a
key role in narrowing this parameter space by giving addi-
tional velocity data points for �TðvÞ. For example, evi-
dence for self-interactions on larger scales at the level of
h�Ti=mX � 0:1 cm2=g would favor light DM at the GeV
scale; excluding self-interactions below this level would
favor heavier DM.

VI. RESONANT s-WAVE SCATTERING:
ANALYTIC RESULTS

We derive a new analytic formula for the s-wave scat-
tering cross section that is valid in the resonant regime.
This result provides an accurate description of DM scat-
tering in a parameter region which has not been previously
analytically accessible and is complementary to the Born
and classical regimes. We give a simple analytic condition
for resonances and antiresonances to occur, and we confirm
our results against our numerical computation.
Although the Schrödinger equation cannot be solved

analytically for the Yukawa potential in the nonperturbative
regime, a useful proxy is provided by the Hulthén potential

VðrÞ ¼ ��X	e
�	r

1� e�	r
; (17)

which is analytically solvable for ‘ ¼ 0. The Yukawa and
Hulthén potentials behave similarly, scaling as 1=r at short
distances and becoming screened for large distances. The
Hulthén screening mass 	 is assumed to be related to m� by

	 ¼ �m�, where� is anOð1Þ numerical constant. In comput-

ing the Sommerfeld enhancement for DM annihilation,
Ref. [84] showed that Eq. (17) provides an accurate analytic
approximation of the Yukawa potential, with � ¼ �2=6.
Here,we followa similar analysis to compute the cross section
for DM scattering; however, we keep � as a free parameter.
Defining c 	 �XmX=	 and substituting the Hulthén for

Yukawa potentials, Eq. (13) becomes

�
d2

dx2
þ a2 � c�1e�x=c

1� e�x=c

�

0ðxÞ ¼ 0; (18)
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FIG. 6 (color online). Parameter space consistent with astrophysical bounds for attractive (left) and repulsive (right) potentials for
different �X. Blue regions show where DM self-scattering solves small scale structure anomalies, while red (green) show bounds on
Milky Way (cluster) scales. Numerical values give h�Ti=mX in cm2=g on dwarf (‘‘dw’’), Milky Way (‘‘MW’’), and cluster (‘‘cl’’)
scales. See text for details.
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for ‘ ¼ 0. With another change of variables t ¼ 1� e�x=c

and 
0ðxÞ ¼ tð1� tÞiacfðtÞ, Eq. (18) can be expressed as
Euler’s hypergeometric differential equation�
tð1� tÞ d

2

dt2
þ ½2� ð�þ þ�� þ 1Þt� d

dt
��þ��

�
fðtÞ ¼ 0;

(19)

with solution fðtÞ¼2 F1ð�þ; ��; 2; tÞ, and where the
coefficients �� are defined by

��¼
8<
:
1þ iac� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþa2c2

p
repulsive potential

1þ iac�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�a2c2

p
attractive potential:

(20)

Thus, the full solution is 
0 ¼ tð1� tÞiac2 F1ð�þ; ��; 2; tÞ,
up to an irrelevant normalization.

To compute the phase shift 	0, we are interested in the
behavior of 
0 as x ! 1 (or t ! 1). In this limit, we have7


0ðxÞ!
x!1

�ð�þ þ �� � 2Þ
�ð�þÞ�ð��Þ eiax

þ �ð2� �þ � ��Þ
�ð2� �þÞ�ð2� ��Þ e

�iax / sin ðaxþ 	0Þ;
(21)

where the phase shift is given by

	0 ¼ arg

�
i�ð�þ þ �� � 2Þ

�ð�þÞ�ð��Þ
�
: (22)

To the extent that s-wave scattering dominates, we expect
�T � 4�sin 2	0=k

2 to be a useful analytic approximation
to the full numerical calculation. On the other hand, when
mXv=m� * 1, ‘ > 0 partial waves become important and

our analytic result is no longer valid.8

The existence of s-wave resonances can be inferred from
Eq. (22) by considering the zero velocity limit (since
s-wave resonances correspond to bound states at zero
energy). First, we consider the attractive case. Expanding
Eq. (22) for small a (recall 2a ¼ v=�X), we have

	0!
v!0

� ½2�þ c ð1þ ffiffiffi
c

p Þ þ c ð1� ffiffiffi
c

p Þ�ac; (23)

with digamma function c ðzÞ ¼ �0ðzÞ=�ðzÞ and Euler-
Mascheroni constant �. Thus, as v ! 0, the phase shift
scales as 	0 / v and �T approaches to a constant.
However, this expansion breaks down when

ffiffiffi
c

p ¼ n,
where n is a positive integer, due to poles in the gamma
function. In this case, Eq. (22) gives a maximal phase shift
	0 ! ��=2 for v ! 0, corresponding to a resonance
where the cross section is enhanced as�T / 1=v2. In terms
of physical parameters, the resonance condition is

�XmX

�m�
¼ n2; n ¼ 1; 2; 3; . . . : (24)

As expected, this is the same resonance condition derived
for Sommerfeld enhancements [84], since the same bound
state formation is relevant for both scattering and annihi-
lation. We also note the appearance of antiresonances
(	0 ¼ 0), with vanishing s-wave cross section. From
Eq. (23), the antiresonance condition is

�XmX

�m�
¼ r2; r�1:69;2:75;3:78;4:80;5:81; . . . ; (25)

where r corresponds to positive roots of the equation 2�þ
c ð1þ rÞ þ c ð1� rÞ ¼ 0. On the other hand, for a repul-
sive potential, we have

	0!
v!0

� ½2�þ c ð1þ i
ffiffiffi
c

p Þ þ c ð1� i
ffiffiffi
c

p Þ�ac: (26)

As expected, there is no possibility of resonances, since
poles of the gamma function are along the real axis only,
nor antiresonances, since the quantity in brackets is strictly
positive.
The numerical value of � can be determined a posteriori.

In computing the Sommerfeld-enhanced annihilation cross
section, Ref. [84] fixed � ¼ �2=6 � 1:64 in order to match
the perturbative result in the Born limit at zero velocity.
Applying this prescription to scattering, we wish to relate
the Born cross section in Eq. (6) to our result from the
Hulthén potential for v ! 0. In the perturbative limit,
Eqs. (23) and (26) give 	0 ¼ �2
ð3Þac2, and we have

�Born
T ¼4��2

Xm
2
X

m4
�

; �Hulth�en
T ¼16��2

Xm
2
X
ð3Þ2

�4m4
�

: (27)

Equating these cross sections gives � ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2
ð3Þp � 1:55.9

However, since there is no unique exact value for � outside
the Born limit, we take simply � ¼ 1:6 which provides an
accurate choice across a wide parametric range.

7This follows using the identity

2F1ðA; B;C; tÞ ¼
�ðCÞ�ðC� A� BÞ
�ðC� AÞ�ðC� BÞ
� 2F1ðA; B;Aþ B� Cþ 1; 1� tÞ

þ �ðCÞ�ðAþ B� CÞ
�ðAÞ�ðBÞ ð1� tÞC�A�B

� 2F1ðC� A;C� B;C� A� Bþ 1; 1� tÞ;
which is valid for noninteger Aþ B� C, and also
using 2F1ðA;B;C;0Þ¼1.

8Reference [84] generalized this method to ‘ > 0 by approx-
imating the centrifugal term by a different function allowing a
solution to the Schrödinger equation. However, the modified
centrifugal term alters the long distance behavior of the wave
function, and the ‘ > 0 phase shifts we obtain by this method do
not agree with our numerical calculations.

9The small difference in � stems from a difference in matching
the Yukawa and Hulthén wave functions at r ! 0 or r ! 1.
Reference [84] obtains � ¼ �2=6 by equating the wave func-
tions at r ! 0, requiring that the integral

R1
0 dr0r0Vðr0Þ is

matched between the Yukawa and Hulthén potentials, using
the Lippmann-Schwinger equation. Following the same argu-
ment, but for r ! 1, one requires

R1
0 dr0r02Vðr0Þ, giving our

result � ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2
ð3Þp

.
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Next, we compare our analytic result for �T with our
numerical calculation, shown in Fig. 7. Taking a typical
dwarf velocity v ¼ 10 km=s, we plot �Tm

2
X as a function

ofm�=mX, calculated numerically (black solid) and analyti-

cally from the Hulthén potential, with � ¼ 1:6 (red dashed).
Each panel shows a different coupling, �X ¼ 10�1, 10�2,
10�3, for either an attractive (left) or repulsive (right) inter-
action.10 Our numerical and analytic results agree remark-
ably well for m�=mX * v � 3� 10�5, where scattering is

predominantly s-wave, accurately mirroring the pattern of
resonances and antiresonances within the resonant regime
(for the attractive case). This agreement provides a highly
nontrivial confirmation of our numerical calculation. For

m�=mX & v, the results diverge as ‘ > 0 partial waves

become more important, as expected.
Lastly, we provide a series of benchmark parameters for

resonant s-wave scattering. This case provides a simple
and novel velocity dependence for DM scattering, �T /
v�2, and it would be interesting to incorporate this case
within N-body simulations. On-resonance (	0 ¼ �=2), the
differential cross section is d�=d� ¼ ðmXv=2Þ�2, giving
�T ¼ 16�m�2

X v�2. In Table I we list benchmark parame-
ters that give resonant scattering and also produce
the correct DM relic density (via p-wave annihilation

FIG. 7 (color online). Numerical calculation (black solid) and analytic s-wave result (red dashed) for �Tm
2
X as a function ofm�=mX,

for v ¼ 10 km=s, �X ¼ 10�3–10�1, and both attractive and repulsive interactions. The analytic approximation breaks down for
mXv=m� * 1, when ‘ > 0 partial waves become important.

TABLE I. Benchmark points for resonant s-wave scattering
with d�=d� ¼ ðmXv=2Þ�2 and �T ¼ 16�ðmXvÞ�2, consistent
with correct DM relic density.

�T=mX at v ¼ 10 km=s mX m� �X

1 cm2=g 210 GeV 4.0 GeV 3:1� 10�2

10 cm2=g 100 GeV 0.95 GeV 1:6� 10�2

10The quantity �Tm
2
X is useful to consider since it depends only

on m�=mX, after �X and v are fixed, rather than mX and m�

separately. Thus, for every point along the curves shown in
Fig. 7, one can fix �T=mX to any desired value (e.g., 1 cm2=g)
by taking the appropriate values of mX, m�.
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X �X ! ��, see Sec. VII). We consider several values of
mX to fix �T=mX on dwarf scales; the remaining parame-
ters ðm�;�XÞ are determined by resonance condition,

Eq. (24) with n ¼ 1 and � � 1:7, and the relic density.
For these parameter points, we have checked that
mXv=m� & 1 up to cluster scales v� 1000 km=s,

validating neglect of ‘ > 0 partial waves.

VII. RELIC DENSITY

In the above discussion, we have taken �X to be a free
parameter. In this section, we fix �X for a given ðm�;mXÞ
through the DM relic density, set by the annihilation pro-
cess X �X ! ��. We consider here two representative cases
where � is a vector or scalar field. The annihilation cross
sections at tree level are

ð�anvÞtreeV ¼ ��2
X

m2
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

�

m2
X

vuut ;

ð�anvÞtreeS ¼ 3

8

��2
X

m2
X

v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

�

m2
X

vuut (28)

for the vector and scalar mediators. It is clear that DM
annihilation to scalar mediators is a p-wave process. Since
the mediators have masses around 1–100 MeV, they will
also lead to Sommerfeld enhancements for DM annihila-
tion [13,85]. These enhancements can be important in the
early Universe for heavy DM.

The formalism for the symmetric freeze-out with s-wave
Sommerfeld enhancements has been discussed [86].Here,we
expand it to include the p-wave case.11 The coupled
Boltzmann equations for the speciesX and �X canbewritten as

dYX; �X

dx
¼�

ffiffiffiffiffi
�

45

r
mplmX

g
s=
ffiffiffiffiffi
g


p
x2

h�anviðYXY �X�Y2
eqÞ; (29)

where we take the standard definitions12 x ¼ mX=T and
YX; �X ¼ nX; �X=s, with nX; �X the DM number density, s the

entropy density, and Yeq the equilibrium value of YX; �X. In

addition mpl ’ 1:2� 1019 GeV is the Planck mass, h�anvi
the thermally averaged annihilation cross section, andg
s and
g
 are the relativistic degrees of freedom for entropy and
energy density, respectively.

During freeze-out, DM particles have a high velocity and
the Sommerfeld enhancement effect is negligible. Thus, the
freeze-out temperature can be estimated as usual [88]

xf ’ ln ½0:038nðnþ 1ÞmplmXðg= ffiffiffiffiffi
g


p Þ�0�
�

�
nþ 1

2

�
ln ðln ½0:038nðnþ 1ÞmplmXðg= ffiffiffiffiffi

g

p Þ�0�Þ;

(30)

where g ¼ 2 is the number of degrees of freedom of X and
�0 is given by the relation h�anvi ¼ ðTX=mXÞn�0, where
TX is the DM temperature, and n indicates the annihilation
type, i.e., n ¼ 0 and 1 for s-wave and p-wave annihilation,
respectively.
After freeze-out, Yeq becomes insignificant. Neglecting

Yeq, we can solve the Boltzmann equations analytically as

YX; �XðxsÞ ’ 3:79=ðmplmXJÞ with

J ¼
Z xkd

xf

g
s=
ffiffiffiffiffi
g


p
x2

h�anvidxþ
Z xs

xkd

g
s=
ffiffiffiffiffi
g


p
x2

h�anvidx;

(31)

where xkd is the value of x at kinetic decoupling and xs is its
value when DM annihilation becomes insignificant and we
may stop the integration. Before kinetic decoupling, DM
has the same temperature as the thermal bath TX ¼ T.
After kinetic decoupling at Tkd, the DM velocity distribu-
tion may be distorted from Maxwell-Boltzmann in scenar-
ios with Sommerfeld-enhanced annihilation, since
annihilations preferentially deplete the low velocity popu-
lation. But as shown in [86], DM self-interactions mediated
by � can maintain kinetic equilibrium in the parameter
region we are interested in, and in this case, we simply take
the Maxwell-Boltzmann distribution with TX ¼ T2=Tkd.
When the DM distribution is thermal with temperature

TX, the thermally averaged cross section in the nonrelativ-
istic limit is

h�anvi ¼
Z d3v

ð2�v2
0Þ3=2

e�1
2v

2=v2
0�anv; (32)

where v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TX=mX

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
2=xX

p
. We write the annihila-

tion cross section as �anv ¼ Sð�anvÞtree, where ð�anvÞtree
is the cross section calculated at the tree level and S is the
enhancement factor. Thus, the thermally averaged annihi-
lation cross section is

h�anvi ¼ x3=2X

2
ffiffiffiffi
�

p
Z

Sð�anvÞtreev2e�xXv
2=4dv: (33)

In the cases we consider, the tree-level annihilation cross
sections are given by Eq. (28) and the Sommerfeld en-
hancement factors for s-wave and p-wave annihilations are

Ss ¼ �

a

sinh ð2�acÞ
cosh ð2�acÞ � cos ð2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c� ðacÞ2p Þ
;

Sp ¼ ðc� 1Þ2 þ 4ðacÞ2
1þ 4ðacÞ2 Ss;

(34)

respectively, where we have used a ¼ v=2�X and
c ¼ 6b=�2 ¼ 6�XmX=�

2m� [84].

In Fig. 8, we show the value of�X which gives rise to the
observed relic density for the vector (left) and scalar (right)
mediators. In the calculation, we have taken the DM
kinetic decoupling temperature Tkd ¼ 1 MeV and the

11See also [87].
12The reader should not be confused with x 	 �XmXr defined
in Sec. IV.
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mediator mass m� ¼ 10 MeV. The Sommerfeld effect in

the early Universe can lead to an Oð1Þ suppression factor
on �X for mX * 1 TeV, but is negligible for lighter DM.
This is because heavier DM requires a larger �X which
results in a larger enhancement factor on DM annihilation
in the early Universe.

Here, we comment on the dependence of the result
shown in Fig. 8 on m� and Tkd. Since a large mass

hierarchy between mX and m� is required for DM to

have sufficient self-interactions to affect structure forma-
tion when mX * 1 TeV, the mediator is effectively mass-
less for the Sommerfeld enhancement. Thus, the result is
not sensitive to m�. The value of �X can also depend on

Tkd. For a small Tkd, DM particles cool down slowly, which
suppresses the Sommerfeld effect. However, typically, this
dependence is very mild because the DM annihilation rate
becomes much less than the Hubble expansion rate before
the Universe cools to Tkd, even if the annihilation is en-
hanced. In our case, we have checked that �X only changes

by less than 3% when we set Tkd to be 1 GeV. It is worth

noting, however, that Tkd may play an important role in the

resonance regime. It has been shown that DM can recouple

to the thermal bath after freeze-out in the resonance re-

gime, which leads to a negligible relic density [86]. This
chemical recoupling effect only occurs when Tkd is high

and parameters have to be highly fine-tuned to satisfy the

resonance condition exactly. With Tkd ¼ 1 MeV, we have
checked that chemical recoupling does not happen and DM

has the correct relic density in the resonance regime.
In Fig. 9, we show the allowed range of ðmX;m�Þ with

�X fixed by the relic density constraint as shown in Fig. 8.
For the vector mediator case (left), both attractive and

repulsive interactions are present, and we take the average

of attractive and repulsive cross sections. In the scalar

mediator case (right), DM self-interactions are purely at-

tractive. It is clear that the allowed region for solving the
small scale anomalies is still broad even after we impose

the relic density constraint on �X.
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FIG. 8 (color online). The value of �X required to obtain the correct DM relic density as a function of the DM mass mX (solid red)
for the vector (left) and scalar (right) mediators. We also plot the required �X (dashed blue) if the Sommerfeld effect is neglected in the
early Universe. We take the DM kinetic decoupling temperature Tkd ¼ 1 MeV and the mediator mass m� ¼ 10 MeV.
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FIG. 9 (color online). Parameter space for self-interacting DM as in Fig. 6 with �X fixed to obtain the observed relic density via
X �X ! �� annihilation at freeze-out. The left (right) panel shows the vector (scalar) mediator case where annihilation is s-wave
(p-wave). Crosses show benchmark points in Table I. The lines and colored regions are as in Fig. 6.
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VIII. OBSERVATIONAL TESTS

Self-interacting DM has distinct signatures in direct
detection experiments because self-interactions thermalize
the DM velocity distribution [89]. In this section, we
discuss signatures of self-interacting DM in indirect detec-
tion observations, when DM in halos self-annihilates. As
we have shown, the existence of a light mediator is essen-
tial for generating a large enough self-scattering cross
section. The same mediator can also lead to Sommerfeld
enhancements for DM annihilation in halos if DM is
symmetric. Since the enhancement effect increases as the
DM velocity decreases, we expect DM particles in dwarf
galaxies to have a larger self-annihilation cross section
than those in the Milky Way or clusters. This scale-
dependent feature of the DM annihilation cross section
can be potentially determined by studying signal fluxes
from different astrophysical objects.

Here, we take a few examples from the self-interacting
DMmodels given in Sec. VI to show Sommerfeld enhance-
ments for DM annihilation in halos. We consider the case
where DM particles annihilate to standard model states in
DM halos with s-wave processes.13 To illustrate the point
in a rather model-independent way, we take the assumption
that DM has the correct relic density and does not demand
X �X ! �� to set the correct relic density as discussed in
Sec. VII. We have checked that our result does not change

qualitatively if we demand the relic density set through
X �X ! ��.
For s-wave annihilation, the relative annihilation rates

on different scales are determined by Sommerfeld en-
hancements folded together with DM distributions. Of
course, DM self-interactions will also alter the density
profiles in the center of the DM halos, changing the anni-
hilation rates. Rather than folding the DM distribution in to
extract the total rate, we focus on the effect of the
Sommerfeld enhancement alone on the annihilation cross
section. We calculate the thermally averaged Sommerfeld
enhancement factor as

hSi ¼
Z d3v

ð2�v2
0Þ3=2

e�1
2v

2=v2
0Ss; (35)

where Ss is the s-wave Sommerfeld enhancement factor
given in Eq. (34).
In the top two panels of Fig. 10, we plot the thermally

averaged Sommerfeld enhancement factor for DM annihi-
lation as a function of mX=m� for different �X and DM

velocities. The upper two panels in Fig. 10 are comple-
mentary to those in Fig. 6 and to the lower two panels of
Fig. 10, which show the preferred parameter space for the
self-scattering cross section to solve the small scale struc-
ture problem. One can see the correlation between the
enhancement in the annihilation cross section and the
scattering cross section due to s-wave resonances. It is
also clear that, similar to the DM self-scattering case, there
are three distinguishable regions for the Sommerfeld en-
hancement factor depending on mX=m�. If the mediator
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FIG. 10 (color online). The thermally averaged s-wave Sommerfeld enhancement factor hSi and transfer cross section h�Ti as a
function of mX=m� for �X ¼ 10�2 (left) and �X ¼ 10�3 (right) with v0 ¼ 10 km=s (blue), 200 km=s (red) and 1000 km=s (green),

corresponding to the most probable DM velocities on dwarf (‘‘dw’’), Milky Way (‘‘MW’’), and cluster (‘‘cl’’) scales. One can see the
correlation between the enhancement in the annihilation cross section and the scattering cross section due to the s-wave resonance.

13A familiar example is usual symmetric DM. Asymmetric DM
can also generate annihilation signals if DM-anti-DM oscilla-
tions occur in the late epoch [90–93].
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and DM masses are comparable, it is in the Born regime
where hSi is negligible on all scales. On the other hand, if
the DM mass is much larger than the mediator mass, the
enhancement factor becomes independent of mX=m�

which corresponds to the Coulomb limit. In this limit,
the enhancement factor is essentially given by S�
��X=v. In the third region where mX=m� ’ �2n2=6�X

with n ¼ 1; 2; 3; . . . , DM annihilation can be enhanced
resonantly. On resonance, the enhancement factor is S�
�2�Xm�=ð6mXv

2Þ which is very sensitive to the DM

velocity. We emphasize that the s-wave resonant condition
for the Sommerfeld enhancement of DM annihilation ex-
actly corresponds to DM s-wave resonant self-scattering.

As shown in Fig. 6, most of the parameter space pre-
ferred for solving the small scale structure problem is in the
resonant and classical regions. In these regions, constraints
on the DM self-interacting cross section from DM halo
shapes and the Bullet Cluster are elegantly evaded by the
velocity dependence of the self-scattering cross section.
Interestingly, in the same regions, the Sommerfeld en-
hancements for the DM annihilation cross section differs
significantly on different scales. In the resonant (classical)
region, hSi in dwarves can be a factor Oð100Þ (Oð10Þ)
larger than that in the Milky Way. Therefore in many cases
self-interacting DM predicts Sommerfeld enhancements
for DM annihilation. If indirect detection signals are ob-
served and annihilation cross sections are measured on
different scales, it will give us a strong hint for self-
interacting DM and help us further narrow down the
parameter space.

IX. CONCLUSIONS

We have examined DM self-interactions via a Yukawa
potential with a massive dark force. Over much of the
parameter space, the Born (�XmX & m�) and classical

(mXv * m�) analytic formulas break down, and quantum

resonant structures, many with nontrivial velocity or angu-
lar dependences, arise. We devised a method that allowed
us to efficiently explore the strongly coupled regime of
parameter space. We examined in detail the structure of
this regime, and matched our results onto the known clas-
sical formula, verifying for the first time that analytical
result. We were also able to derive an analytic formula for
our results for the case of a strongly coupled s-wave
resonance. We also extracted the angular dependence of
our results in the quantum and classical regimes, adding
another dimension for study to the dynamics of DM self-
scattering which is particularly important when the media-
tor is light.

Our results have implications for the future study of DM
self-interactions. Theoretical study and simulations of DM
self-interactions have focused on simple analytic solutions
for the scattering cross section, with constant or classical
velocity (and no angular) dependence. New simulations are
in progress which will better account for baryonic effects

on DM structure, while simultaneously integrating DM
self-interactions [94]. It will be important to simulate a
broader class of DM self-interaction models by including
strongly coupled and resonant effects in the simulations.
Angular dependence should also be modeled, though in-
cluding the general angular dependence in the strongly
coupled regime can be difficult. However, we found a
few cases where the scattering cross section has the desired
velocity dependence while the angular dependence is
rather simple. In the case of s-wave resonant scattering,
the scattering cross section scales as v�2 and is also iso-
tropic. In the strongly coupled classical regime, we have
numerically confirmed that isotropic assumption for scat-
tering on dwarf galaxy scales which has been taken in the
recent simulation [6]. In addition, the Rutherford formula
is available in the massless mediator limit. We have de-
vised benchmarks which may be utilized in simulations.
In addition, our results allow the correlation of DM

self-scattering with annihilation, having implications for
indirect detection experiments. Sommerfeld enhancements
for DM annihilation directly correspond to velocity depen-
dent self-interacting DM. Conversely, the absence of
Sommerfeld enhancements imply a velocity-independent
DM self-scattering cross section, so that if cores form in
dwarves they also form in clusters.
Clearly DM self-interactions provide an avenue for ex-

ploration with rich consequences for DM structure in our
Universe. While the nature of the DMmay first be revealed
through its interactions with ordinary matter, to date every-
thing we have learned about DM has been gleaned through
the formation of structure. DM self-interactions can
change this structure in complex ways, so that as we learn
more about it, we may also uncover evidence for the
particle physics nature of DM.
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APPENDIX: COMPENDIUM OFANALYTIC
RESULTS AND BENCHMARK POINTS

We summarize analytic results for self-interacting DM
scattering through a Yukawa potential. The relevant pa-
rameters are the DM mass mX, the dark force mediator
mass m� and coupling �X, and the relative velocity v. The

transfer cross section �T ¼ R
d�ð1� cos �Þd�=d�

provides a useful proxy for comparing specific particle
physics models to N-body simulation results. We also
give d�=d�, which is a required particle physics input
for simulations.
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In the Born limit (�XmX=m� � 1), the cross section can

be computed perturbatively in �X. The differential cross
section is d�=d� ¼ �2

Xm
2
X=ðm2

� þm2
Xv

2ð1� cos �Þ=2Þ2,
giving

�Born
T ¼ 8��2

X

m2
Xv

4

�
log ð1þm2

Xv
2=m2

�Þ �
m2

Xv
2

m2
� þm2

Xv
2

�
;

(A1)

for both attractive and repulsive potentials [21].
Nonperturbative effects become important outside the

Born regime (�XmX=m� * 1). Results have been obtained

in the classical limit (mXv=m� � 1), giving for an attrac-

tive potential [21,82]

�clas
T ¼

8>>>>>><
>>>>>>:

4�
m2

�

�2 ln ð1þ ��1Þ � & 10�1

8�
m2

�

�2=ð1þ 1:5�1:65Þ 10�1 & � & 103

�
m2

�

�
ln�þ 1� 1

2 ln
�1�

�
2

� * 103

(A2)

and for a repulsive potential [20,83]

�clas
T ¼

8><
>:

2�
m2

�

�2 ln ð1þ ��2Þ � & 1

�
m2

�

ðln 2�� ln ln 2�Þ2 � * 1;
(A3)

where � 	 2�Xm�=ðmXv
2Þ. We find that d�=d� �

�T=ð4�Þ (i.e., approximately constant) for � & 1, but
approaches the Rutherford scattering formula d�=d� �
�2
X=ðm2

Xv
4sin 4�=2Þ for � * 1.

Outside the classical regime (mXv=m� & 1), the cross

section is largely dominated by s-wave scattering. We have
obtained a new exact nonperturbative result for �T for the
Hulthén potential, which provides an excellent approxima-
tion for the true Yukawa potential. Our result is

�Hulth�en
T ¼ 16�

m2
Xv

2
sin 2	0; (A4)

where the ‘ ¼ 0 phase shift is given in terms of the �
function by

	0 ¼ arg

0
@ i�ðimXv

�m�
Þ

�ð�þÞ�ð��Þ

1
A;

�� 	

8>>><
>>>:
1þ imXv

2�m�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�XmX

�m�
� m2

Xv
2

4�2m2
�

r
attractive

1þ imXv
2�m�

� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�XmX

�m�
þ m2

Xv
2

4�2m2
�

r
repulsive

(A5)

and � � 1:6 is a dimensionless number. The differential
cross section is d�=d� ¼ �T=ð4�Þ. This formula takes
into account nonperturbative effects associated with
s-wave scattering, and covers a complementary parameter
region to the classical and Born formulas.
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