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SU(3) chiral perturbation theory expansion of moments of quark distributions
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We present formulas for the chiral extrapolation of spin-dependent and spin-independent moments of
quark distributions of octet baryons, including loop corrections and counterterms, to leading nonanalytic
order. This analysis allows for isospin breaking, and may be used for the chiral extrapolation of both
(2 + 1)-and (1 + 1 + 1)-flavor lattice QCD results. An example of such an application is given, with the
extrapolation formulas applied, using the finite-range regularization scheme, to recent (2 + 1)-flavor
QCDSF/UKQCD Collaboration lattice results for the first spin-independent and first two spin-dependent

Mellin moments.
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L. INTRODUCTION

Understanding hadron structure, in particular the par-
tonic structure of baryons, remains a significant challenge
in nuclear physics. Of particular importance to experimen-
tal programs, especially for the analysis of the scattering of
ultra-high-energy cosmic ray particles or of fixed target
and colliding hadron beam experiments, is a quantitative
understanding of parton distribution functions (PDFs). In
the infinite momentum frame these parametrize the like-
lihood of a particular parton carrying the Bjorken momen-
tum fraction x at a renormalization scale .

PDFs have been well determined experimentally [1-4]
and widely studied within models [5—-11]. However, ulti-
mately one wants to determine them directly from QCD
itself, and lattice field theory is currently the only quanti-
tative tool available with this facility. While it is not
possible to calculate PDFs directly on the lattice, use of
the operator product expansion allows moments of PDFs,
which represent averages over the momentum fraction x
carried by the parton, to be evaluated [12-18].

In order to compare moments from lattice simulations,
performed on a finite four-dimensional grid, with experi-
mental determinations, several extrapolations must be per-
formed. Both the continuum extrapolation as lattice
spacing a — 0 and finite volume effects which account
for the finite extent of the lattice must be considered. As
most lattice simulations are still performed at larger than
physical quark masses, an extrapolation down in quark or
pseudoscalar mass to the physical point is also necessary.
That particular extrapolation is the focus of this work.

Naive linear extrapolation of lattice results for the first
several moments of quark distributions to physical quark
masses originally indicated a systematic discrepancy of
more than 30% compared with experiment [19]. This was
remedied somewhat by the use of chiral perturbation
theory and the development of extrapolation formulas
which incorporate the appropriate chiral physics [19,20].
Following a discussion of the consequences for flavor
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properties in Ref. [21], chiral corrections to PDF moments
in the nucleon were developed in Refs. [22-30]. These
analyses include pion loops and octet and decuplet baryon
intermediate states. Flavor symmetry breaking expansions
about the SU(3) flavor-symmetric point were developed in
Ref. [31].

In this article we extend previous developments of chiral
extrapolation formulas for quark distribution moments to
allow for isospin breaking. We develop the formalism in
general terms for all octet baryons, and consider all
spin-independent (SI) and spin-dependent (SD) Mellin
moments.

In Sec. II we define moments of quark distribution
functions. Section III describes the derivation of chiral
extrapolation formulas for these moments, and the results
are summarized in Sec. III H. Finally, we illustrate one use
of this work by applying the results to the chiral extrapo-
lation of recent lattice simulation results from the QCDSF/
UKQCD Collaborations [18,32] in Sec. IV.

II. MOMENTS OF QUARK
DISTRIBUTION FUNCTIONS
With qﬁl) representing the number density of quarks of

flavor ¢ whose spin is parallel (antiparallel) to the longi-
tudinal spin direction of a baryon B, the spin-independent
[¢8(x)] and spin-dependent [Ag®(x)] quark distribution
functions are defined as

7"(x) = 7 (x) + ¢f (x), (1)

AgP(x) = gP(x) — g () )

where x is the fraction of the momentum of baryon B
carried by the quarks.

The (n — 1)th SI and mth SD Mellin moments of the
quark distribution functions are defined as

(1B = [O ! dxx" 1(gB(x) + (=1)"g8(x), (3)
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(el = [O ' don(AgP() + (1" AGFR). ()

The operator product expansion allows these moments
to be related to the matrix elements of local twist-two
operators @ by

(BR[O -#+) — Tr]| B(p)) = 2xn = 1YB[ pleer ... pa —Tr],
(5)

B(R)ILOY* — Te]|B(p)
= Z(xm>§qMB[S{"0p“1 ... pkat — Tr], (6)

where p*, S* and Mp denote the momentum, spin and
mass of the baryon B, the braces {...} indicate total sym-
metrization of Lorentz indices, and trace terms involving
gti*i are subtracted to ensure that the operators transform
irreducibly under the Lorentz group. The twist-two opera-
tors are defined as

Of#r =it lgymD* .. D'y, @

Ofo#n = imgysy*o D" ... D" q, t))

where D = %(ﬁ - D).

Hadronic matrix elements of these operators may be
determined from lattice QCD using standard techniques.
Given a suitable extrapolation to the physical point, such
calculations give information about parton distributions
directly from QCD itself.

III. CHIRAL BEHAVIOR OF QUARK
DISTRIBUTION MOMENTS

Here we outline the derivation of chiral extrapolation
formulas for the quark distribution moments. This is done
by first developing the extrapolation of the matrix elements
of the relevant twist-two operators shown in Egs. (7) and
(8). We allow for isospin breaking, that is, for m, # my, so
the results of this work may be applied to both (2 + 1)- and
(1 + 1 + 1)-flavor lattice simulations of these moments.

A. Heavy baryon chiral perturbation theory

To develop a chiral extrapolation of the parton distribu-
tion moments we include the twist-two operators given in
Egs. (7) and (8) into the chiral Lagrange density of heavy-
baryon chiral perturbation theory. This formalism, devel-
oped in Refs. [33,34], treats the baryons as heavy fields
and has a consistent power counting expansion within
which S-matrix elements can be expanded, below the
symmetry-breaking scale A,, in powers of derivatives
and the quark mass matrix m,,.

We briefly review relevant details of the heavy-baryon
formalism. The heavy-baryon chiral Lagrange density is
written in terms of the (formally velocity-dependent)
baryon fields
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which may be expressed in tensor form as
1

V6

and the pseudoscalar fields

Bahc = (eadedc + eachdb)’ (10)

1 — _a° 0
o = 5 ™ =% K | ap
K~ K° - %1}
where
3= exp(ﬁ) = £2, (12)
f
Under SU(3); X SU(3)g, the fields transform as
S — L3R, (13)
B — UBUT, (14)
&— LEUY = UERT, (15)

with U implicitly defined by Eq. (15).
Decuplet baryons may be included by way of a Rarita-
Schwinger field, represented by the tensor T/

At AL 3 AT A0 30 3 30 g
3B NN V3B B
T= A+ AU E*O A_O A7 2; 2*0 2; i
NN YA Bl Ve BB
St 2*0 E*O E*O SE- EE E*O =k 97
V3 6B N NG

(16)

This field contains both spin-1/2 and spin-3/2 pieces;
the spin-1/2 pieces are projected out by the constraint
¥, T# =0. Under SUB3), X SUQB). T%,. — ULUSULTY, .
The interactions of the octet baryons, decuplet baryons
and mesons are encoded in the following terms of the usual
lowest-order effective Lagrangian [33] (where we have
retained only those terms needed for our calculation):

2DTrBS*{A ,, B} + 2F TrBS*[ A ,, B], (17)

‘EC[(T”J’Z\VB) +(BA,T")], (18)
where
A= %(fa,,,f* — 19,8 (19)
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and flavor space contractions denoted by brackets (.. .) are
given by

(BYB) = BkﬁYfBljk’ (BBY) = BktiIZcBij], (20)
where B represents either the octet or decuplet baryon
tensor.

The quark mass matrix m, is defined as
my = my , 21

and

M= S (emé + Etm et (2)

It should be noted that

(i) S# is dimensionless, and Bysy*B = —2BS*B.
Note that this differs from the convention chosen in
Ref. [18], where S? o« M2.

(ii) The baryon states are normalized such that BB o«

the baryon mass Mp.

(iii) Given the normalization for the pseudoscalar fields
defined above, a chiral perturbation theory estimate
of the pion decay constant in the chiral limit is
Senirat = 0.0871 GeV [35].

B. Twist-two effective operators

The twist-two operators O, given in Egs. (7) and (8),
must be represented within the framework of chiral effec-
tive field theory. That is, in the low-energy effective theory,
the quark bilinear operators are matched onto hadronic
analogues constructed to obey the same symmetry trans-
formation properties; under SU(3); X SU(3) the effective
operators must transform as (8, 1) @ (1, 8).

To describe each independent flavor operator, we define

1 - _
Al = 5(5/\"5* +¢T24¢), (23)
where for each quark flavor ¢, A7 is given by
1
At = AM=| 1 A= . (24)
1

Effective operators corresponding to the isovector
moment, for example, would have operator insertions
containing A = A* — AY [ = A; in the usual Gell-Mann
basis for SU(3)].

It should be noted that the expressions given in the
following sections differ from those of other works
[22,23,25] by factors of the baryon mass M. We have
chosen our convention so as to make dimensionless the
unknown coefficients, @™, ,8(”), o, bg"), which appear in
the effective matrix elements.
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1. Spin-independent moments

The terms listed in this section represent local operators
that contribute to matrix elements of the trace-subtracted

spin-independent twist-two operators (O'-#" — Tr). All
terms involving zero or one mass insertion M are included.
The brackets {...} representing total symmetrization of
the enclosed Lorentz indices may also be written as
“+ permutations” where this is notationally more
convenient. This always indicates the symmetric sum
with no normalization factor, ie., {uv} = uv +rvu =
(uv + permutations). Superscripts (n) on the undeter-
mined coefficients indicate that these are distinct for each
operator, that is, «© # oV, etc.

At leading order, the relevant effective operators con-
tributing to the matrix elements are

[a"(BBA,) + B"(BA,B)
+ a"(BB)Tr(A,)Ipt ... p#d — T, (25)
the O(m,) counterterms are given by
(b\" TH[ B[ A, B], M1] + bS" Tt[B{[A,, B], M}]
+ by T B[{A,, B}, M1] + b{" T Bi{A,, B}, M}]
+ b T BBITH A, M] + b{" Te[BBA, T M]
+ bY) T BA,BITIIM] + b{" Ti[ BMBITi[ A, ]
+ by" T BBM]Tt[ A, ]
+ bYW T BA, T MB]) p#1 ... ptt — T, (26)
and the decuplet insertions may be represented by
yO(TVA,T,)pt ... pad
+ Y WME(TW A, TH) phs .. pid — Tr. 27)
Clearly, because of the number of available indices,

7/(1,2) = (.

2. Spin-dependent moments

The spin-dependent operators have effective matrix el-
ements which have a very similar structure to those given
in the previous section for the spin-independent case. The
term analogous to that of Eq. (25) has the form

[Aa"™)(BS*BA,) + AB™(BSHA,B)
+ Ao ™ (BS* B)Tr(A,)Ip™ ... pkn
+ permutations — Tr. (28)

For m = 0, we note that by the Goldberger-Treiman rela-
tion the zeroth moments of the spin-dependent moments
are related to the meson-baryon coupling constants by

Aa® = 2@1) + 2F), (29)
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ABO = 2(— 21) + F), (30)

where F' and D are defined by Eq. (17).

The form of the effective operator matrix elements with insertions of the quark mass matrix M is again entirely

analogous to that for the spin-independent case:

(AL T BS™[[A,, B], MI] + AbS" Tr[BS*{[A,, B], M}] + AbY" Tr{BS*[{A,, B}, M1] + AbY" Tr{BS*{{A,, B}, M}]
+ AbY" T BS#BITH A, M] + AbY™ Ti[ BS#BA T [M] + AbY” T BS#0 A, BITt[M] + AbY" Tt[BS* MBITi{A,]
+ AbY" T BS*BMITHA,] + AB\Y Tr[BS#0 A, JTH{MB])p*1 ... p#» + permutations — Tr. (31)

Decuplet contributions may be represented by
Ay(m)(T”S{““/\qT,,)p”l ... pHnl
+ Ay ME(TIRISHoA TH2) pks . phnt — Tr.  (32)

Clearly, because of the number of available indices,
Ay'©D = (. Other approximate relations between the un-
known coefficients may be derived using SU(6) symmetry.
In our numerical calculations, for example, we set Ay(o) =
2H = —6D. The analogous relation for the first moment
is Ay = =3(Aa) —248W).

Transitions between octet and decuplet baryons via an
operator insertion are also allowed in the spin-dependent
case, and are represented by the effective matrix element

3 - _
\/;w(m)[(Tl-Lo/\qB) + (B/\qT'“O)]p'“I ... phm
+ permutations — Tr. (33)

Here »® = C is the same parameter which appeared in
Eq. (20). For our numerical results we use the SU(6)
approximation, setting o) = —1(Aa) —2A8W).

C. Feynman rules

Feynman rules relevant to the chiral extrapolation of
matrix elements of twist-two operators may be read di-
rectly from the effective operator matrix element terms
given in Sec. III B.

In standard heavy baryon chiral perturbation theory the
baryon propagators and baryon-meson vertices are given by

i
k-v+ie
Py
k-v+6+ie
i
=l +ie (34)
BB’ ¢ Vertex 1(a): kTS Chp'o

Octet Propagator :
Decuplet Propagator:

Meson Propagator:

K
BT ¢ Vertex 1(b): 3 Care

|
where v denotes the four-velocity of the heavy baryon
B, k* refers to the momentum of the baryon or meson
where the meson is outgoing from vertices, and
PV = (vky” — gh?) — $S#S is a polarization projector.
The labels 1(a) and 1(b) refer to the corresponding figures.
We note that the flavor algebra is encompassed in the
definitions of the (Clebsch-Gordan) coefficients C which
are given explicitly in the Appendix. Subscripts B, T, and ¢
on these coefficients label the octet baryon, decuplet baryon,
and meson which appear in the corresponding vertex, while
a subscript O, indicates that the coupling corresponds to an
operator insertion.

The terms corresponding to operator insertion vertices
differ for the SI and SD cases. For the spin-independent
operators

[

BB ¢ Vertex Insertion 1(f): WCBB¢¢O(,

p{;u'] .. ‘p;un}

C(") 1

) 1
BBy, Operator Insertion 1(c): ar, Cewo, pl ptn

1
TT§; Operator Insertion 1(d)#1: 7 C (T"T), 0 &vB pit | phak
B q

1

: . (n)
TT§; Operator Insertion 1(d)#2: M_B Crr 0,

X g,,{/‘lgﬁf*zp/“ ... pHal,
(35)

Similarly, for the spin-dependent operators

1
BB ¢gp Vertex Insertion 1(f): JTZC('") Sluo prr | prenk

BBp$O,y

BB, Operator Insertion1(c): C")

BB/OA(IS{IU'OPIU’I .. 'plu“m}

TT}, Operator Insertion 1 (d)#1: C'""

TT’OAngﬁS{MOpM] ...pﬂm}

TT§Operator Insertion 1 (d)#2: C gf'}), 0
aq
X g gphSHo pis .. phnt
TBgp, OperatorInsertion 1 (e): C\) {wo pri prnt,
spOp (©):Crpo,, 8o 0P -..p

(36)
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FIG. 1.

(e)

®

Vertices and operator insertions which appear in the leading nonanalytic contributions to moments of quark distribution

functions. Solid squares indicate leading-order strong interaction vertices, while the cross indicates an insertion of the twist-two
operator. This insertion carries a Lorentz index w in the spin-dependent case only.

The TT' operator insertions labeled #1 and #2 correspond
to the first and second terms of the decuplet effective
operator contributions, respectively [see Egs. (27) and (32)].

D. Feynman diagrams

This section details the loop contributions, illustrated in
Fig. 2, which are included in this calculation. Amongst
these are loops with both octet and decuplet intermediate
states, tadpole loops, and wavefunction renormalization
terms. Figures 2(h)-2(j) contribute only to the odd-n
spin-independent moments at order m’"!log(m,), and
are thus included only for the n = 1 spin-independent
moment. For this moment they serve to cancel the contri-
butions of Figs. 2(a)-2(e) to give the quark flavor sum rule.

E. Loop integrals

This section summarizes common integral expressions
needed for the evaluation of diagrams included in our
calculation. Within the framework of finite-range regulari-
zation (FRR), we introduce a mass scale A through a
regulator u(k) inserted into each integral expression
[36-40]. This regulator may take monopole, dipole,
Gaussian, or sharp cutoff forms, for example. The parame-
ter A is related to the scale beyond which a formal expan-
sion in powers of the Goldstone boson mass breaks
down. Changing to dimensionally regularized (DR) inte-
gral expressions requires a simple substitution; details are
given in [41].

Loops with octet baryon intermediate states involve the
term

kik/ _
— i€)*(k* — m}, + i€) FRR

d*k
2m)* (ko

J(m )
1672’

(37

where

Ku Z(k)
o) =3 [k

with the finite-range regulator u(k) inserted. The normal-
ization of J(m?) has been defined so that the nonanalytic
part is simply related to the common form of DR results, as
J(m?) pg m* In(m?/ u?).

Clearly, entirely analogous expressions can be written
for integrals with decuplet propagators replacing one or
more of the octet propagators in the above loop. We define

(38)

d*k kiki
Qm)* (kg + 6 — ie)(ky — ie)(k> — m>, + ie)
¢
i J1(m?, 6)
ES 2]
FRR i 1672 (39)
f d*k kik/ . ij‘IZ(mz’ 5)
Qm)* (kg + 6 — i€)>(k*> — m?, + ie) FRR 1612
¢
(40)
where
4 k*u?(k)
J (m 5) = = , (41)
1 3 (VK + m?P (VI + m? + 8)
1 K (k
Jz(m 5) = = u ( ) (42)

3 (Vk* + m2)(Vk* + m? + 8)2

with one and two decuplet propagators, respectively.
We also define
K2u (k)
et
which has the same nonanalytic structure as J, i.e.,

Jr(m?) 5§ m? In(m?/ u?). This integral will appear in the
evaluation of tadpole loops in Sec. III F2.

hm%—4f Ak e (43)
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FIG. 2. Chiral loops included in the present calculation. Diagram (a) is hereafter referred to as the “octet loop” diagram, (d) is the
“decuplet loop,” and (b) is referred to as the “tadpole” diagram. Diagrams (c) and (e) correspond to wavefunction renormalization.
The transition diagrams, shown in (f) and (g), contribute only in the spin-dependent case. Diagrams (h—j) are included for the n = 1

spin-independent moment only, as explained in the text.

To make comparison with DR expressions clear, the
integral replacement

I(my) = I(my) = [I(my) — d} — dbm%]  (44)

is made, where d{)\ and dﬁ\ denote the leading analytic parts
of the Taylor expansion of the integral, and I represents
any of the integrals in Eqgs. (37)—(43). All expressions in
this article should be taken to use the subtracted integral
form. This renormalization process is described in detail

for the case of baryon mass expansions in Ref. [40]. After
the subtractions have been performed, the residual depen-
dence of the chiral expansion on the FRR cutoff A appears
as inverse powers of A. This dependence may be mini-
mized by fitting A to lattice data to optimally reproduce the
nonanalytic structure displayed by the data. It may further
be accounted for by allowing some variation in A, and by
considering a range of regulator forms u(k) which give
different A dependencies.
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We note that, by removing the unphysical short-distance
part of loop diagrams, FRR has been shown to improve the
convergence of the (traditionally poorly convergent) SU(3)
chiral series [38], and consistently provides robust fits to
lattice data at next-to-leading order. Nevertheless, one
could check the size of next-to-next-to-leading order cor-
rections to confirm that these contributions are small, as
expected.

F. Loop contributions

This section gives expressions for the contribution
from each loop diagram shown in Sec. IIID. Each
term may be derived using the Feynman rules of
Sec. IIIC, and is written in terms of the subtracted
integrals defined in Sec. IIIE. In each case, the sub-
scripts P and U indicate the polarized (spin-dependent)
and unpolarized cases, and the superscripts 8 and 10
indicate diagrams with octet and decuplet baryon inter-
mediate states. All Clebsch-Gordan coefficients C, the
momenta p*t ... p*n and the associated symmetriza-
tion of Lorentz indices are omitted here.

1. Wavefunction renormalization

The contributions from wavefunction renormalization
correspond to Figs. 2(c) and 2(e),

1 3\ -
B = T (5)70m (45)

1 ~
Zé,%P,U} - WJ2(I’I’[2, 6) (46)

2. Tadpole loops
The tadpole loop contributions correspond to Fig. 2(b),

. 1 (1N
Ztl,({iP,U} == W(E)JT(mz) (47)

3. Octet intermediate state loops

The contribution from Fig. 2(a), with an operator inser-
tion into an octet baryon intermediate state, differs from
the octet loop wavefunction renormalization term only in
the spinor algebra.

1 1.

(8,8) _

Zip = 167r2f2<_§)1(m2)’ (49)
13-

(88) _

28 = <§)J(m2). (49)

4. Decuplet intermediate state loops

The contribution from decuplet loops with one operator
insertion [Fig. 2(d)] mimics that of the decuplet loop

PHYSICAL REVIEW D 87, 114515 (2013)

wavefunction renormalization term. We note that there
is an extra P*” polarization projector in the spin algebra
here, as there are two decuplet propagators (as opposed to
the wavefunction renormalization term, which has one,
but has the identical integral form J, because of the
derivative with respect to external momentum). There
are two separate terms which contribute to the decuplet
loop [Fig. 2(d)], arising from the two terms in each of
Egs. (27) and (32). Just as was done in labeling the
Feynman rules in Egs. (35) and (36), we label the two
contributions as “1”” and “2.”

1 5\ -
(10,10) __
Zl,Pl - 167T2f2 <_ §)J2(m2) 8)! (50)
Z\15," = ;(l)jz(mz, 8), (51)

LP2 16722 \9

1 3

(10,10) __

1,U1 - 1677'2f2 (_])Jz(mZ, 6): (52)
400 - L (Yors. o

Lu2 16722\3

5. Octet-decuplet transition loops

By symmetry, the contributions from Figs. 2(f) and 2(g)
are the same. These diagrams do not contribute in the

spin-independent case.
1 2\ -~
(10,8) _ ~(810) _ 2
Zip =Zip = 672 <§)J1(m , 0).

G. Isospin breaking

In its most general form, after including a nonzero
light-quark mass splitting, m, # m,, the chiral perturba-
tion theory expansion developed in this work will have
separate couplings and integrals for each of the mesons
=, m°, K*, K°, 7 in the mass-eigenstate basis. The 7~
and K* remain pairwise mass degenerate. We recall that
because of the necessary redefinition of the meson fields
to remove 7 — n mixing, the baryon-meson couplings
will also receive contributions depending on the 7° — 7
mixing angle €. Setting € — 0 in all expressions will of
course return the isospin-averaged results. Here we make
explicit the dependence of m o and m, on the mixing
angle e.

Consider the usual definition of the meson Lagrangian:

f2
L= Tr(0#310,3) + ATr(m, (3T + 3)).  (54)
Expanding this Lagrangian in powers of the meson field,
the mass term can be written as

114515-7
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Loass = BTr(m, ®?) (55a)

= B(m, + my)w 7~ + B(m; + m;)K°K°

B
+ B(m, + m,)K" K~ + E(mu + my)(7°)?

B B
+ g(md +m, + 4m5)772 + _(mu - md)7777'0,

V3
(55b)

where the final term indicates mixing between the 7° and
7 fields when m, # m,.

To identify the meson masses one must remove this
mixing and bring the kinetic term into the canonical form
via a field rotation

7 — 7%cos e — ysine, (56)

n — 7¥sin e + ncose, (57)

where the mixing angle € is given by

\/g(md - m,

tan2e = .
€ 2m, — (my; + m,)

(58)

After performing this rotation, the SU(3) meson masses
take the form

mi: = B(m, + my), (59)
2B in’
m2, = B(m, + my) ——Q2m;— (m, + md))w' (60)
77 3 cos2e
2. = Blm, + m,) (61)
2o = Bm, + my), (62)

m — (m) (m) (m)  ~(m) (m)
2(x ﬁq = (Csﬂéoq + CBnBOAqM) + CBn;;/¢CBn73f’0AqCBn;B¢

PHYSICAL REVIEW D 87, 114515 (2013)

w| =
2.
=
o
m

2B
m%, =—(4m;+m,+my,) +T(2ms —(m, +my))

where m o and m, now contain some dependence on the
mixing angle €.

H. Fit functions

In this section we give expressions for the chiral extrapo-
lation of quark distribution moments. The Clebsch-Gordan
coefficients C below are those given in the Feynman rules in
Egs. (34)—-(36). We emphasize that these coefficients are
distinct for each moment, and they are listed in the
Appendix. In the expressions below, summation over re-
peated indices, e.g., B', T, ¢ (but not B), is implied. The
overall factor of 2 arises from the corresponding factor in
Egs. (5) and (6). We remind the reader that the terms
pi# . ptat and Stopmr  prat arising from the Feynman
rules and spinor algebra for the chiral extrapolation of the
matrix elements factor out when writing out the quark
moment chiral extrapolation [again see Egs. (5) and (6)].

The general expression for the n = 2 spin-independent
moments is

2(x"~ 1B
_ () (n) (n) (n) (n)
= (Cspo, + Crpom) + CopoCrp0,Chpe

10,10
Z(I,Ul )(mé)

Z1% ()
+ Chnspo, ZE4my) + CityCing, Cripgl
+ 21030 m3)] = (C V2 Crpo, 28, (m3)
— (C14)*Chino, 28y (m3), (64)

while the n =1 case is simply the quark flavor sum
rule. The spin-dependent moments are given, for
m = 0, by

(88) (m)
Zyp (my) + C;B¢¢0qutﬁt}’(m%f))

10,10 10,10 8,10 10,8
+ CiyClo,, Crp L ZUp" m3) + 2000 )] + Cy i Chn [2057 () + 24139 ()]
— (Cy P Clio,, Z8 pm3) — (C7, V2 Cppo,, Z3%(m3). (65)

The term Z(ﬁg‘zlo)(m%ﬁ) contributes only for m =2, by
Eq. (32). The expressions above match those of previous
works [22,23,23,25] in the limit € — 0.

1. g, and (x)!_,

To facilitate direct comparison with, and the use of,
these expressions, the chiral expansions for <1>‘Zu7 A=
g4 and {x)?_ , are given explicitly. Again, these expressions

match earlier work [12,42] in the limit € — 0. As
outlined in previous sections, the integrals J correspond
directly in DR to logarithmic contributions of
the form m?log(m?). Here the linear terms have been
left in terms of the quark masses Bm,. In matching

with familiar notation, we identify Ay® =22 . For
our numerical results we impose the SU(6) relation

H = -3D.
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1
ga = a + bM + 16T2‘f2(d + d’Cz), (663)
a=D+F, (66b)
1
by = 5[(—Abﬁ(” + ABY — ALY + ALY + ALY + ABY)Bm, + (—ALY + ABY)Bm,
+ (AL + ALY + ALY + ALY + ALY)Bm,), (66¢)
1 N 5 3
d=— §(D + F)[=3(D + F)cos € + V3(D — 3F)sin € PJ(m%,) — (D + F)[(D + F)*J(m2.) + Jp(m>.)]
1 y N 1 N
— E(D — F){[2F + 3(D + F)I(D — F)J(m%,) + Jp(m%,)} — g[ZD3 + D*F + 12DF? + 9F3)J(m2.)
- 1 -
— FJp(m3.) - §(D + F)[3(D + F)sin € + V3(D — 3F) cos e 2J(m?), (66d)
10 , N 5 5
d=— ﬁ(—3D)[(cos26)J2(meo, 8) + 4J5(m2.., 8) + Jy(m3,, 8) + (sin*€)J,(m3, 8)]
1 y y N 5 3
- g(D + F)[4(cos?€)J,(m2,, 8) + 8J5(m2 ., 8) + 2J5(m%, 8) + Jo(my., 8) + 4(sin’€)J,(m3, 5)]
2 1 N 3 3
4 §{4(cos e)[(D + Feose = (D~ 3F)sin e]Jl(me 8) + 4D + F)J, (.., 8) + 2D — F)J,(m2,, 5)
- 1 -
+ (D + 3F)J(m%.., 8) + 4(sin e)[(D + F)sine + ﬁ(D — 3F)cos e]Jl(meO, 6)}. (66¢)
(Y_ =a+by+ W(ﬂ +d'C?), (67a)
_ 1 o _ 1,0
a=3(a - 8%) (67b)
_ 1
by = (=0 + 0 = b+ bF + b + bP)Bm, + (=bF + bF)Bmg + b + b5 + 6P + b+ bF)Bm,]

(67¢)

d= —é(za@) = BOBWD + FP2J(m3) + Tr(m? )] + %(a@ +4BB(D — FP2T(m3,) + 2T (mi)]

1 . .
- ﬁ[{6DF(a(2) —2B%) +3F2(a? +28@) + D> (11a® — 108D (m%.) + (5a? + 2B8@)Jr(m.)],

- 1 ~ ~ -
d = — §(y(2) = Y )(cos?€)T,(m2,, &) + 4T, (m? -, 8) + J,(m?

1 y . .
— %(201(2) — BD)[4(cos?e)J>(m2,, 8) + 8J5(m% ., 8) + 2], (m?

IV. CHIRAL EXTRAPOLATION OF LATTICE DATA

In this section we describe the application of the
theory developed here to the chiral extrapolation of
lattice results provided by the CSSM and QCDSF/
UKQCD Collaborations for the first few Mellin
moments of the quark distributions [18,32,43]. In par-
ticular, we consider the first spin-independent moment

(67d)

8) + (sin?€)J,(m?, 8)]

KO)

KO’ 6) + jZ(m%(i> 6) + 4(Sin26)'72(m%7) 5)]

(67e)

and the zeroth and first spin-dependent moments. We
emphasize that the fits shown involve only published
results [18], and are intended as merely an illustration
of the applicability of this work; ideally a full
quantitative analysis should involve additional lattice
results and account for correlations between the data
points.
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We choose to use a dipole regulator u(k) = (AqA—:kz)2
and a regulator mass A = 1 GeV within the FRR scheme.
Our results are insensitive to this choice; choosing differ-
ent regulator forms, for example monopole, Gaussian or
sharp cutoff, and allowing A to vary by =20% does not
change the results of the analysis within the quoted
uncertainties.

The fit to the lattice results is performed by minimizing
the sum of y? for each set of moments. As data are
available only for the doubly and singly represented quark
moments [43], not all of the parameters which appear in the
previous sections are linearly independent in the relevant
fit functions. Replacements are made:

ny = by + by

ny, = b2 + b4 ns = bs, (68)

ng=>b;  ns=byg ne = by, (69)

with entirely analogous substitutions giving An; in the
spin-dependent cases.

12 F T T T T T T T T T T T T T T T T ]

P
Ad

(DZ /1)

a (DX
v (D3
0.8 CL L I L 1 I n 1 1 1 I n 1 n n n 1 n i |
0.4 0.6 0.8 1.0 1.2
(m)*/(Xz)?
(a)

12 F T

P
Au

(DZ /1)

a (DR,
v (D
0.8 C1L I I L 1 L L n 1 n L n 1 n n n 1 " .
04 0.6 0.8 1.0 1.2

(m)*/(Xz)?
(b)

FIG. 3 (color online). Illustration of the fit to the zeroth spin-
dependent moments—data from Ref. [18]. (a) Ratio of singly
represented quark moments. (b) Ratio of doubly represented
quark moments.
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The fit parameters are different for each of the three
moments under consideration. In each case we use SU(6)
relations between unknown quantities to reduce the num-
ber of free parameters. There are 24 lattice data points
available for each moment considered [43].

(i) For the zeroth spin-dependent moment, Ango), D,
and Ag® are fit, with SU(6) symmetry used to set
F=2D and Ay® = —6D. C— Cppys = —ggAphys
is also fixed. In this case, there are eight free
parameters.

(i) The nine fit parameters for the first spin-dependent
moment are Angl), Aa®, ABY and Ac®. Fixed
parameters are D — Dppyg =384, » F = Fpny
%Dphys, C — Cphys» and, using SU(6) symmetry,
Ay = —3(AaV —2ABY) as outlined in the
text.

(iii) For the first spin-independent moment, nine pa-
rameters, nﬁ.z), a?, B? and 0@, are fit, with D,
F and C again fixed to their physical values. As no

13 >_I T T T ]

1.2F 1

p
Ad

(08, /%)

A (0%

r v (M5, 1
0.8 s . . . E
0.4 0.6 0.8 1.0 1.2

(M) /(X)?
(a)
12 -_I T T T |

(X)Rg/(X)Ru

A (0%,

v 0%

0.4 0.6 0.8 1.0 1.2
(mo)*/(X)?
(b)

FIG. 4 (color online). Illustration of the fit to the first spin-
dependent moments—data from Ref. [18]. (a) Ratio of singly
represented quark moments. (b) Ratio of doubly represented
quark moments.
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13F T T T T T T T T T T T T T ]

2 F ]
i v @]
08 CL n n n 1 n n n 1 n n n 1 n n n 1 n |
0.4 0.6 0.8 1.0 12
(M) /(X)
(a)

P
u

(OB /(x)

09 r 1
2 F ]

v @F]

o8k .
0.4 0.6 0.8 1.0 12

(me)*/(Xx)?
(b

FIG. 5 (color online). Illustration of the fit to the first spin-
independent moments—data from Ref. [18]. (a) Ratio of singly
represented quark moments. (b) Ratio of doubly represented
quark moments.

phenomenological estimate of this quantity is

available, the combination (y(z) - @) is fixed to
a ‘“physical” value; using the experimental tree-
level delta insertion as input [44],

0.15F ' ' 7
% 0.10
T
<3 005
= 0.00
T -0.05
ng
T -0.10 (D, — (D5
v (D -3,
~0.15E —— : I

IO.OHHO.SH‘ 1.0
(mg)*=(m)H/(X)*

-1.0 -0.5

FIG. 6 (color online). Illustration of the fit to the zeroth spin-
dependent moments—data from Ref. [18].
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0'15 T T T ]
<z 0.0
z
|
2 0.05
z
= 000
[l]g

—-0.05

(X)Eq—(x)

-0.10

(N)Fa = (05

v L -5

—0.15 & \ .
-1.0 -0.5 0.0 0.5 1.0

(mg)*~(m)H)/(Xx)*

FIG. 7 (color online). Illustration of the fit to the first spin-
dependent moments—data from Ref. [18].

,y/(z) N
(ye) - T) = 6(x)2", at tree level  (70a)

=6(x)_, (70b)
= 6(0.157) = 0.942. (70c)
phys

The fits are shown in Figs. 3-8. Here X, =

\(@m% + m2)/3 = 411 MeV is the simulation center of

mass of the pseudoscalar meson octet. Ratios of moments
are displayed and the X, normalization is taken for the
figures so that they may be easily compared against pub-
lished results [18]. The quality of the fit is clearly accept-
able in each case with y?/dof between 0.6 and 0.9 for each
moment. All y? values are less than 1, as we were not able
to take into account the effect of correlations between the
original lattice data. Best-fit parameters are shown in
Table 1.

0.15F

)

o

=

S
:

x)}

0.05

P_
u

0.00

)/ ((x)

q

-0.05

(x)z—(x)

—0.10 4o wi-f

v (O -@F

=0.15 & — . . =
-1.0 -0.5 0.0 0.5 1.0

(mg)* = (me))/(Xx)?

FIG. 8 (color online). Illustration of the fit to the first spin-
independent moments—data from Ref. [18].
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TABLE I. Values of the fit parameters corresponding to the fits shown in Figs. 3-5. All (A)nﬁj ) have dimensions (GeV™?), and other
parameters are dimensionless. The first uncertainty given is statistical, while the second indicates the uncertainty resulting from a

+20% variation in the FRR cutoff A.

First SI n(lz) n(zz) n(32) nf‘z) n(sz) ng) a® B® o®
1.1(25)(0) —7.0(28)(27) 8.3(26)(31) 0.5(27)(1) 11(4)(4) 6.224)(23) —4.1(17)(12) —8.6(31)(21)  7.5(26)(23)
Zeroth SD An$) Any) An$) Anf) An?) Anf) D Ac®
4.9(84)(9) 0.5(98)(12)  —2.2(58)(9) —15(17)(0) 0.2(50)(9) —1.1(88)(7) 0.74(24)(6) —0.22(26)(0)
First SD Anﬁl) An(zl) Ang]) Anf‘l) An_(sl) Ang) Aa® ABY AoV
—1.5(13)(15)  63(29)(26) —3.9(16)(23) —7.046)(11) —1.0(11)(8) —6.0(28)(34) 0.41(50)(29) —1.5(10)(3) —0.93(61)(14)

V. CONCLUSION

We have developed chiral extrapolation formulas for the
matrix elements of local twist-two operators including the
effects of isospin breaking. From these, we infer similar
formulas for the chiral extrapolation of spin-dependent and
spin-independent moments of quark distribution functions.
The analysis includes loop corrections and counterterms to
leading nonanalytic order. This work represents an exten-
sion of previous results in that we allow for a nonzero light-
quark mass difference. This allows our results to be used for
the chiral extrapolation of both (2 + 1)- and (1+ 1+ 1)-
flavor lattice results to the physical point. Such lattice results
may then be directly compared with experimental values. In
Sec. IV we presented an example of such an application to
the results of recent lattice simulations.

We emphasize that the application presented here is
merely an illustration, with the fits performed to a limited
amount of data. The true usefulness of our analysis and

technique will come from the facility to extrapolate to the
physical point. When the results of more lattice simulations
become publicly available, in particular for quark distribu-
tion moments with lattice-determined normalizations,
rather than in ratio form, the extrapolations developed
here will allow a valuable comparison of lattice data with
experimental results at the physical point.
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APPENDIX: COEFFICIENT TABLES

Superscripts (n) may be assumed on every Clebsch-Gordan coefficient C and on every unknown parameter «, etc.
These tables are identical for the spin-dependent case, for which all unknown parameters may be substituted, for example

a® — Aa™,

B
Cgpo,

B p n A 30 3 3~ BO =
p %"-ﬁ-g-ﬁ- o
n La +4B +60)
A Ha+2B +40) %235-

0 a—2pB S5a 4 B
3+ Sat by o
3 o
g0 La+4B + 60)
B g
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B
Cgpo,
B p n A 30 p o = B
Ha+4B +60)
n et by g
-2
A Ha+2B+40) -
0 _a—2B 5 B
3 “4\5 $teto
P o
_ Sa o B
E 2+5i+o
=R o
= tla +4B + 60)
B
Cgpo,
B’ p n A 30 3 3" =N =
P g
n ag
A s+o
30 La+4B + 60)
2 Ha +4B +60)
E; Ha+4p+60) s
E, ?a+§+ 7 Sa B
= 2+L+0
CBBO,(M
B Xm;l Xm;l Xm;l
P -b1+b2_b3+b4+b5+b7+b9 b7 b1+b2+h3+b4+b7+b8
n b5 bg bg
A t(byg + 4by + 6bs + bg + by + bg + by) L(byg + b + by + bg + by) (=2byo + bg + by + 4bg + 4by)
30 L(byg + 4by + 2bs + bg + by + by + by) H(=byo + bg + by + by + by) b
>t —b, + by — by + by + b5+ by + by by + by + by + by + by + by by
27 _bl_b2+b3+b4+b5+b6+b8 bl_bz_b3+b4+b6+b9 bﬁ
=A% bs bg by
57 _bl_b2+b3+b4+b5+b6+h8 hé bl_bz_b3+b4+b6+b9
CBBO(,M
B Xm;y, ! xmy! Xmy !
p by bs bg
n b, —by 4+ by — by + by + bs+ by + by by + by + by + by + by + by
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> by — by — by + by + bg + by —by — by + by + by + bs + b + by be
pi by + by + by + by + by + by —by 4+ by — by + by + bs+ by + by b,
=& by —by — by + by + by + bs + bg + bg by — by — by + by + bg + by
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2 2
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