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We examine the axial U(1) symmetry near and above the finite-temperature phase transition in

two-flavor QCD using lattice QCD simulations. Although the axial U(1) symmetry is always violated by

quantization, i.e., the chiral anomaly, the correlation functions may manifest effective restoration of the

symmetry in the high-temperature phase. We explicitly study this possibility by calculating the meson

correlators as well as the Dirac operator spectral density near the critical point. Our numerical

simulations are performed on a 163 � 8 lattice with two flavors of dynamical quarks represented by

the overlap fermion formalism. Chiral symmetry and its violation due to the axial anomaly is manifestly

realized with this formulation, which is a prerequisite for the study of the effective restoration of the axial

U(1) symmetry. In order to avoid discontinuity in the gauge configuration space, which occurs for the

exactly chiral lattice fermions, the simulation is confined in a fixed topological sector. It induces a finite-

volume effect, which is well described by a formula based on the Fourier transform from the � vacua. We

confirm this formula at finite temperature by calculating the topological susceptibility in the quenched

theory. Our two-flavor simulations show degeneracy of the meson correlators and a gap in the Dirac

operator spectral density, which implies that the axial U(1) symmetry is effectively restored in the

chirally symmetric phase.
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I. INTRODUCTION

Chiral symmetry plays a key role in understanding the
nature of the vacuum of quantum chromodynamics
(QCD). With Nf flavors of massless quarks, the QCD

Lagrangian has a symmetry UðNfÞL � UðNfÞR under field

rotations involving flavor mixings for left-handed and
right-handed quarks independently. Among them the
flavor-singlet part of the chiral (or axial) transformation,
which forms Uð1ÞA, is violated by quantization. This is
known as the chiral or axial anomaly. At zero tempera-
ture, the remaining symmetry SUðNfÞL�SUðNfÞR�Uð1ÞV
is spontaneously broken down to SUðNfÞV � Uð1ÞV , and
N2

f � 1 massless Nambu-Goldstone bosons appear. At

finite temperature, in the massless limit, a restoration of
symmetry is expected back to SUðNfÞL � SUðNfÞR �
Uð1ÞV above a critical temperature Tc.

This symmetry breaking and its restoration are charac-
terized by a vacuum expectation value of a flavor-singlet
scalar operator �qq, which is called the chiral condensate
�h �qqi � �, the order parameter of this phase transition.
According to the Banks-Casher relation [1]

� ¼ ��ð0Þ; (1)

a nonzero chiral condensate implies an accumulation of
low-lying eigenvalues of the Dirac operator D. Here, �ð�Þ

is a spectral density of D defined as �ð�Þ ¼
ð1=VÞP�0 h�ð�� �0Þi with V a four-volume of space-time
and h� � �i denotes an expectation value. The Banks-Casher
relation (1) is satisfied in the thermodynamical limit, i.e.,
infinite-volume limit, followed by the limit of vanishing
quark mass. This implies that the density of low-lying
eigenvalues of D must disappear above the transition
temperature.
The chiral anomaly is reflected in the particle spectrum

(in the low-temperature phase) as a mass-splitting of the
corresponding pseudoscalar meson, the � meson in
the case of Nf ¼ 2 for example, from the flavor nonsinglet

pseudoscalar particles, i.e., � mesons. In terms of
(valence) quark-flow diagrams, the difference between
flavor-singlet and -nonsinglet mesons comes from a
disconnected diagram in the meson two-point correlation
functions. It is found that the main contribution to the
disconnected diagram is from low-lying quark eigenmodes
if one decomposes the quark propagator into the contribu-
tions of individual eigenmodes of the Dirac operator [2].
An interesting question then emerges: above the finite-
temperature phase transition, where we expect the suppres-
sion (or even absence) of the low-lying eigenmodes, does
� become degenerate with flavor-nonsinglet pseudosca-
lars? If so, the axial U(1) symmetry is effectively restored
at least in the particle spectrum at high temperature. This
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may have a significant impact on the nature of the finite-
temperature phase transition, since the symmetry controls
the order and critical exponents of the phase transition [3].

Such an argument was originally made by Cohen [4],
followed by several theoretical studies [5–9]. A numerical
study using lattice QCD, on the other hand, has been
missing, because most numerical simulations at finite
temperature performed so far used the staggered fermion
formulation, which realizes chiral symmetry only partially.
An even more important problem of the staggered fermion
is in the so-called rooting procedure, i.e., a square root of
the fermion determinant is taken to represent two flavors of
light quarks in nature out of four artificial flavors built in
the staggered fermion. The flavor-singlet axial transforma-
tion is ill defined in such a theory. With this caveat, there
was a recent study of the Dirac spectral density using the
staggered fermion [10]. In this paper, we present the first
numerical study of this problem employing the overlap
fermion formulation [11,12], for which the full flavor and
chiral symmetries are realized on the lattice including the
flavor-singlet axial symmetry existing at the Lagrangian
level and violated by quantization.

Although the numerical cost for the simulation of the
overlap fermion is substantially higher than that of the
staggered fermion, its simulation has become feasible by
recent developments of machines and algorithms, and in
fact has been extensively performed by the JLQCD and
TWQCD collaborations in the past years [13]. The overlap
fermion is constructed with the overlap Dirac operatorDov,

Dov ¼ m0½1þ �5sgnðHWð�m0ÞÞ�; (2)

where HWð�m0Þ is the Hermitian Wilson-Dirac operator
HWð�m0Þ ¼ �5DWð�m0Þ with a large negative mass
�m0, which is of order of the lattice cutoff. This operator
satisfies the Ginsparg-Wilson relation [14], Dov�5 þ
�5Dov ¼ Dov�5Dov=m0, through which the exact chiral
symmetry on the lattice can be defined [15]. The operator
(2) has a singularity due to the sign function, when an
eigenvalue of HWð�m0Þ crosses zero as the background
gauge field varies. This corresponds to a boundary between
two adjacent topological sectors of the gauge field.
A numerical simulation with currently available algorithms
becomes prohibitively costly when one crosses this
singularity; the JLQCD and TWQCD collaborations took
a strategy to fix the topological sector during the
Monte Carlo simulation. Physical quantities at the � ¼ 0
vacuum are reconstructed later by correcting the finite-
volume effect ofOð1=VÞ due to fixing the topology [16,17].

Since the artifact due to fixing topology is essentially a
finite-volume effect, the same strategy should work at finite
temperature as far as the spatial volume is sufficiently
large. Detailed discussions are given in Sec. II. We numeri-
cally check this property by calculating the topological
susceptibility on quenched lattices, which is given in
Sec. III. As discussed in Ref. [17], even when the global

topology is fixed, local topological fluctuations are still
active and the topological susceptibility can be extracted
from a long-range correlation of topological charge den-
sities. The results at finite temperature obtained in this
work are compared with conventional calculations from
the fluctuation of global topology found in the literature.
We then discuss the results of our exploratory simula-

tions of two-flavor QCD at finite temperature using the
overlap fermion formulation in Sec. IV. The global topo-
logical charge is fixed to zero. We analyze the low-lying
eigenvalue spectral density of the overlap Dirac operator,
as well as the meson correlators to investigate the effective
restoration of the axial U(1) symmetry. Both connected and
disconnected parts of the correlator are reconstructed from
the low-lying eigenmodes, which are calculated and stored
in advance. The disconnected part produces the difference
between the meson channels related by the UAð1Þ symme-
try transformations. We show that, in the high-temperature
phase, the disconnected contribution is indeed vanishing
towards the chiral limit of sea quarks.
A similar study of the restoration of the axial U(1)

symmetry has recently been made by the HotQCD collabo-
ration [18] using the domain-wall fermion formalism. Like
the overlap fermion, the domain-wall fermion realizes exact
chiral symmetry on the lattice, but only in the limit of an
infinitely large fifth dimension. In practical simulations, the
chiral symmetry is slightly violated and an additive mass
renormalization mres appears. The size of mres is typically
on the order of MeV, and poses a significant problem when
one tries to identify the near-zero eigenvalues, which are of
the same order or even lower. The overlap fermion
employed in this work enables a clear identification of the
near-zero modes and their effects on the physical quantities.
Reports of our work at earlier stages are found in

Refs. [19,20].

II. PHYSICS AT FIXED TOPOLOGY

In QCD, the fluctuation of global topology Q is neces-
sary to guarantee the cluster decomposition property,
which is one of the fundamental conditions necessary in
constructing a meaningful quantum field theory. It is easy
to see that the different topological sectors have to be
added with a weight of the form ei�Q, through which the
QCD � parameter is defined [21]. The formulas to relate
the physical quantities obtained in a fixed topological
sector Q to those in the � ¼ 0 vacuum were developed in
Refs. [16,17]. They are valid also at finite temperature as
outlined below.
Let Zð�Þ be a partition function of QCD with the � term

put in a volume V ¼ L3 � �. Here, L and � are the spatial
and temporal extent of the box respectively (� ¼ Nta).
The partition function ZQ at a fixed global topological

charge Q can be written as a Fourier transform of the �
vacua,

GUIDO COSSU et al. PHYSICAL REVIEW D 87, 114514 (2013)

114514-2



ZQ ¼ 1

2�

Z �

��
d�Zð�Þ exp ði�QÞ

¼ 1

2�

Z �

��
d� exp ð��Fð�ÞL3Þ; (3)

where Fð�Þ � E0ð�Þ � i�Q=V.
Near zero temperature, E0ð�Þ represents the vacuum

energy density, Zð�Þ ¼ exp ð��E0ð�ÞL3Þ. The integral in
Eq. (3) may be evaluated using the saddle-point expansion
around

�c ¼ i
Q

	tV
ð1þOð�2ÞÞ; (4)

where 	t is defined through an expansion of E0ð�Þ in terms
of �,

E0ð�Þ ¼
X1
k¼1

c2k
ð2kÞ!�

2k ¼ 	t

2
�2 þOð�4Þ; (5)

and � � Q=ð	tVÞ. The result up to small �2 terms is
given by

ZQ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�	tV

p exp

�
� Q2

2	tV

�

�
�
1� c4

8V	2
t

þO

�
1

V2
; �2

��
: (6)

The global topological charge distributes as a Gaussian
with a width specified by the topological susceptibility 	t.
At finite volume, the correction appears at order 1=V. The
basic assumption in obtaining Eq. (6) through the saddle-
point expansion is that E0ð�Þ takes its minimum value at
� ¼ 0 and is analytic around there.

At nonzero temperature, � plays the role of inverse
temperature. As the first excited-state energy E1ð�Þ
becomes significant compared to the temperature,
�ðE1ð�Þ � E0ð�ÞÞL3 � 1, the partition function Zð�Þ
receives contributions from the excited states as Zð�Þ ¼P

n exp ð��Enð�ÞL3Þ, and the relation (3) has to be
modified to include them. This can be done by redefining
the ‘‘energy’’ as � ~Eð�ÞL3 � � lnZð�Þ and accordingly
the ‘‘free energy’’ � ~Fð�ÞL3 � � ~Eð�ÞL3 � i�Q=V. As far
as the analyticity property of ~Eð�Þ around � ¼ 0 is
unchanged, the same saddle-point approximation can be
applied, and Eq. (6) is valid with 	t and c4 evaluated at
finite temperature. The condition that 1=V2 and �2 have to
be small in Eq. (6) is still applied. Since � is fixed, the
condition implies a large spatial volume L3 to make
V ¼ �L3 sufficiently large.

The same conclusion is obtained by considering the
‘‘energy’’ defined through a transfer matrix in one of three
spatial directions. In this way, the spatial extent L plays the
role of inverse temperature and the whole argument given
at vanishing temperature remains unchanged. Again, the
volume V appearing in the formulas is the space-time
volume �L3.

Along the same line of argument, one can obtain the
relation between correlation functions at fixed Q and those
at fixed �. For instance, for a correlator Gð�Þ that is CP
even at � ¼ 0, one obtains [17]

GQ ¼ Gð0Þ þGð2Þð0Þ 1

2	tV

�
1� Q2

	tV
� c4

2	2
t V

�

þGð4Þð0Þ 1

8	2
t V

2
þOðV�3Þ: (7)

Namely, the correlator at a fixed topology GQ is written

in terms of Gð0Þ and its second derivative Gð2Þð0Þ �
dGð�Þ=d�j�¼0, and so on. The first correction is again of
the order of 1=V.
One important example of Eq. (7) is that for a two-point

correlation function of the topological charge density!ðxÞ.
It can also be written in terms of flavor-singlet pseudo-
scalar density operators mPðxÞ using the flavor-singlet
axial-Ward-Takahashi identity. Fixing the global topology,
a constant correlation remains at long distances,

lim
jxj!large

hmPðxÞmPð0ÞiQ

¼ 1

V

�
Q2

V
� 	t � c4

2	tV

�
þOðe�m�jxjÞ: (8)

At finite temperature, the long distance jxjmust be taken in
the spatial direction.
The constant correlation appearing in Eq. (8) is under-

stood as the effect of fixing the topology. Let us consider a
sector of Q ¼ 0, as an example, i.e., the global topology is
constrained to zero. If there is a positive topological charge
fluctuation locally near the origin, there would be more
chance to find a negative fluctuation apart from there in
order that hmPðxÞi is summed up to zero when integrated
over space-time. The correlation hmPðxÞmPð0Þi is thus
negative at long distances and is proportional to the ability
to have local topological fluctuations, which is character-
ized by 	t. Since the effect must vanish on a large enough
volume, one expects a contribution of the form �	t=V.
The relation (8) suggests a possibility to extract 	t from

the measurement done in the fixed topology. Indeed, it was
successfully performed at zero temperature in Ref. [2].
The last term in Eq. (8) represents a physical correlation

due to the flavor-singlet pseudoscalar particle, here de-
noted as �. In the lattice calculation of the flavor-singlet
correlation functions, there appear connected and discon-
nected quark-flow diagrams. Both diagrams contain a
slow decay mode due to the flavor-nonsinglet pion, which
cancels between the two diagrams, and only the rapidly
decaying channel of heavier � particles remains. In the
quenched theory, there is no pion component in the
disconnected sector and a modified contribution from
the so-called hairpin diagram has to be considered, as
discussed later in Sec. III C.
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When 	t is very small, which is expected for Nf ¼ 2

QCD above Tc, our method for extracting 	t is no longer
valid. However, the disconnected propagator is still useful
since its absence (or presence) itself is a signal for theUAð1Þ
restoration (or breaking). If there is a sizable gap in the Dirac
spectral density, it is likely that the disconnected diagram is
highly suppressed and 	t ¼ 0. Conversely, if the eigenvalue
density is nonzero but very tiny, 	t is likely to have a
nonzero value. In this way, even when 	t is small, we can
indirectly investigate whether 	t ¼ 0 or not, and UAð1Þ is
restored or not, through the fixed-topology simulations.

III. STUDY OF FIXED TOPOLOGY
IN QUENCHED QCD

Before performing two-flavor QCD simulations at finite
temperature, we carry out a quenched study in order to
validate the strategy of extracting the physics of the � ¼ 0
vacuum from the fixed topology simulations at finite
temperature. We measure the topological susceptibility at
finite temperature using the method outlined in the pre-
vious section and compare the results with those in the
literature obtained with the conventional method of calcu-
lating the variance of the global topological charge hQ2i.

A. Setup and data sets

In order to fix the global topological charge throughout
the hybrid Monte Carlo (HMC) simulation, the JLQCD
collaboration introduced two extra species of unphysical
Wilson fermions with a large negative mass �m0 [22].
With the mass of order of the lattice cutoff, the extra
degrees of freedom are irrelevant in the continuum limit.
Since the overlap Dirac operator Dov is built upon the
Hermitian Wilson-Dirac operator HWð�m0Þ as in Eq. (2),
a change of the index of Dov accompanies a zero-crossing
of one of the eigenvalues of HWð�m0Þ. The extra Wilson
fermions generate a fermion determinant of the form
det ½HWð�m0Þ2� and such a zero-crossing is prohibited.
We also introduce twisted-mass ghosts to cancel unwanted
contributions from the extra Wilson fermions. The net
effect for the Boltzman weight in the path integral is

det ½HWð�m0Þ2�
det ½HWð�m0Þ2 þ
2� ; (9)

where 
 is the twisted mass given to the ghosts. The
eigenmodes of jHWð�m0Þj above 
 do not contribute to
the Boltzman weight effectively, and only the near-zero
modes are affected. In this work, we chose 
 ¼ 0:2 in the
lattice unit.

The suppression of the near-zero modes of HWð�m0Þ
does not spoil local topological fluctuations that give rise to
the topological susceptibility 	t. Indeed, using the same
formulation, 	t was successfully calculated and confirmed
to be consistent with the expectation from chiral perturba-
tion theory [2].

We generated finite-temperature data in the pure gauge
theory on a lattice of size 243 � 6. With Nt ¼ 6, the
transition temperature corresponds to the lattice spacing
a ’ 0:11 fm, which is in the region where the locality of
the overlap-Dirac operator is satisfied with our choice of
lattice actions. We take a range of lattice spacing 0.09–
0.13 fm, which corresponds to � ¼ 2:35–2:55 with the
Iwasaki gauge action. The lattice spacing is estimated
from the heavy-quark potential measured on independent
zero-temperature lattices with an input of r0 ¼ 0:49 fm.
For each parameter, we accumulated Oð300–500Þ configu-
rations separated by 50–100 HMC trajectories in the trivial
topological sector Q ¼ 0. The lattice parameters are
summarized in Table I.
The autocorrelation time of standard thermodynamical

observables, like internal energy and the order parame-
ters, the Polyakov loop and chiral condensate, are negli-
gible. The decorrelation of topology-related quantities,
such as the lowest eigenvalue of the overlap Dirac
operator, is very slow at higher temperatures, which is
a well known effect on fine lattices (see for example
Refs. [24,25]).
We estimate the finite-temperature phase transition point

Tc by an inflection point of the Polyakov loop, which is
more precise than its susceptibility with our statistics. The
corresponding � value is � ¼ 2:445, which corresponds to
288 MeV. For each lattice, a value of T=Tc is also listed in
Table I. The precise value for Tc is irrelevant for the
conclusions of this section.

TABLE I. Parameters for the pure gauge simulations on a
243 � 6 lattice with the topology-fixing extra Wilson fermions
(labeled as FT). The global topological charge is fixed to Q ¼ 0
in these runs. Lattice spacing is estimated from the heavy-quark
potential. The number of configurations used for eigenvalue
calculations and the (disconnected) correlator calculations are
given in the columns of Neigenval and Ncorrelators. Also listed are

the runs without fixing topology (CT) at � ¼ 2:58 (with the
Iwasaki gauge action). The critical temperature for this case is
�300 MeV [23]. The total number of configurations for this run
is 1069. Out of these, the sectors of global topological charge
jQj ¼ 0 and 1 are selected for measurements of the disconnected
correlators.

Type � a (fm) T (MeV) T=Tc Neigenval Ncorrelators

FT 2.35 0.132 249 0.86 106 106

FT 2.40 0.123 268 0.93 336 336

FT 2.43 0.117 281 0.97 101 101

FT 2.445 0.114 288 1.00 424 420

FT 2.45 0.113 290 1.01 584 584

FT 2.46 0.111 295 1.02 251 245

FT 2.48 0.107 306 1.06 420 321

FT 2.50 0.104 316 1.10 379 218

FT 2.55 0.094 348 1.20 487 487

CT 2.58 Q ¼ 0 0.099 331 1.10 299 235

CT 2.58 Q ¼ 1 0.099 331 1.10 262 257
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B. Eigenvalue spectral density

Before analyzing the topological susceptibility, we
investigate the eigenvalue distribution of the overlap
Dirac operator, which is closely related to the topological
susceptibility as we discuss below. Above the transition
temperature the density of near-zero eigenvalues must
vanish as dictated by the Banks-Casher relation [1].1 On
the other hand, a sharp peak at very low eigenvalues has
been observed in previous works at or above the critical
temperature [8,26,27]. These were conjectured to be
related to the presence of local topological object, such
as an instanton–anti-instanton pair. If this is the case, these
near-zero eigenmodes should have significant contribu-
tions to the topological susceptibility.

Eigenvalues of the overlap Dirac operator (2) are
calculated applying the implicitly restarted Lanczos algo-
rithm for a chirally projected operator PþDovPþ, where
Pþ ¼ ð1þ �5Þ=2. It gives a real part of the eigenvalue of
Dov, Re�ov, and then the complex �ov is reconstructed by
solving a relation j1� �ov=m0j2 ¼ 1, which is a direct
consequence of the Ginsparg-Wilson relation. The com-
plex eigenvalue �ov is projected onto the imaginary axis as
� � Im�ov=ð1� Re�ov=2m0Þ.

When applying the overlap operator (2), we approximate
the sign function using a rational approximation with the
Zolotarev coefficients after subtracting a few lowest-lying
eigenmodes of the kernel operator HWð�m0Þ. Taking the
degree of the rational function to be 16th, the precision of
the approximation is kept better than 10�10. With this tiny
error we confirmed that the low-lying eigenvalues of Dov

are obtained to eight digits or better. The precision of the
approximation is kept better than 10�7. Further details may
be found in Ref. [13].

In Fig. 1 we plot the eigenvalue spectral density
observed on pure gauge lattices. In this study, � is defined
with the lattice regularization and not converted to the

continuum regularization schemes, such as the MS
scheme. On the quenched lattices, the thermodynamical
limit is equivalent to the infinite-volume limit, and our
lattices are already sufficiently close to this limit when
extracting � from the data. (Note that there is no long-
range mode in the pure gauge theory.)

From the plot, we find that at low temperature
(� ¼ 2:35–2:43) the eigenvalues accumulate to the
amount corresponding to ��ð0Þ � ð200–300 MeVÞ3.
There is no sharp change observed at the critical tempera-
ture (� ¼ 2:445), but �ð0Þ decreases towards higher
temperatures and eventually vanishes at � ¼ 2:55.

More interestingly, we confirm the presence of the peak
near � ¼ 0 at around the critical temperature. Note that our

configurations are generated in the Q ¼ 0 sector and there
are no exact zero modes. The near-zero modes responsible
for the peak have very small eigenvalues (less than
20 MeV) but they are still nonzero. We will show that
these near-zero modes give the main contribution to the
topological susceptibility.

C. Disconnected correlation functions

So far, very few groups have studied the topological
susceptibility 	t at finite temperature in the pure SU(3)
gauge theory. The most complete results are found in two
papers [28,29]. Both calculated the variance of the global
topological charge to obtain	t ¼ hQ2i=V. The former used
the geometrical definition of the topological charge, i.e., a
discretized version of F
�

~F
�, on configurations generated

with the standard Wilson action. The topological suscepti-
bility was shown to be stable around the zero-temperature
value [� ð180 MeVÞ4] until the transition temperature,
where it starts decreasing. A disadvantage of the geometri-
cal method for measuring the topological charge is that it
requires some cooling steps that potentially affect the final
results. The other work [29] used the Lüscher-Weisz action
and directly counted the number of zero modes of a lattice
Dirac operator, which approximately satisfies the Ginsparg-
Wilson relation to measure the global topological charge
through the index theorem. The results of these two works
reasonably agree with each other. We take the numbers
from Ref. [29] for a comparison with our results.
We calculate the topological susceptibility on the gauge

configurations generated at a fixed global topological

FIG. 1 (color online). Eigenvalue spectral density in quenched
QCD at finite temperature. The histograms plotted with filled
symbols are those below the critical temperature. Those above
the critical temperature are plotted with open symbols. The data
at a would-be critical point (� ¼ 2:445) are shown without
symbols. The error bars associated with the symbols are esti-
mated using the jackknife method. The inset shows a magnifi-
cation of the near-zero mode region, showing an accumulation of
very low eigenmodes.

1Strictly speaking, this is valid only when the chiral conden-
sate is an order parameter of the phase transition. In the
quenched theory, this is not absolutely necessary, but we assume
it as a working hypothesis in this section.
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charge using the formula (8). It requires a calculation of the
disconnected quark-flow diagram, appearing in the evalu-
ation of the correlation function hmPðxÞmPð0Þi. Namely,
we have to calculate

D55ðx; 0Þ ¼ hTr½�5Sðx; xÞ�Tr½�5Sð0; 0Þ�i (10)

for each space-time point x. Here, Sðx; yÞ is a quark propa-
gator obtained by an inversion of the overlap Dirac opera-
torDov for a given source point y. Since the numerical cost
for a direct calculation is too expensive, one typically uses
some stochastic techniques. In this work, on the other hand,
we introduce a representation of Sðx; yÞ in terms of the
eigenvalues �k and eigenvectors c kðxÞ,

Sðx; yÞ ¼ X
k

c kðxÞc y
k ðyÞ

�k þm
: (11)

This is an exact representation when the sum is taken over
all eigenmodes. We truncate the sum to include only the
low-lying modes, which should dominate the long-distance
correlations. We validate this approximation by inspecting
the correlation functions constructed with 30, 40 and 50
low-lying eigenpairs at � ¼ 2:40. Each eigenpair includes
two terms in Eq. (11): one is from the eigenmode of �k and
c kðxÞ, and the other is that of ��

k and �5c kðxÞ, which is

also an eigenmode ofDov. For the valence quark massm in
Eq. (11) we take am ¼ 0:01, but the final result for the
disconnected diagram is almost independent of am.

Figure 2 shows the disconnected correlator with differ-
ent numbers of low-lying eigenpairs. We find that the
disconnected correlation function is indeed dominated by
the low-lying eigenmodes and there is no significant dif-
ference between 40 and 50. Therefore we can safely as-
sume that the evaluation of the disconnected quark diagram

using the 50 eigenpairs is sufficiently precise and adopt this
procedure in the following analysis.
On the quenched lattices, we only evaluate the discon-

nected quark-line contributions to the correlator, since the
long-distance correlation from the pion channel does not
exist in the disconnected contribution. Instead, there is a
so-called ‘‘hairpin’’ contribution [30] of the form

fP
1

p2 þm2
�

m2
0

1

p2 þm2
�

fP; (12)

where m� is the pion mass and fP denotes the matrix
element to annihilate a pion to the vacuum through the
pseudoscalar density operator. The singlet mass parameter
m0 represents a coupling between quark loops in the
quenched vacuum. In the coordinate space, it corresponds
to the functional form �f2Pm

2
0ð1þm�tÞ exp ð�m�tÞ for

zero spatial momentum. We use this function to fit the
lattice data at finite temperature, taking t in the spatial
direction, together with a constant term �	t=V represent-
ing the fixed topology effect. We neglect the subleading
effect of �c4=ð2	tV

2Þ in Eq. (8). The pion mass m� is
effectively determined by combining a fit of the connected
diagram with that of the disconnected diagram. The overall
coefficient, such as f2Pm

2
0, is treated as a free parameter.

An example of the fit is shown in Fig. 2, which is for a
lattice slightly below the critical temperature. It demon-
strates that the ansatz describes the lattice data well. The
underlying assumption of our analysis is that the pion
channel also gives a dominant contribution at long dis-
tances at finite temperature. This is a reasonable assump-
tion below the critical temperature Tc, and seems to be
valid even above Tc as our data are well fitted.

D. Topological susceptibility

The results for the topological susceptibility 	t obtained
at a fixed global topology Q ¼ 0 from the constant long-
distance correlation of the flavor-singlet correlator are
shown in Fig. 3. Our data are plotted by black dots, which
are in good agreement with those from Ref. [29] (squared
and diamonds) obtained from the Q2 distribution.
In order to further cross-check, we also accumulated

1069 configurations without fixing the topology by elimi-
nating the extra Wilson fermions (9). This run is carried out
slightly above the transition temperature by choosing the
lattice spacing a ’ 0:10 fm. In Table I, it is denoted as CT.
The result for 	t obtained by counting the number of exact
zero modes is plotted in Fig. 3 by a cross at around T=Tc ’
1:1, which shows a good agreement with our determination
from the fixed-topology run.
It is also interesting to see the consistency of this

topology-changing run by selecting configurations of a
given Q and analyzing them with the method for a fixed
topology. We pick up two subsets of configurations with
global topological charge jQj being 0 and 1, and calculate
the disconnected correlation function to extract 	t.

× 10-6

50 Eigenmodes
40 Eigenmodes
30 Eigenmodes

−4

−2

0

2

4

6

|x|
0 5 10 15 20

FIG. 2 (color online). Disconnected correlator approximated
by different numbers of eigenmodes, i.e., 30, 40 and 50 eigen-
modes. The data is at � ¼ 2:40 and m ¼ 0:05, which is below
the transition temperature. The continuous line is a fit of the 50
eigenmodes’ data.
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The results are plotted in Fig. 3 at around T=Tc ’ 1:1 with
different symbols. They show perfect agreement with the
standard method, i.e., extracted from hQ2i=V, as well as
with the result of the fixed-topology run. This provides firm

numerical evidence that the method to extract 	t at
topology-fixed configurations works as expected, at least
for 	t > 100 MeV.
We also check that the eigenvalue spectral density

does not depend on whether or not the configurations are
generated at a fixed topological sector. The eigenvalue
distribution is compared in Fig. 4. At a matched lattice
spacing a� 0:1 fm, and thus at a matched temperature
T=Tc ’ 1:1, the spectral density at Q ¼ 0 is essentially
unchanged even when the configuration is generated with
the constraint for the global topological charge.

IV. DYNAMICAL QCD WITH
OVERLAP FERMIONS

Given the theoretical formulation and numerical valida-
tions for the strategy to extract the � ¼ 0 vacuum physics
from the fixed-topology simulations, we embark on a
dynamical simulation of finite-temperature QCD using
the overlap fermion formulation. The lattice size in this
exploratory study is 163 � 8 and the global topological
charge is fixed to Q ¼ 0.

A. Run parameters

In Table II we list simulation parameters. We use the
Iwasaki gauge action together with the extra Wilson fer-
mions and associated ghosts (9). The temporal size Nt ¼ 8
is chosen to generate smooth enough gauge configurations
at around the critical temperature to guarantee the locality
properties of the overlap operator [31]. The aspect ratio
L=Nt is not sufficiently large for a finite-temperature
simulation. This is a possible source of systematic errors
especially in the vicinity of the phase transition, but we do
not consider such errors in this work, which is the first
attempt to extract the physics related to the axial U(1)
sector from the overlap fermion simulations.
Our lattice volume and statistics are not sufficient to

precisely determine the transition point solely from the

FIG. 3. Topological susceptibility in quenched QCD calcu-
lated on a 243 � 6 lattice. Data points (black dots) are obtained
from a fit of the correlation functions (see text). The errors are
statistical only (jacknife binned). Reference data points from
Ref. [29] (but on 203 � 6 and 163 � 6 lattices) are shown by
diamonds and squares. The data coming from selected sectors in
a changing topology run are also shown (Q ¼ 1 is slightly
shifted for readability).

FIG. 4 (color online). Comparison of the eigenvalue spectral
density from the runs with and without fixing the topology at a
matched lattice spacing a ’ 0:1 fm. The fixed-topology run at
� ¼ 2:50 (black, thin line) is one of those shown in Fig. 1. The
result of theQ ¼ 0 configurations selected out of the run without
fixing the topology is overlayed (red, dashed line). These two
results are in good agreement despite the slight mismatch of the
lattice spacing (thus temperature). The spectral density of all
configurations in the topology-changing run (thick line) show a
slight deviation at the lowest bin. This is understood as an effect
of the exact zero modes on the Q � 0 configurations, which are
taken out in this plot. They repel the nearby eigenvalues and
make the spectral density lower in the vicinity of � ¼ 0.

TABLE II. Parameters for finite-temperature QCD simulations
with two flavors of dynamical overlap fermions. The lattice size
is 163 � 8. The global topology is fixed to Q ¼ 0.

� am a (fm) T (MeV) T=Tc Neigenval Ncorrelators

2.18 0.01 0.144 172 0.95 118 100

2.18 0.05 0.144 172 0.95 350 320

2.20 0.01 0.139 177 0.985 187 187

2.20 0.025 0.139 177 0.985 303 272

2.20 0.05 0.139 177 0.985 279 279

2.25 0.01 0.128 192 1.06 335 331

2.30 0.01 0.118 208 1.15 512 479

2.30 0.025 0.118 208 1.15 226 183

2.30 0.05 0.118 208 1.15 281 281

2.40 0.01 0.101 243 1.35 477 319

2.40 0.05 0.101 243 1.35 210 210

2.45 0.05 0.094 262 1.45 80 -
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generated configurations. Instead, we assume a value of the
critical temperature Tc ¼ 180 MeV in two-flavor QCD. The
lattice spacing is estimated from an existing analysis at zero
temperature [32]. From its � value (� ¼ 2:30), the lattice
spacing in the range (� ¼ 2:18–2:45) is obtained assuming
the renormalization-group running. Systematic uncertainty
associated with this estimate exists, but it does not affect the
conclusion of this paper, which is qualitative.

The quark mass for degenerate up and down quarks is
taken in the range 0.01–0.05 in the lattice unit. This corre-
sponds to the bare mass of 14–70 MeV for the lattice close
to the transition point (� ¼ 2:20).

B. Dirac operator spectral density

As in our quenched analysis, we calculate the low-lying
eigenvalues of the overlap Dirac operator on two-flavor
QCD ensembles. Since the chiral condensate h �qqi gives an
order parameter of the finite-temperature phase transition,
according to the Banks-Casher relation (1) the spectral
density near the zero eigenvalue provides a direct measure
of the phase of the system. However, we should note
that the relation holds only in the thermodynamical limit
(V ! 1 thenmq ! 0), and the results at finite volume and

quark mass have to be taken with care.
For our main interest in this paper, i.e., the effective

restoration of the axial U(1) symmetry, the spectral density
plays a unique role. Let us consider the susceptibilities
	� ¼ R

d4xhja�ðxÞja�ð0Þi and 	� ¼ R
d4xhja�ðxÞja�ð0Þi of

the isotriplet scalar and pseudoscalar operators ja�ðxÞ ¼
�qðxÞ�aqðxÞ and ja�ðxÞ ¼ �qðxÞ�5�

aqðxÞ. (�a is the Pauli
matrix to specify the isospin component. We use a some-
what old notation ‘‘�’’ for the isotriplet scalar state. In the
modern terminology, it is called a0.) Using the property
that the eigenmodes of the Dirac operator appears as a
complex-conjugate pair of �k and ��

k and with their eigen-

vectors simply related by �5, i.e., c k and �5c k, one can
show that the difference of the susceptibilities is written in
terms of the eigenvalues,

	� � 	� ¼
Z 1

0
d��ð�Þ 4m2

ðm2 þ �2Þ2 : (13)

The disappearance of 	� � 	� suggests the effective
restoration of the axial U(1) above the critical temperature,
or at least the anomalous violation of the axial U(1) cannot
be seen in this isotriplet (pseudo)scalar channel.

In the broken phase, i.e., �ð0Þ � 0, the difference (13)
diverges as 1=m in the chiral limit, which is understood as a
contribution from the long-distance correlation due to the
Nambu-Goldstone pion channel. In the symmetric phase
�ð0Þ ¼ 0, on the other hand, the difference survives under
the condition �ð�Þ � � with  	 1. It was recently
shown that this condition is not fulfilled [9], i.e., > 2.

For other channels, the axial U(1) restoration cannot be
simply parametrized by only using the spectral function
and the details of the eigenvectors are relevant. We could

still expect the important role played by the near-zero
modes, and it is important to identify the strength of its
suppression, i.e., the power . There is even a possibility to
find a gap in �ð�Þ, i.e., zero density from � ¼ 0 up to some
value �c.
For this reason, we also study the eigenvalue spectral

density in two-flavor QCD. Since it requires the infinite-
volume limit followed by the chiral limit, more investiga-
tion would be necessary for conclusive results. The first
results obtained in this work with exact chiral symmetry
would still give valuable information towards this goal.
On the configurations generated as listed in Table II, we

calculate 50 lowest eigenvalues and associated eigenvec-
tors of the Hermitian operator �5Dov. Paired eigenmodes
of Dov can be reconstructed from them, and we effectively
have 100 low-lying eigenmodes. The numerical method is
the same as the one employed in the quenched study. Since
the global topological charge is fixed to zero, we do not
have exact zero modes.
We plot the results in Fig. 5 after rescaling them to a

dimensionful unit to compare the spectra at different tem-
perature values. We investigated the Monte Carlo histories
of the lowest mode and found no evidence to suggest long
autocorrelations. Also, doubling the statistics for a couple of
temperatures did not significantly change the initial result.
First of all, at low temperature (� ¼ 2:18, T � 170 MeV,

top panel of Fig. 5) we find a significant number of near-zero

FIG. 5 (color online). Spectral density of the massless overlap
Dirac operator in two-flavor QCD. Top and bottom panels
are the data clearly below and above the critical temperature,
respectively. The middle panel corresponds to those around
the transition point. The jackknife errors are shown for each
bin of the histogram. When the histogram is terminated
at the lower end, it implies that we find no eigenmode below
that value. The statistical error in that case is also zero, because
we use the jackknife method. The lighter the color the lighter
the mass.
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eigenmodes suggesting � ’ 250 MeV, as is known in the
zero-temperature case [33,34]. Such near-zero modes found
at a heavier sea-quark mass am ¼ 0:05 are suppressed at
am ¼ 0:01. This is what should happen on a finite-volume
lattice, even though we expect a nonzero density at � ¼ 0 in
the infinite-volume limit. Such finite V and finitemq scalings

are studied in detail at zero temperature [33–36].
Near the transition temperature (� ¼ 2:20 and 2.25,

T � 180–190 MeV, middle panel of Fig. 5), the result is

qualitatively unchanged. Even above the transition tem-
perature (� ¼ 2:30 and 2.40, T � 210 MeV, bottom panel
of Fig. 5), we still see a similar number of near-zero modes
when the quark mass is large (am ¼ 0:05). This is consis-
tent with our observation in the quenched theory (Fig. 1);
it indicates that at the quark mass am ¼ 0:05 the system is
qualitatively similar to the pure gauge theory.
Once the quark mass is decreased towards the chiral

limit at higher temperatures, not only the near-zero modes,

FIG. 6 (color online). Meson correlators at � ¼ 2:20 (T ’ 180 MeV) and � ¼ 2:30 (T ’ 208 MeV). Sea-quark masses are
am ¼ 0:05, 0.025 and 0.01. Results for the �, �, � and � channels are shown. Bands represent the statistical error.
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say those below 10 MeV, but the modes up to �40 MeV
disappears, which is very different from what we found
on the lower-temperature lattices (T � 170 MeV). Our
observation suggests the following picture. In the thermo-
dynamical limit, �ð0Þ disappears at the critical point
(by definition). At a temperature slightly above, the sup-
pression towards the chiral limit occurs more rapidly and
at some higher temperature a gap opens. This means a
stronger suppression than any power  of the form ��.
Unfortunately, any quantitative argument about the power
 and the point where the gap opens would not be possible
with the currently available data. There is even a possibility
that the gap develops right above the critical point. Much
more extensive data at several quark masses and volumes
would be necessary for a definite conclusion on this point.

C. Meson correlators

Further information about the restoration of the symme-
try can be extracted by directly inspecting the degeneracy of

meson correlators. Under the flavor-singlet (or -isosinglet)
axial U(1) transformation, the pion channel is related to �,
and likewise the � channel is related to �. On the other
hand, the flavor-nonsinglet (or -isotriplet) chiral transfor-
mation connects � to � and � to �. Therefore, above the
transition temperature we expect a degeneracy between �
and � as well as between � and �. If the axial U(1)
symmetry is effectively restored, we should see the degen-
eracy between � and � as well as between � and �.
Namely, all four channels should become degenerate.
Since the difference between � and � or between � and

� comes from the disconnected quark-flow diagram, the
U(1) restoration means the absence of the disconnected
diagram. The disconnected contributions to the isosinglet
scalar and pseudoscalar correlators are written as

Dðx; yÞ ¼ hTr½Sðx; xÞ�Tr½Sðy; yÞ�i; (14)

D5ðx; yÞ ¼ hTr½�5Sðx; xÞ�Tr½�5Sðy; yÞ�i; (15)

FIG. 7 (color online). Same as Fig. 6, but for � ¼ 2:40.

FIG. 8 (color online). (Left panel) Contribution from the disconnected diagram to the isosinglet pseudoscalar correlator. Results at
three different quark masses at � ¼ 2:30 are plotted. (Right panel) Relative contribution of the disconnected diagram to the connected
is plotted in a logarithmic scale for some values of jxj. It shows that the disconnected contribution rapidly vanishes in the chiral limit.
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where Sðx; yÞ is the quark propagator. We calculate these
disconnected contributions using the eigenmode decom-
position of the quark propagator (11). Only the low-lying
modes that we calculated for the Dirac operator spectral
density are included in this analysis. We checked that the
correlators at the long distances are unchanged when the
number of lowmodes are reduced from 50 to 40. The short-
distance part is of course largely changed.

The correlation functions of the relevant mesonic chan-
nels for am ¼ 0:05, 0.025 and 0.01 are plotted in Fig. 6
from top to bottom panels. The correlators are for spatial
directions and averaged over other directions. The left
panels show the plots at � ¼ 2:20, slightly below the
transition temperature. We find clear distinctions among
different channels at am ¼ 0:05 and 0.025. As the chiral
limit is approached (am ¼ 0:01), on the other hand, all
four channels are nearly degenerate. Since the disappear-
ance of the near-zero modes becomes significant at
am ¼ 0:01 (see Fig. 5, middle panel), we infer that the
difference among the four mesonic channels indeed origi-
nates from the near-zero eigenmodes of the Dirac operator.

Above the transition temperature, � ¼ 2:30 (T �
210 MeV), we find a similar degeneracy for small quark
masses, as shown in the right panels of Fig. 6. At
even higher temperatures, � ¼ 2:40 (T � 240 MeV), the
degeneracy is found at higher quark masses (see Fig. 7).
These observations are consistent with our interpretation
that the near-zero eigenmodes below, say, 20 MeV are
responsible for the splitting of the chiral partners for both
isosinglet and isotriplet symmetries.

Figure 8 shows the contribution of the disconnected
diagram at � ¼ 2:30. It is clear from this plot that the
disconnected contribution vanishes at smaller quark masses.

V. CONCLUSIONS

The finite-temperature phase transition of two-flavor
QCD could be more complicated than previously thought
due to the possibility of the effective restoration of the axial
U(1) symmetry. The standard analysis [3] assuming the
pattern of symmetry breaking from SUð2ÞL � SUð2ÞR �
Uð1ÞV to SUð2ÞV � Uð1ÞV can not be directly applied if
the symmetry is effectively extended to include Uð1ÞA.

This work is one of the first attempts to understand
the situation. Since the axial-anomaly sector of QCD is
concerned, the standard technique of using the staggered
fermions in lattice QCD is not appropriate for this purpose
unless one approaches sufficiently close to the continuum
limit. We instead used the overlap fermion formulation that
exactly preserves chiral symmetry at the classical level
and the Uð1ÞA is violated by the axial anomaly as in the
continuum theory.

A side-effect of using the exactly chiral fermion formu-
lation is that the global topology has to be fixed in the
Monte Carlo simulation. Theoretical formulas have been
developed to obtain the correct physics of the � vacuum

from such topology-fixed simulations. Essentially the error
due to fixing the topology is a finite-volume effect of
Oð1=VÞ and the leading 1=V correction can be extracted
from the lattice data. We numerically tested the formula
using quenched QCD at finite temperature, by calculating
the topological susceptibility on the fixed-topology con-
figurations and confirmed that the result agrees with that of
the standard method.
Having established that fixing the topology at a finite

temperature does not introduce unexpected systematic
effects, we carried out a series of two-flavor QCD simula-
tions on 163 � 8 lattices around the transition temperature.
By measuring the eigenmodes of the overlap Dirac opera-
tor we found a gap of the spectral density in the chiral limit
at high temperature, i.e., the near-zero modes disappear not
just for � ’ 0 but also for modes of several tens of MeV.
The disappearance of such near-zero modes has a corre-
spondence with the degeneracy of the meson correlators in
the channels related by the Uð1ÞA transformation, such as
those between � and � or � and �. The origin of this
degeneracy is understood: the near-zero modes are the
dominant source of the disconnected-diagram contribu-
tions to the meson correlators at long distances.
This work clarifies the correspondence between the gap

in the Dirac operator spectrum and the degeneracy of the
meson correlators, for the first time, by the use of the
overlap Dirac operator on the lattice. With other lattice
fermion formulations that violate either chiral or flavor
symmetry at the classical level, some ambiguity in the
identification of the Dirac near-zero modes is inevitable,
unless the violation of the symmetries is controlled much
better than the level of 1 MeV.
For more a quantitative understanding, several sources

of systematic errors are to be addressed in future works.
These include the finite-volume effect and chiral extrapo-
lation, especially near the transition point. A cross-
checking of the current results with an action that allows
topology change while retaining a very good chiral sym-
metry would also be useful. Along this line, a precise study
of the order and critical exponents of the finite-temperature
phase transition of two-flavor QCD, which has not been
established yet, will become feasible by taking account of
the effect of the axial anomaly.
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