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We present a lattice QCD calculation of the �ð1232Þ matrix elements of the axial-vector and

pseudoscalar currents. The decomposition of these matrix elements into the appropriate Lorentz invariant

form factors is carried out, and the techniques to calculate the form factors are developed and tested using

quenched configurations. Results are obtained for 2þ 1 domain wall fermions and within a hybrid scheme

with domain wall valence and staggered sea quarks. Two Goldberger-Treiman–type relations connecting

the axial to the pseudoscalar effective couplings are derived. These and further relations based on the pion-

pole dominance hypothesis are examined using the lattice QCD results, finding support for their validity.

Using lattice QCD results on the axial charges of the nucleon and the �, as well as the nucleon-to-�

transition coupling constant, we perform a combined chiral fit to all three quantities and study their pion

mass dependence as the chiral limit is approached.
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I. INTRODUCTION

Great progress has been made in lattice QCD studies
of hadron spectroscopy and structure, and lattice QCD
results are beginning to provide input to phenomenology
and experiment. Simulations with dynamical quarks near
and at the physical pion mass [1–4] have been shown to
produce the observed low-lying hadron spectrum [2,5,6],
and �þ � �þ scattering lengths have been calculated to
good accuracy [7–10].

Whereas producing experimentally measured quantities
from first principles provides a powerful validation of the
lattice QCD methodology, calculating quantities that are
difficult to extract or have an impact in probing physics

beyond the standard model is a much more challenging
prospect. Studying the structure of the � resonance
is an example of the input lattice QCD can provide to
phenomenology that cannot be directly extracted from
experiments. This is because the � decays strongly with
a lifetime of �10�23 seconds [11,12] and resists experi-
mental probing. Measurements of the �þ magnetic
moment exist albeit with a large experimental uncertainty.
The �, having width �� 118 MeV and lying close to the
�N threshold, plays an important role in chiral expansions.
In heavy baryon chiral perturbation theory, it has been
included as an explicit degree of freedom [13–16], where
it is argued that it improves chiral expansions applied in the
description of lattice QCD results such as the nucleon axial
charge [17]. Chiral Langragians with� degrees of freedom
involve additional coupling constants that are difficult
to measure. Therefore, one either treats them as free
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parameters to be fitted along other parameters using lattice
QCD results [13,18] and data extracted from partial-wave
analysis of scattering measurements [15,16] or estimates
them based on phenomenology and symmetries. For
example, one can relate the nucleon axial charge gA, which
is well measured, to the � axial charge, in the large-Nc

limit [19] or using SUð4Þ symmetry [20]. The Goldberger-
Treiman (GT) relation is then used to get the effective
��� coupling. Another framework to extract the ���
coupling is via sum rules [21].

Lattice QCD provides a nice framework to study the �
properties and calculate the� coupling constants. In some of
our recent work, we developed the formalism to study the
N �� transition form factors within lattice QCD [22,23], as
well as the � electromagnetic form factors [24]. The quad-
rupole electromagnetic form factor, extracted for the first
time, provided input for the deformation of the � showing
that in the infinite momentum frame the � is prolate [25].

In this work, we present a detailed study of the axial-
vector and pseudoscalar form factors of the �. The theo-
retical framework and a subset of the results were given in
Ref. [26]. Here we discuss in detail the lattice techniques
developed and used for the extraction of these form factors.
In addition, we present an extended analysis of the
momentum dependence of all the form factors using an

additional ensemble of dynamical domain wall fermions.
We also include a study of the pion-pole dominance pre-
dictions and compare them to our lattice QCD results.
The outline of the paper is as follows. In Sec. II we

present the decomposition of the � matrix elements of the
axial-vector and pseudoscalar currents. In Sec. III we ex-
plain our lattice techniques and discuss the ensembles used
for the calculation. In Sec. IV we present the lattice results
on all form factors and examine several relations among
them and their phenomenological consequences. In Sec. V
we perform a combined chiral fit using our results on the
nucleon axial charge gA [27], the � axial charge G��

calculated in this work, and the dominant axial N � �
transition form factor, CA

5 , calculated in previous work on

the same sets of lattices [23]. Finally, in Sec. VI we give a
summary and conclusions. Technical details and our values
on the form factors are presented in the appendices.

II. AXIAL AND PSEUDOSCALAR MATRIX
ELEMENT OF THE �

Lorentz invariance and spin-parity rules determine the
decomposition of the �þ matrix element of the isovector
axial-vector current in terms of four invariant functions of
the momentum transfer squared, q2 ¼ ðpf � piÞ2:

h�þðpf;sfÞjA�ð0Þj�þðpi;siÞi¼ �u��ðpf;sfÞ½O�A���u�� ðpi;siÞ
½O�A���¼�1

2

�
g��

�
g1ðq2Þ���5þg3ðq2Þ q�

2M�

�5

�
þq�q�

4M2
�

�
h1ðq2Þ���5þh3ðq2Þ q�

2M�

�5

��
;

(1)

where piðsiÞ denotes the initial momentum (spin) of the �
and pfðsfÞ the final momentum (spin). The flavor-isovector
axial-vector current operator is defined as

A�ðxÞ ¼ �c ðxÞ���5

�3

2
c ðxÞ; (2)

where �3 denotes the Pauli matrix acting in flavor space
and c ðxÞ is the isospin quark doublet. The four axial form
factors, g1, g3, h1, and h3 as defined in Eq. (1) are grouped
into the familiar structure of the nucleon axial-vector
vertex.

In the description of spin-3=2 energy-momentum eigen-
states, classical solutions of the Rarita-Schwinger equation
play a central role. Each component of a vector-spinor u�,
with � a Lorentz four-vector index solves the free Dirac
equation

½6p�M��u��ðp; sÞ ¼ 0: (3)

Implementing additionally the constraint equations,

p�u��ðp; sÞ ¼ 0 and ��u��ðp; sÞ ¼ 0; (4)

the unphysical components are eliminated, and the remain-
ing 8 degrees of freedom describe a spin-3=2 (anti)particle.
Rarita-Schwinger spinors satisfy the spin sum relation:

����
X3=2

s¼�3=2

u��ðp;sÞ �u�� ðp;sÞ

¼�6pþM�

2M�

�
g�������

3
�2p�p�

3M2
�

þp����p���

3M�

�
;

(5)

where the normalization �u��u�� ¼ �1 is assumed.
The zero momentum transfer limit of Eq. (1) defines the

axial charge, G��, of the � multiplet. Reference [28]
normalizes the axial charge via

h�þþjA3
�j�þþi � h��jA3

�j��i ¼ G��M�; (6)

where M� encodes the spin structure of the forward

matrix element

M� ¼ �u��ðpÞ���5u
�
�ðpÞ: (7)

Following the above normalization, we establish
via Eq. (1)

G�� ¼ �3g1ð0Þ: (8)

We note that while the Lorentz decomposition of the axial
current is naturally expressed via g1, g3, h1, and h3 as in
Eq. (1), a decomposition in terms of multipoles is possible
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as, for example, in the case of the � electromagnetic
transition [24]. Such a representation is more easily
expressed in the Breit frame. This decomposition is
performed in Appendix A in terms of four multipoles,
L1, L3, E1, and E3, and their relation to the form factors
g1, g3, h1, and h3 is given.

The �þ matrix element of the pseudoscalar density
operator

PðxÞ ¼ �c ðxÞ�5

�3

2
c ðxÞ (9)

is decomposed in terms of two Lorentz invariant form

factors, denoted by ~gðq2Þ and ~hðq2Þ:
h�þðpf;sfÞjPð0Þj�þðpi;siÞi¼ �u��ðpf;sfÞ½OP���u�� ðpi;siÞ;

½OPS���¼�1

2

�
g��ð~g�5Þþq�q�

4M2
�

ð~h�5Þ
�
: (10)

While ~gðq2Þ and ~hðq2Þ are the directly computable form
factors from the three-point pseudoscalar correlator, they
can be related to the phenomenologically more interesting
pion-� vertex using the partially conserved axial current
hypothesis (PCAC). Using the PCAC on the hadronic level
one can write

@�Aa
� ¼ f�m

2
��

a; (11)

with �a denoting the isotriplet pion field operator. In the
SU(2) symmetric limit of QCD with mq denoting the up/

down mass, the pseudoscalar density is related to the
divergence of the axial-vector current through the axial
Ward-Takahashi identity (AWI)

@�Aa
� ¼ 2mqP

a ¼ f�m
2
��

a; (12)

with operators now defined as quark bilinears. Using the
relations of Eqs. (11) and (12), we identify the physically
relevant pion-�-� from factor G���ðq2Þ, which at q2 ¼ 0
gives the ��� coupling, as well as a second form factor
H���ðq2Þ, by rewriting the pseudoscalar matrix element as

2mqh�þðpf;sfÞjPð0Þj�þðpi;siÞi

� f�m
2
�

ðq2�m2
�Þ
� �u��

�
g��G���ðq2Þþq�q�

4M2
�

H���ðq2Þ
�
�5u�� ;

(13)

where we effectively make the identification

G���ðq2Þ �
mqðm2

� � q2Þ
f�m

2
�

~gðq2Þ (14)

H���ðq2Þ �
mqðm2

� � q2Þ
f�m

2
�

~hðq2Þ: (15)

At zero momentum transfer q2 ¼ 0, only G��� can be
extracted. This coupling is analogous to the known �� N
pseudoscalar coupling constant G�NN defined for the

nucleon. For the discussion presented in the next section,
it is useful to recall the definition of the corresponding
quantities in the nucleon sector [22]. For the matrix
elements of the axial-vector current, we have

hNðpf; sfÞjA3
�jNðpi; siÞi

¼ i
1

2
�uN

�
GAðq2Þ���5 þ

q��5

2mN

Gpðq2Þ
�
uN; (16)

and for the pseudoscalar density

2mqhNðpf; sfÞjP3jNðpi; siÞi

¼ f�m
2
�

ðq2 �m2
�Þ

� �uN½G�NNðq2Þ�i�5uN: (17)

Note that we have dropped for simplicity an overall
kinematical factor arising from the normalization of
lattice states, since it is of no relevance for our discussion
here.

A. Goldberger-Treiman relations

In this section we apply the PCAC to derive GT relations
for the�. We recall that the PCAC has been shown to apply
satisfactorily in the nucleon case leading to the GT
relation. This can be derived from Eqs. (16) and (17)
related by AWI and taking q2 ¼ 0 to obtain G�NN in terms
of the nucleon axial charge via the relation

f�G�NNð0Þ ¼ mNGAð0Þ: (18)

Assuming G�NN varies smoothly with q2 so that
G�NNð0Þ �G�NNðm2

�Þ � g�NN , then the GT relates the
physical coupling constant g�NN with the nucleon axial
charge gA. At the chiral limit, using @�A� ¼ 0 one derives

that Gpðq2Þ ¼ � 4m2
N

q2
GAðq2Þ. Therefore, g�NN measures

the chiral symmetry breaking. The PCAC dictates that

the form factor Gpðq2Þ has a pion pole given by Gpðq2Þ ¼
4mNf�
m2

��q2
G�NNðq2Þ. The validity of the GT relation and the

momentum dependence of Gpðq2Þ in the nucleon case has

been studied in Ref. [22]. Similarly, a nondiagonal GT
relation, applicable to the axial N-to-� transition is for-
mulated and relates the axial N� coupling cA to the �N�
effective coupling. Lattice calculations examined the
validity of the nondiagonal GT relation using the same
ensembles as in this work [23].
One can similarly derive GT relations for the � by

taking the matrix elements of the AWI with � states,
h�j@�A�j�i ¼ 2mqh�jPj�i. Taking the dot product of

q� with the matrix element of the axial-vector current

given in Eq. (1), we obtain

m�

�
g��ðg1 � �g3Þ þ q�q�

4M2
�

ðh1 � �h3Þ
�

¼ f�m
2
�

ðm2
� � q2Þ

�
g��G��� þ q�q�

4M2
�

H���

�
; (19)
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where � ¼ �q2=ð2M�Þ2. By considering � � � in
Eq. (19), we derive the relation

m�ðh1 � �h3Þ ¼ f�m
2
�H���ðq2Þ
m2

� � q2
; (20)

which implies that

M�ðg1 � �g3Þ ¼ f�m
2
�G���ðq2Þ
m2

� � q2
: (21)

One possible linear combination of Eqs. (20) and (21)
can be obtained by taking the dot product of Eq. (19) with
q� leading to

M�½ðg1��g3Þ��ðh1��h3Þ�¼ f�m
2
�

m2
��q2

½G�����H����;

(22)

which can be considered as a generalized GT-type relation
connecting all the six form factors. At q2 ¼ 0 and assum-
ing all terms in Eq. (22) are finite, we obtain

f�G���ð0Þ ¼ m�g1ð0Þ: (23)

If G��� is a continuous slow varying function of q2 as
q2 ! 0, then G���ðm2

�Þ �G���ð0Þ, and we thus derive a
GT relation for the � analogous to the one for the nucleon
case.

Using Eq. (20) and setting q2 ¼ 0, we obtain a second
GT relation:

f�H���ð0Þ ¼ m�h1ð0Þ: (24)

If one invokes pion-pole dominance and notes that g1 and
G��� are both finite at the origin, it follows from Eqs. (21)
and (20) that, as q2 ! m2

�, g3 and h3 must have a pole at
q2 ¼ m2

�. We thus arrive at the relations

g1 ¼ f�
M�

G���; g3 ¼ 4f�M�

m2
� � q2

G��� (25)

and

h1 ¼ f�
M�

H���; h3 ¼ 4f�M�

m2
� � q2

H���: (26)

It is thus interesting to note how the spin-3=2 nature of the
� state combined with the PCAC leads to a pair of
Goldberger-Treiman relations, given by Eqs. (23) and
(24). Let us examine further these relations at the chiral
limit. From Eq. (22) we find that

h1 � �h3 ¼ g1 � �g3
�

; (27)

which means that in the limit q2 ! 0, the leading behavior
of h1 � 1=q2, h3 � 1=ðq2Þ2 via Eq. (20) and H��� � 1=q2

via Eq. (26). Therefore, the second GT-type relation given
in Eq. (24) cannot be extrapolated to a physical pion mass
since the assumption that h1 and H��� are slowly varying
functions of q2 no longer holds. However, since they both
display a pion-pole behavior, one can factor it out on both
sides, and thus the ratio h1=H��� can be extrapolated to
the physical pion. In this sense, this constitutes a second
GT relation.

III. LATTICE EVALUATION

A. Euclidean correlators and form factors

Standard techniques are employed on the Euclidean
space-time lattice for the evaluation of hadronic form
factors. The following two-point and three-point functions
are required:

G��ð��; ~p; tfÞ ¼
X
~xf

e�i ~xf� ~p��
�0�h���ðtf; ~xfÞ ����0 ð0; ~0Þi

GA
���ð��; ~q; t; tfÞ ¼

X
~x; ~xf

eþi ~x� ~q��
�0�h���ðtf; ~xfÞA�ðt; ~xÞ ����0 ð0; ~0Þi

GPS
��ð��; ~q; t; tfÞ ¼

X
~x; ~xf

eþi ~x� ~q��
�0�h���ðtf; ~xfÞPðt; ~xÞ ����0 ð0; ~0Þi;

(28)

where Pðt; ~xÞ and A�ðt; ~xÞ are the lattice pseudoscalar or
axial current insertions, and � is the standard lattice inter-
polating field with overlap with the �þ quantum numbers,

��þ
��ðxÞ ¼ 1ffiffiffi

3
p 	abc½2ðua>ðxÞC��d

bðxÞÞuc
�ðxÞ

þ ðua>ðxÞC��u
bðxÞÞdc

�ðxÞ�: (29)

The overlap of � with the spin-3=2 �þ is

h�j���ð0Þj�ðp; sÞi ¼ Zu���ðp; sÞ;
h�ðp; sÞj ����ð0Þj�i ¼ Z� �u���ðp; sÞ:

(30)

We will use the following � matrices, which project
onto positive parity for zero momentum, for our
calculation:

�4 ¼ 1

4
ð1þ �4Þ; �k ¼ i

4
ð1þ �4Þ�5�k;

k ¼ 1; 2; 3:
(31)
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The Fourier transforms in Eq. (28) enforce a static� sink at the time slice tf and a momentum transfer ~q ¼ � ~p injected via
the operator insertion at an intermediate time slice t.

We insert into these correlators complete sets of hadronic energy momentum eigenstates:

X
n;p;


Mn

VEnðpÞ
jnðp; 
Þihnðp; 
Þj ¼ 1; (32)

where with 
 we denote collectively all quantum numbers including spin. For large Euclidean time separations t
and tf � t, the ground state propagation dominates the correlator:

G��ð��; ~p; tÞ ¼ M�

E�ðpÞ
jZj2e�E�ðpÞt tr½���E

��ðpÞ� þ excited states

GA
���ð��; ~q; t; tfÞ ¼ M�

E�ðpÞ
jZj2e�M�ðtf�tÞe�E�ðpÞt tr½���E

��0 ð0ÞOE;A
�0��0�

E
��0 ðpÞ� þ excited states

GPS
��ð��; ~q; t; tfÞ ¼ M�

E�ðpÞ
jZj2e�M�ðtf�tÞe�E�ðpÞt tr½���E

��0 ð0ÞOE;PS
�0�0 �

E
�0�ðpÞ� þ excited states:

(33)

The Wick-rotated axial and pseudoscalar operators take the form

O E;A
��� ¼ 1

2

�
���

�
g1ðQ2Þ���5 � i

g3ðQ2Þ
2M�

Q��5

�
� QE

�Q
E
�

ð2M�Þ2
�
h1ðQ2Þ���5 � i

h3ðQ2Þ
2M�

Q��5

��
; (34)

O E;PS
�� ¼ 1

2

�
���ð~gðQ2Þ�5Þ � Q�Q�

ð2M�Þ2
ð~hðQ2Þ�5Þ

�
; (35)

with the Euclidean four-momentum transfer Q� ¼ ðiðM� � E�ðpÞÞ;� ~qÞ. The Rarita-Schwinger spin-sum relation
becomes

�E
�� ¼ ��i 6pþM�

2M�

�
��� � ����

3
þ 2p�p�

3M2
�

� i
p��� � p���

3M�

�
; (36)

where all the � matrices are in Euclidean space: �0 ¼ �4 and �M
k ¼ �i�E

k .
Forming an appropriate ratio of the three-point to the two-point correlator serves to cancel out the unknown Z factors

and leading time dependence. A particular product of two-point correlators, which minimizes the denominator noise level,
is used, as it contains smaller time extents. The proposed ratios are

RA
���ð��; ~Q; tÞ ¼ GA

���ð�; ~Q; tÞ
Gkkð�4; ~0; tfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gkkð�4; ~pi; tf � tÞGkkð�4; ~0; tÞGkkð�4; ~0; tfÞ
Gkkð�4; ~0; tf � tÞGkkð�4; ~pi; tÞGkkð�4; ~pi; tfÞ

s
(37)

and

RPS
��ð��; ~Q; tÞ ¼ GPS

��ð�; ~Q; tÞ
Gkkð�4; ~0; tfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gkkð�4; ~pi; tf � tÞGkkð�4; ~0; tÞGkkð�4; ~0; tfÞ
Gkkð�4; ~0; tf � tÞGkkð�4; ~pi; tÞGkkð�4; ~pi; tfÞ

s
; (38)

for the axial and pseudoscalar vertices. Summation over k ¼ 1, 2, 3 is implicit in the two-point correlators. At large
Euclidean time separations tf � t and t, these ratios become time independent (plateau region),

RX
�ð�Þ�ð��; ~Q; tÞ ! C�X

�ð�Þ� ¼ C tr½�����0 ð0ÞOX
�ð�Þ���0�ðpÞ�; (39)

where X stands for the axial (A�) or pseudoscalar (P) current. It is easy to show that the two-point correlators are
dominated by

Gkkð�4; ~p; tÞ ¼ jZj2e�E�ðpÞt
E�ðpÞ þM�

E�ðpÞ

�
1þ ~p2

3M2
�

�
; (40)
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and therefore the constant C is determined as

C �
ffiffiffi
3

2

s 2
42E�ðpiÞ

M�

þ 2E2
�ðpiÞ
M2

�

þ E3
�ðpiÞ
M3

�

þ E4
�ðpiÞ
M4

�

3
5�1

2

: (41)

There are at most 256 available combinations of the
Dirac and Lorentz indices in Eq. (39), each one expressed
as a linear combination of the axial (pseudoscalar) form
factors times the kinematical tensor coefficients. Since we
are interested in the momentum dependence of the matrix
elements, evaluation of the three-point correlators is
required for a large set of transition momenta ~q for both
A� and P operators. In order to perform this economically,

we use the sequential inversion through the sink technique
[24] by fixing the sink time slice tf and performing

a backward sequential inversion through the sink. The
sequential vector is coupled with a forward quark propa-
gator and the Fourier transformed insertion operator at all
intermediate time slices 0 � t � tf at a small computa-

tional cost, obtaining thus the full momentum dependence
of the amplitude. A drawback in this approach is the
fact that the quantum numbers of the source and sink
interpolators—which correspond to the Lorentz indices
�, �, and ��—are now fixed per sequential inversion.
Within the space of 64 available three-point correlators
corresponding to choices of �, �, and �, we perform an
optimization by forming appropriate linear combinations
such as the degree of rotational symmetry of the summed
correlator is maximal, and consequently all transition mo-
mentum vectors ~q that correspond to a fixed virtuality q2

will contribute to the form factor measurement in a rota-
tionally symmetric fashion. This optimization technique
has proven extremely useful in obtaining high-accuracy
results in the nucleon elastic, nucleon-to-� electromag-
netic [23], axial, and pseudoscalar transitions [22] as well
as the� electromagnetic form factors [24]. We evaluate the
Dirac traces in Eq. (39) using symbolic software such as
form [29] and Mathematica.

We construct the following two optimal linear combi-
nations, which we refer to as type I and type II:

Type- I:�IA
� ðQÞ�X3

i¼1

X3
�;�¼1

��� tr½�i���0 ð0ÞOE;A
�0��0��0�ðpÞ�

(42)

Type- II:�IIA
� ðQÞ� X3

�;�¼1

T�� tr½�4���0 ð0ÞOE;A
�0��0��0�ðpÞ�;

(43)

with the matrix T,

T�� ¼
0 1 �1

�1 0 1

1 �1 0

2
664

3
775: (44)

Detailed expressions for the decomposition of the above
combinations to the four axial form factors are provided
in Appendix B. The above types are in addition used for
the extraction of the two pseudoscalar couplings
(Appendix B). A large number (Oð103Þ) of correlators of
axial (A�, � ¼ 1, 2, 3, 4) and pseudoscalar (P) insertion

momenta ~q are combined for momentum transfers ranging
up to �3 GeV2 per ensemble. We stress that only two
sequential inversions through sink—one for each type
above—are required in order to disentangle completely
all six form factors from the relevant three-point functions.
Correlators corresponding to a fixed momentum transfer

q2 are analyzed simultaneously in an overconstrained sys-
tem analysis for the extraction of the form factors.
Typically Oð20–50Þ plateau averages for the optimal ratios
given in Eq. (39) will contribute to the determination of the
form factor for each Q2 value. A global �2 minimization
amounts technically to the singular value decomposition of
an N �M overcomplete linear system, with M unknowns
(four for the axial or two for the pseudoscalar) and N input
data [the Oð20–50Þ plateau averages]. Further details on
this kind of analysis can be found in Ref. [30]. Jackknife
estimates are used for all levels of variance extraction on
the observables.

B. Ensembles and parameters

In Table I we summarize the parameters and number of
configurations for the ensembles used in this work. As can
be seen, three sets are employed. These are the same as the
ones we used previously for the study of the nucleon axial
form factors as well as the nucleon-to-� axial transition
form factors. Therefore, these ensembles provide a com-
plete calculation of the nucleon=� sector, allowing a direct
extraction of low-energy couplings from a combined fit.
The gauge configurations used in the analysis include a

set of quenched configurations on a 323 � 64, at � ¼ 6:0,
corresponding to a lattice spacing a ¼ 0:092 fm with
pion masses 560, 490, and 411 MeV. The low statistical
noise makes this ensemble appropriate for checking our
lattice methodology and some of the phenomenological
relations. We apply Gaussian smearing at the source and
sink in order to minimize the excited state contamination
on the baryon correlators. The parameters � ¼ 4:0 and
n ¼ 50 have been tuned to provide optimal overlap to a
nucleon state [22]. The source-sink separation is set at
�T ¼ 12a ¼ 1:1 fm. In our previous studies involving
the �, such a time separation was found sufficient for
ground state dominance. We show in Fig. 1 the ratios

RIA
� ð ~Q; tÞ ¼ P

3
i¼1

P
3
�¼1 R

A
���ð�i; ~Q; tÞ and RIIA

� ð ~Q; tÞ ¼P
3
�;�¼1 T��R

A
���ð�4; ~Q; tÞ corresponding to the two linear

combinations that we considered in this work for the
axial-vector current as given in Eqs. (42) and (43). As
can be seen, one can identify a plateau range for various
momenta ~q ¼ � ~p from where the matrix element can be
extracted.
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The second set consists of two ensembles that use two
degenerate light and one strange (Nf ¼ 2þ 1) Asqtad-

improved dynamical staggered fermions generated by the
MILC Collaboration [31]. The strange quark mass is fixed
to its physical value, the lattice spacing is set to 0.124 fm,
and the lowest pion mass is 353 MeV. Our calculation
employs domain wall valence quarks with light quark
mass tuned so the pion mass matches the lowest pion
mass obtained using staggered fermions. The extent of
the fifth dimension of the domain wall action is set to L5 ¼
16a, which was demonstrated to provide minimal viola-
tions to the chiral symmetry properties of the domain wall
fermion (DWF) operator. The source-sink separation is set
to�T ¼ 8a ¼ 1:0 fm, and Gaussian smearing is applied at
the source and sink with APE smearing [32] on gauge links
that enter the smearing function applied on the interpolat-
ing fields. The parameters are given in Ref. [22]. Finally,

the third set is an Nf ¼ 2þ 1 ensemble of DWF generated

by the RBC-UKQCD collaborations [33] with a lattice
spacing a ¼ 0:084 fm and the physical volume of
ð2:7 fmÞ3 and a pion mass of 0.297 MeV. The extent of
the fifth dimension is also L5 ¼ 16a here. It turns out that
the residual quark mass introduced via the chiral symmetry
breaking effects is amres ¼ 0:000665ð3Þ, or 17% of the
bare quark mass. The smearing parameters for the inter-
polating fields are given in Ref. [23]. The sink-source time
separation is set at �T ¼ 12a ¼ 1:01 fm. In order to
increase the statistics at this lowest pion mass, we use the
coherent sink technique, employed in our study of the
nucleon-to-� transition using the same ensemble [23].
The four quark sources are placed at time slice ti ¼
ði� 1Þ16, i ¼ 1; . . . ; 4 for each configuration. Four for-
ward propagators must be computed—each with a source
at one of the time slices. The � sinks are constructed at all
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FIG. 1 (color online). The unrenormalized ratios that yield the plateaus given in Eqs. (42) and (43) are shown for type I and current
direction � ¼ 1 (left) and type II and current direction � ¼ 2 (right) for various values of the momentum.

TABLE I. Ensembles and parameters used in this work. We give in the first column the lattice
size; in the second the statistics; in the third, fourth, and fifth the pion, nucleon, and � mass in
GeV, respectively. We did not do a full form-factor analysis on the 203 � 64 mixed-action
ensemble. Rather we merely determined the axial matrix element at q2 ¼ 0 (a much cheaper
computation) for our axial charge chiral fits.

V Statistics m� (GeV) mN (GeV) m� (GeV) 

Quenched Wilson fermions

� ¼ 6:0, a�1 ¼ 2:14ð6Þ GeV
323 � 64 200 0.563(4) 1.267(11) 1.470(15) 0.1554

323 � 64 200 0.490(4) 1.190(13) 1.425(16) 0.1558

323 � 64 200 0.411(4) 1.109(13) 1.382(19) 0.1562

Mixed action, a�1 ¼ 1:58ð3Þ GeV
Asqtad (amu;d=s ¼ 0:02=0:05), DWF (amu;d ¼ 0:0313)

203 � 64 264 0.498(3) 1.261(17) 1.589(35)

Asqtad (amu;d=s ¼ 0:01=0:05), DWF (amu;d ¼ 0:0138)
283 � 64 550 0.353(2) 1.191(19) 1.533(27)

DWFs

mu;d=ms ¼ 0:004=0:03, a�1 ¼ 2:34ð3Þ GeV
323 � 64 1428 0.297(5) 1.27(9) 1.455(17)
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four equally spaced time slices tfðiÞ ¼ ti þ 12, and one

sequential inversion is performed in order to construct the
three-point correlator. Gauge invariance ensures that com-
bining the sequential vector with each one of the forward
quark propagators generated at ti projects the appropriate
� matrix element between ti and ti þ 12 as the other cross
terms will average to zero. It has been shown in Ref. [23]
that while statistics is thus multiplied by four, the noise
level is not raised above what is expected from the four
completely independent correlators that participate in the
coherent sink. This means that we can reduce the error by a
factor of two at the cost of one sequential inversion.
Therefore, the 1428 statistics given in the table correspond
to 357 coherent sequential inversions per each type of
combination [see Eqs. (42) and (43)].

IV. RESULTS

A. Axial-vector and pseudoscalar form factors

In this section we present results on the � axial-vector
and pseudoscalar form factors from the ensembles used in
this work. The axial current is renormalized multiplica-
tively in all ensembles. Values for the renormalization
constant ZA are provided in Table II.

In Figs. 2–5, we show the results for the four axial form
factors, g1, g3, h1, and h3, respectively. All the results on
these form factors are provided in Appendix C (Tables XI,
XII, XIII, XIV, and XV). The form factor g1 is the domi-
nant axial-vector form factor and the only one that can be
extracted directly from the matrix element at Q2 ¼ 0,
determining the axial charge of the �. Based on the
PCAC and pion-pole dominance, we expect g1 to be a
smooth function of Q2, whereas h1 and g3 to have a
pion-pole and h3 a double pion-pole behavior. Given that
g1 and h1 are multiplied byQ2, whereas h3 is multiplied by
Q4, it is increasingly more difficult to resolve these form
factors via the simultaneous overconstrained analysis of
the measured matrix element of the axial-vector current,

TABLE II. The first column gives the hopping parameter  for
Wilson fermions or the lattice mass of the domain wall fermion,
the second the renormalized quark mass, the third the unrenor-
malized pion decay constant f�=ZA in lattice units, and the
fourth the axial current renormalization constant ZA.

 or aml amq af�=ZA ZA

Quenched Wilson fermions

0.1554 0.0403(4) 0.0611(14) 0.808(7)

0.1558 0.0307(4) 0.0587(16) 0.808(7)

0.1562 0.0213(4) 0.0563(17) 0.808(7)

Hybrid or mixed action

0.02 0.0324(4) 0.0648(8) 1.0994(4)

0.01 0.0159(2) 0.0636(6) 1.0847(6)

NF ¼ 2þ 1 DWF

0.004 0.004665(3) 0.06575(12) 0.74521(2)
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FIG. 3 (color online). Lattice QCD results for the g3 axial form
factor.
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FIG. 4 (color online). Lattice QCD results for the h1 axial form
factor.
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especially at small Q2—a fact that is clearly reflected on
the statistical error of the form factors shown in the figures.
The results from the quenched ensemble, although based
on the analysis of 200 configurations, have the lowest
statistical noise, and this is the primary reason for using
them in this first calculation of the form factors. The
statistical noise is more severe for the DWF ensemble
at m� ¼ 297 MeV, for which results on h3 are too noisy
to be useful and are omitted from plots. We do, however,
include these numbers in the tables in Appendix C for
completeness.

Figures 6 and 7 show the pseudoscalar form factors ~g

and ~h, respectively, as defined in Eq. (10), where the pion
pole is explicitly written. The numerical values of these
form factors are provided in Appendix C. As confirmed by
the numerical results, ~g is the dominant pseudoscalar form
factor showing a pion-pole dependence, whereas the sub-

dominant form factor ~h shows a stronger Q2 dependence

consistent with a double pion pole. In Sec. II we already
defined the physically relevant pion-� coupling
G���ðm2

�Þ, factoring out the pion pole and fixing coeffi-
cients via the PCAC through Eq. (14). G���ðq2Þ has a
finite value at the origin, as can be seen in Fig. 8, where
numerical results are depicted. This value in fact defines
the traditional strong coupling g��� of the pion to the �
state via

g��� ¼ G���ðm2
�Þ: (45)

The secondary momentum-dependent coupling,
H���ðQ2Þ, is plotted in Fig. 9. The numerical results are
consisted with a pion-pole divergence at small Q2, as
expected from the analysis given in the previous section.
The statistical error on this coupling is larger in particular
at small Q2 since, in the combined analysis, the pseudo-
scalar matrix element is multiplied by a factor of Q2.
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FIG. 6 (color online). Lattice QCD results for the ~g pseudo-
scalar form factor.
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scalar form factor.
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Notice that the extraction of G��� and H��� from
Eqs. (14) and (15) requires knowledge of the light quark
mass mq and the pion decay constant, f�, on each of the

ensembles. The calculation of f� requires the two-point
functions of the axial-vector current A3

4 with local-smeared

(LS) and smeared-smeared (SS) quark sources,

CA
LSðtÞ ¼

X
x

h�jTðA3
4ðx; tÞ ~A3

4ð0; 0ÞÞj�i (46)

(and similarly for CA
SS), where A3

4ðx; tÞ denotes the local

operator and ~A3
4ðx; tÞ the smeared operator. The pion decay

constant f� is obtained from the pion-to-vacuum matrix
element,

h0jAa
�ð0Þj�bðpÞi ¼ if�p��

ab; (47)

extracted from the ratio of the two-point functions CA
LS and

CA
SS and

feff� ðtÞ ¼ ZA

ffiffiffiffiffiffiffi
2

m�

s
CA
LSðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
CA
SSðtÞ

q em�t=2 (48)

in the large Euclidean time limit.
The renormalized quark mass mq is determined from

AWI, via two-point functions of the pseudoscalar density
with either local (P3) or smeared ( ~P3) quark fields,

CP
LSðtÞ ¼

X
x

h�jTðP3ðx; tÞ ~P3ð0; 0ÞÞj�i (49)

(and similarly for CP
SS). The effective quark mass is

defined by

mAWI
eff ðtÞ ¼ m�

2

ZA

ZP

CA
LSðtÞ

CP
LSðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CP
SSðtÞ

CA
SSðtÞ

s
; (50)

and its plateau value yieldsmq. Note that ZP will be needed

only if ones wants mq alone. Since ZP enters also Eq. (13),

it cancels—as does ZA since it comes with f�—and

therefore G��� and H��� are extracted directly from
ratios of lattice three- and two-point functions without
prior knowledge of either ZA or ZP. We also note that the
quark mass computed through Eq. (50) includes the effects
of residual chiral symmetry breaking from the finite extent
L5 of the fifth dimension. These effects are of the order of
17% for the DWF ensemble and 15% for the hybrid
ensemble (also referred to as the mixed scheme). Chiral
symmetry breaking affects the PCAC relations and there-
fore the value of both strong couplings G��� and H���

through Eq. (13).

B. Testing pion-pole dominance in the axial
and pseudoscalar matrix element

In this section we examine in detail the pion-pole
dependence expected for the � form factors by performing
fits to the results obtained. First, we test the validity of the
Goldberger-Treiman relations of Eqs. (23) and (24) by
evaluating the ratios

f�G���ðq2Þ
M�g1ðq2Þ

(51)

and

f�H���ðq2Þ
M�h1ðq2Þ

: (52)

These relations are expected to hold at low Q2. We show
the results in Figs. 10 and 11. The first ratio, given in
Eq. (51), carries moderate statistical error. It is consistent
with unity for Q2 * 0:8 GeV2 for the quenched ensembles
while it is underestimated at smaller Q2 values. This
discrepancy at smallerQ2 can be attributed to chiral effects
on G���, which is expected to be more seriously affected
by pion cloud effects than g1. The results using the hybrid
dynamical ensemble, on the other hand, are consistently
higher than unity for Q2 > 0:5 GeV2. The large statistical
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FIG. 10 (color online). Ratio test of the Goldberger-Treiman
relation for G���.
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errors carried by these data make it difficult to draw
definite conclusions. The behavior of this ratio is very
similar to the behavior shown by the corresponding ratio
for the nucleon GT relation as well as the nucleon-to-�
axial transition [22].

The second GT-type relation, given in Eq. (52), is sta-
tistically consistent with unity for the quenched results and
Q2 > 0:8 GeV2. The results from the dynamical ensem-
bles are plagued by too large statistical noise to be able
to meaningfully display them on the plot. We therefore
have omitted these data from Fig. 11. A very similar and
consistent behavior with the first ratio is observed for the

quenched data. We remind the reader that it is the first
Goldberger-Treiman relation that is more significant for
phenomenology, as it is this relation that connects the axial
charge (from g1 at Q

2 ¼ 0) to the G��� coupling.
To further probe the pion pole assumptions entering into

our derivation of the GT relations, we perform a set of fits
to our form factor data. We have no a priori theoretical
expectation for the functional form of g1ðq2Þ, although
typically a dipole form seems to accommodate well the
nucleon axial form factor GA as well as the leading axial
N-� transition form factor CA

5 . We note, however, that

there seems to be a small dip in the g1 at q2 ¼ 0 for the
quenched ensembles. To accommodate this we fit the
data to

g1ðQ2Þ ¼ aþ bQ2

ðQ2 þm2
1Þ3

: (53)

The resulting fits are shown in Fig. 12. The values for the
fitted parameters are given in Table III. We note that the
mass parameter m1 determining the slope as Q2 ! 0 is
around 1 GeV, a scale typical for axial dipole masses
controlling the dependence of nucleon GA and the domi-
nant axial N-� CA

5 form factor.

We consider the form

�
aþ bQ2

ðQ2 þm2
1Þ3
�

c

ðQ2 þm2
2Þ

(54)

for g3 based on the pion-pole dominance prediction given
in Eq. (25). The parameters a, b, and m1 are fixed to the
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FIG. 12 (color online). Fits to the data for the g1 form factor using the form given in Eq. (53).
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values arising from the fit of the g1 data using the Ansatz
given in Eq. (53). The fits are shown in Fig. 13. The fitted
parameters are given in Table IV. Note that the value of m2

is considerably smaller compared to m1, as in fact is
expected since this is detected from the presence of the
pion pole. This is especially verified by the quenched data
where m2 is close to the actual pion mass m� of the
ensemble.

Pion-pole dominance fixes completely the ratio g3=g1

g3
g1

¼ 4M2
�

m2
� � q2

: (55)

We form the ratio g3=g1 from our data and fit separately to
a monopole form:

c

ðQ2 þm2
2Þ : (56)

This fit is displayed in Fig. 14. Using a ratio eliminates any
need to know the theoretical form for g1ðq2Þ alone. The
fitted parameters c and m2 are given in Table V. The
verification of the predicted form given in Eq. (55) is
very good, with the pole mass m2 consistent with the
pion mass and the constant c reasonably close to 4M2

�.

The form factor h1 is similar to g3 having a pion-pole
dependence. We display the ratio h1=g3 in Fig. 15 for the
quenched QCD ensembles. This ratio is notably constant
over the wholeQ2 range above 0:4 GeV2, with the constant
�0:5. Based on this observation, we use the Ansatz given
in Eq. (54) also for h1. The fit is shown in Fig. 16, and the
fitted parameters are given in Table VI. Again, m2 is
considerably smaller compared to m1, in accordance with
the presence of a light (pion) mode.

TABLE III. Fit parameters for g1ðQ2Þ using Eq. (53).

m� (GeV) a b m1 (GeV) �2=dof

Quenched Wilson fermions

0.563 0.53(18) 2.15(31) 0.98(5) 0.82

0.490 0.47(18) 2.08(33) 0.99(6) 1.07

0.411 0.40(19) 1.98(38) 0.94(8) 1.48

Mixed action

0.353 3.0(22.0) 2.4(1.9) 1.3(1.2) 0.44

Domain wall fermions

0.297 0.19(24) 1.5(9) 0.82(18) 1.1
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FIG. 13 (color online). Fits to the data for the g3 form factor using the form given in Eq. (54).

TABLE IV. Fit parameters for g3ðQ2Þ using Eq. (54).
Parameters a, b, and m1 are fixed with the results of the g1
fits in Table III.

m� (GeV) c m2 (GeV) �2=dof

Quenched Wilson fermions

0.563 7.77(88) 0.54(11) 0.61

0.490 7.45(89) 0.50(11) 0.55

0.411 7.1(1.0) 0.44(15) 0.65

Mixed action

0.353 10.7(4.6) 0.67(43) 0.49

Domain wall fermions

0.297 10.0(5.3) 0.56(37) 1.26
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From Eq. (26) the ratio h3=h1 is completely fixed:

h3
h1

¼ 4M2
�

m2
� � q2

: (57)

We plot this ratio in Fig. 17. Fitting the data to the mono-
pole form of Eq. (56), we get parameters m2 and c within
the range of the expected value (Eq. (57))—see Table VII
indicating that the subdominant form factor diverges with a
double pion-pole dependence.

In Fig. 18 we present the fit of h3 to the Ansatz

�
aþ bQ2

ðQ2 þm2
1Þ3
�

d

ðQ2 þm2
2Þ2

; (58)

with a, b, and m1 fixed to the values extracted from the fit
of g1. The fitted parameters d and m2 are given in
Table VIII, in accordance to the h3=h1 fit (Table VII).
In the pseudoscalar sector, one expects a monopole

dependence also for the ratio ~h=~g. Fitting the data to the
monopole form of Eq. (56), we get the parameters provided
in Table IX. Indeed, we see an agreement between the
pole mass m2 and the pion mass within the statistical
uncertainty.
The overall conclusion from the fits in this section is that

all form factors satisfy qualitatively the pion-pole depen-
dence predicted by the PCAC. This is most clearly exem-
plified in the case of quenched QCD where the level of
statistical noise allows such a detailed analysis. In all cases
the data fit these forms to good confidence levels, i.e.,
�2=dof & 1. Enhanced statistical noise for the dynamical
ensembles limits the verification to the dominant form
factors only, as the subdominant ones are beyond reach,
but this still is a useful result as it shows the consistency
between quenched and dynamical results. This corrobo-
rates other baryon studies that show small effects due to
a dynamical quark for pion masses larger than about
300 MeV.

V. PHENOMENOLOGICAL COUPLINGS OF
THE � AND COMBINED CHIRAL FIT

Crucial parameters in heavy baryon chiral effective
theories (HB�PT) with explicit � degrees of freedom are
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FIG. 14 (color online). Monopole fits as given by Eq. (56) to the ratio g3=g1.

TABLE V. Fit parameters for g3ðQ2Þ=g1ðQ2Þ using the
monopole form of Eq. (56).

m� (GeV) m2 (GeV) c 4M2
� (GeV2) �2=dof

Quenched Wilson fermions

0.563 0.523(64) 7.60(52) 8.64(18) 0.67

0.490 0.477(63) 7.25(49) 8.12(18) 0.54

0.411 0.396(75) 6.76(48) 7.64(21) 0.60

Mixed action

0.353 0.61(18) 10.4(1.6) 9.40(33) 0.34

Domain wall fermions

0.297 0.34(17) 8.6(1.3) 5.82(20) 0.66
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the axial couplings of the nucleon, gA, the axial N-�
transition coupling, cA, and the axial charge of the �,
g��. Assuming the PCAC these can be related via GT
relations to the effective �NN, �N�, and ��� strong
couplings:

gA¼ f�
MN

g�NN; cA¼ f�
MN

g�N�; g��¼ f�
M�

g���: (59)

We note that alternative notation and normalization
factors exist in the literature in the definition of the
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FIG. 15 (color online). The ratio h1=g3 as a function of Q2, with unity marked with a red line.
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FIG. 16 (color online). Fits to the data for the h1 form factor using the form given in Eq. (54).
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effective strong couplings for �N� and ���. In addition,
note that in such schemes, Eqs. (59) are actually defining
relations for the strong couplings. gA is very well known
experimentally, and a variety of lattice and theoretical
calculations offer precise estimates. cA is much less well
determined, via the parity-violating N-to-� amplitude,
which connects it to the dominant axial transition form
factor CA

5 ðq2Þ. g�� remains undetermined from the experi-

ment and is typically treated—as is also the case for cA—as
a fit parameter to be determined from fits to experimental
or lattice data.

There have been several sum-rules calculations of the
effective ��� coupling [34–36]. In Ref. [37] symmetry
arguments in a quartet scheme, where N�þ, N��, �þ, and
�� form a chiral multiplet, lead to the conclusion that
��	�	 couplings (with like-charged �s) are forbidden at
tree level. Quark-model arguments [20] suggest that
g��� ¼ ð4=5Þg�NN . Recently an analysis of axial-vector

couplings was studied in the framework of the combined
1=Nc and chiral expansions [38]. Results for the nucleon,
�, and �-to-�N axial couplings are presented.
Lattice calculations for the nucleon axial charge gA

are available on a variety of ensembles and pion masses
[27]. In addition, results on the axial N-� transition from
factor CA

5 [23] have been obtained on most of the en-

sembles used also in this work. We are therefore in a
position to perform a combined chiral fit using small
scale expansion (SSE) within (HB�PT) [17,28,39] for
gA, C

A
5 ðq2Þ and the � axial charge G�� as functions of

the pion mass m�.
The one-loop SSE expression forCA

5 has been worked by

Procura [39]. The expression for CA
5 ðq2Þ as a function of

m� is

CA
5 ¼ a1 þ a2m

2
� þ a3q

2 þ loop5ðm�Þ; (60)

where the loop integral contribution is

TABLE VI. Fit parameters for h1ðQ2Þ using Eq. (54).
Parameters a, b, and m1 are fixed with the results of the g1
fits in Table III.

m� (GeV) c m2 (GeV) �2=dof

Quenched Wilson fermions

0.563 3.04(48) 2� 10�8ð8� 10�7Þ 1.32

0.490 3.32(84) 0.03(81) 1.37

0.411 3.8(1.8) 0.1(1.4) 1.52
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FIG. 17 (color online). Monopole fits to the ratio h3=h1 as described by Eq. (56).

TABLE VII. Fit parameters for h3ðQ2Þ=h1ðQ2Þ using the
monopole form of Eq. (56).

m� (GeV) m2 (GeV) c 4M2
� (GeV4) �2=dof

Quenched Wilson fermions

0.563 0.26(17) 7.6(1.1) 8.64(18) 0.21

0.490 0.31(19) 7.4(1.1) 8.12(18) 0.38

0.411 0.28(25) 6.7(1.1) 7.64(21) 0.58
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loop5ðm�Þ¼ cA
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Here � ¼ M� �MN , f� ¼ 92:4 MeV, a1, a2, a3 are unknown parameters, and � is a cutoff scale set to � ¼ 1 GeV.
We use the SSE expression for the nucleon axial charge presented in Ref. [40]:

gSSEA ðm2
�Þ ¼ g0A � g0 3A m2
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FIG. 18 (color online). Fits to the data for the h3 form factor using the form given in Eq. (58).

TABLE IX. Fit parameters for ~hðQ2Þ=~gðQ2Þ using the mono-
pole form of Eq. (56).

m� (GeV) m2 (GeV) c �2=dof

Quenched Wilson fermions

0.563 0.73(39) 4.2(1.6) 0.23

0.490 0.42(43) 3.3(1.2) 0.22

0.411 0.45(70) 3.9(2.0) 0.32

TABLE VIII. Fit parameters for h3ðQ2Þ using Eq. (58).
Parameters a, b, and m1 are fixed with the results of the g1
fits in Table III. The dynamical fermion data sets contain too
much noise for the fits to be useful.

m� (GeV) d m2 (GeV) �2=dof

Quenched Wilson fermions

0.563 22(6) 0.03(58) 0.46

0.490 26(10) 0.25(28) 0.35

0.411 28(15) 0.28(43) 0.33
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�SSE ¼ �1
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g0A in the above expressions denotes the chiral limit value of the axial charge, i.e., corresponds to gA in Eq. (61).
Finally, from Jiang and Tiburzi [28] we obtain the chiral expansion for the axial charge of the �:

G��ðm2
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(64)

The � field renormalization is

Z� ¼ 1� 1
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�
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; (65)

and the loop integrals from Ref. [41] evaluated at the scale � ¼ 1 GeV are
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From the available lattice data on CA
5 ðq2 ¼ 0;m2

�Þ,
gAðm2

�Þ, and G��ðm2
�Þ, we perform a simultaneous

seven-parameter fit to expressions (60), (62), and (64),
fitting the unknown constants a1, a2, A, C

SSE as well as
the common chiral couplings gA, cA, and g��. We note that
CSSE is independent of m�; at a fixed value of �, it can be
fitted as a constant.

The lattice nucleon axial charge values gAðm2
�Þ are taken

from twisted mass simulations [27]. Lattice values for the

real part of the axial N-� couplings CA
5 ð0Þ are taken from

Ref. [23] via a dipole extrapolation. The values of the real
part of the axial charge of the�,G��ðm2

�Þ are related to the
dominant axial form factor g1 at zero momentum transfer
via G�� ¼ �3g1ð0Þ. For an additional lattice point to
assist the fit, we computed the zero-momentum g1 values
(only) on the 203 � 64 mixed-action ensemble with
m� ¼ 498 MeV. Values are provided in Table X.
In Fig. 19 the combined fit is presented. The available

lattice data for all three observables vary mildly in the pion
mass regime considered. gA remains underestimated with
respect to the experimental value, and the inclusion of CA

5

and G�� into the SSE fit does not improve this systemati-
cally observed behavior. Strong chiral effects are expected
at lighter pion mass values, especially below the � decay
threshold, as is evident from the one-loop trend of CA

5

and G��.

VI. CONCLUSIONS

A detailed study of the axial structure of the�ð1232Þ has
been presented, complementing recent and ongoing studies
of the axial structure of the nucleon as well as the axial
N-to-� transition. The matrix element of the � state with
the axial current has been parametrized via four Lorentz

TABLE X. Numerical values for the dominant form factor
g1ð0Þ on each of the ensembles. G�� ¼ �3g1ð0Þ with our
normalization.

m� (GeV) g1ð0Þ
Quenched

0.563(4) 0.589(10)

0.490(4) 0.578(13)

0.411(4) 0.571(18)

Mixed action

0.498(3) 0.573(23)

0.353(2) 0.640(26)

DWF

0.297(5) 0.604(38)
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invariant form factors, g1, g3, h1, and h3, a generalization
of the familiar nucleon axial structure. Similarly, we pa-
rameterize the pseudoscalar matrix element with two form

factors, denoted ~g and ~h. We detailed the lattice techniques
required for the extraction of all six form factors for a
complete q2-dependent evaluation via specially designed
three-point functions. In fact, the calculation is optimized
such that only two sequential propagators are needed
for the numerical evaluation of the optimal correlators.
The PCAC constrains strongly the nucleon matrix elements
of the axial-vector and pseudoscalar currents as is mani-
festly evident by the phenomenological validity of the
Goldberger-Treiman relation. Lattice QCD provides a
check of this relation, which is a result of chiral symmetry
breaking present in the QCD Lagrangian, confirming that
the q2 dependence of the axial and pseudoscalar form

factors is in agreement with the PCAC predictions.
Furthermore, the recent studies of the axial N-to-� tran-
sition have shown that the PCAC constrains strongly also
the transition from factors and measurements of the domi-
nant form factor CA

5 and G�N� provided a check of the

nondiagonal GT relation. This work examines extensions
of similar relations for the�. The main result of the current
work is that the PCAC plays a major role also in the
relation between the � matrix elements of the axial-vector
and pseudoscalar currents, connecting the strength of the
�-�-� vertex to the � axial charge, G��. Actually, two
independent pseudoscalar form factors, G��� and H���,
are present, and pion-pole dominance establishes relations
among all six form factors. These predictions are qualita-
tively verified using results obtained in the quenched QCD
study, which carries the smallest statistical noise. Results
from two dynamical ensembles are consistent with these
findings, albeit within large statistical errors. Having ob-
tained an evaluation of gA and CA

5 from previous studies

and using the results of this work forG�� on similar lattice
ensembles, we performed a simultaneous chiral fit for all
three using one-loop chiral effective theory predictions in
the SSE scheme, which include a dynamical � field. The
seven-parameter fit does not drive the prediction near the
experimentally known gA value, and this is not surprising
as it has become recently clear that the correct value of gA
is not reproduced even with pion masses very close to the
physical one. A careful isolation of excited state effects
[42,43] at a pion mass of about 400 MeV failed to reveal
excited-state contamination in the lattice extraction of gA.
Resolving such discrepancies is important for sharpening
the predictive power of lattice QCD, which can yield
phenomenologically important quantities not accessible
experimentally. Fully chiral 2þ 1 domain wall flavor
simulations are available now below the 300 MeV pion
mass used in this work, and this leaves open the perspective
for further investigations in the future, which will elaborate
on the relations studied in this work and on the values of
the major couplings that dominate the low-energy hadron
interactions. However, as shown here, the gauge noise is
large, and noise-reduction techniques will be needed in
order to extract useful results using ensembles with close to
physical pion masses.
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APPENDIX A: MULTIPOLE FORM FACTORS

The axial vector transition between � states can be
parametrized via a multipole expansion. This is most natu-
rally performed on the Breit frame, where ~pf ¼ � ~pi ¼
~q=2. Let us denote the matrix element as

h�ð ~q=2; sfÞj ~A � ~	�j�ð� ~q=2; siÞi ¼ Mðsf; si; �Þ: (A1)

Generically four different transitions will occur parame-
trized via

M

�
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2
;
1

2
; 0

�
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3
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ffiffiffi
2

p
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with LJ, EJ the longitudinal and electric multipole ampli-
tudes of rank J. The polarization vector ~	� has components

~	þ ¼ �ðx̂þ iŷÞ= ffiffiffi
2

p
, ~	� ¼ � ~	�þ, ~	0 ¼ ẑ.

We can relate the form factors g1, g3, h1, and h3 to the
multipole form factors E1, E3, L1, and L3, which have
physical relevance in the multipole expansion,

g1 ¼ 3ffiffiffi
2

p E1 þ
ffiffiffi
3

p
E3
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ffiffiffi
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(A3)

from which the reverse relations can be verified:
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ffiffiffi
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� 2
ffiffiffi
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3ð5þ 8�Þ (A4)
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15
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2ðg1 � �g3Þ þ ð1þ �Þðh1 � �h3Þ
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ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p : (A7)

Using the above relations, we present results on the four
multipole axial form factors, E1, E3, L1, and L3, in
Figs. 20–23, respectively.
In the low momentum transfer limit, ��Oð ~q2=M2

�Þ
1,
and from relations (A5) and (A7), we deduce that E3,
L3 
 1. On the other hand, E1 and L1 remain finite, as

from relation (A4) E1 �
ffiffiffi
2

p
g1=3 and from (A6) L1 �

g1=3. Thus, at the low momentum transfer limit, we expect

that E1 ¼
ffiffiffi
2

p
L1 þOð ~q2Þ.

We test these predictions explicitly in Fig. 24, where the

ratio E1=
ffiffiffi
2

p
L1 is plotted. We observe a behavior consistent
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FIG. 20 (color online). Lattice results for the E1 multipole
axial form factor.

0 0.5 1 1.5 2 2.5

Q
2
 (GeV

2
)

-0.2

-0.1

0

E
3

mπ  = 563 MeV quenched
mπ  = 490 MeV quenched
mπ  = 411 MeV quenched
mπ  = 353 MeV mixed

FIG. 21 (color online). Lattice results for the E3 multipole
axial form factor.
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with a constant in the low-energy (< 0:5 GeV2) regime,
although the numeric value of the constant is largely over-
estimated by the quenched lattice data. In addition, this
constancy is in accordance to the pion-pole dependence of
both E1 and L1, which is evident from the quenched lattice
data plotted in Figs. 20 and 22. Despite the large statistical
uncertainties, E3 and L3 are consistent with small values at
small momentum transfers.

APPENDIX B: TRACE ALGEBRA FOR
THREE-POINT CORRELATORS

1. Axial current correlator

We define type I as

�IA
� ðqÞ � X3

i¼1

X3
�;�¼1

��� tr½�i���0 ðpfÞOA
�0��0��0�ðpiÞ�:

(B1)

After evaluating the Dirac traces, we find two distinct
cases,� ¼ 4 and� ¼ 1, 2, 3. The kinematical frame is set

to ~pf ¼ 0 and ~pi ¼ � ~q. We note by E ¼ ð ~p2 þM2
�Þ1=2.

For � ¼ 4 we find
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� ðp1 þ p2 þ p3Þ; (B2)

using

� � ðE�M�Þ
2M�

¼ Q2

ð2M�Þ2
: (B3)

For � ¼ i we find

�IA
�¼iðqÞ¼

iðEþM�Þ
18M3

�

½ð2E2þ3M2
�Þg1��EðEþM�Þh1�

� i

72M4
�

½8M2
�g1þ2ð2E2�2EM�þ5M2

�Þg3
�M�ðEþM�Þh1��ðEþM�Þð2E�M�Þh3�
�piðp1þp2þp3Þ: (B4)

We define type II as

�IIA
� ðqÞ� X3

�;�¼1

T�� tr½�4���0 ðpfÞOA
�0��0��0�ðpiÞ� (B5)

T�� ¼
0 1 �1

�1 0 1

1 �1 0

2
664

3
775: (B6)

For � ¼ 4 we find
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FIG. 22 (color online). Lattice results for the L1 multipole
axial form factor.
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FIG. 23 (color online). Lattice results for the L3 multipole
axial form factor.
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�IIA
�¼4ðqÞ ¼

i

18M2
�

�
ðEþ 4M�Þðg1 � �g3Þ

� �

2
ðEþM�Þðh1 � �h3Þ

�
ðp1 þ p2 þ p3Þ:

(B7)

For � ¼ i we find

�IIA
�¼iðqÞ ¼

ðEþM�Þ2
36M3

�

½ð2Eþ 3M�Þg1 � �ðEþM�Þh1�

� 1

36M3
�

�
ð2Eþ 5M�Þg1 þ ðEþ 4M�Þg3

� E

2m
ðEþM�Þh1 � �

2
ðEþM�Þh3

�

� piðp1 þ p2 þ p3Þ: (B8)

2. Pseudoscalar density correlator

In a similar way we evaluate the trace algebra for
the pseudoscalar vertices. The index summation types are
defined in the same way as in the axial case. Pseudoscalar
type I is

�I
PSðqÞ �

X3
i¼1

X3
�;�¼1

��� tr½�i���0 ðpfÞOPS
�0�0��0�ðpiÞ�:

(B9)

After the trace evaluation, we find

�I
PSðqÞ ¼

�1

18M3
�

�
~gð2E2 � 2EM� þ 5M2

�Þ

� ~h
�

2
ð2E�M�ÞðEþM�Þ

�
ðp1 þ p2 þ p3Þ

(B10)

Pseudoscalar type II is

�II
PSðqÞ �

X3
�;�¼1

T�� tr½�4���0 ðpfÞOPS
�0�0��0�ðpiÞ�; (B11)

giving us

�II
PSðqÞ ¼

i

18M2
�

�
ðEþ 4M�Þ~g� �

2
ðEþM�Þ~h

�

� ðp1 þ p2 þ p3Þ (B12)

after we evaluate the trace.

APPENDIX C: FORM FACTOR RESULTS

TABLE XI. Delta form factors from quenched Wilson fermions.

Axial Pseudoscalar

Q2 (GeV2) g1 g3 h1 h3 ~g ~h

0.000000 0.5887(98) � � � � � � � � � � � � � � �
0.1730731 0.717(70) 15.3(3.2) 22.9(8.6) 740(380) 9.58(43) 46(89)

0.3396915 0.562(27) 6.96(65) 5.6(1.7) 103(37) 7.14(19) 46(17)

0.5005274 0.491(20) 4.63(38) 2.89(79) 38(16) 5.42(18) 17.4(8.5)

0.6561444 0.459(19) 3.86(25) 2.15(48) 24.7(7.4) 4.13(17) 10.3(5.5)

0.8070197 0.403(14) 2.81(15) 1.30(26) 11.7(3.1) 3.44(14) 10.1(2.9)

0.9535618 0.364(14) 2.20(11) 1.04(19) 7.7(2.1) 2.91(13) 8.6(1.9)

1.235014 0.318(14) 1.57(10) 0.84(14) 4.4(1.1) 2.12(14) 5.5(1.3)

m� ¼ 563ð4Þ MeV 1.370502 0.279(14) 1.272(81) 0.61(11) 2.91(87) 1.73(12) 4.21(92)

1.502826 0.255(14) 1.151(89) 0.41(11) 2.38(79) 1.35(13) 2.34(90)

1.632198 0.230(13) 0.959(68) 0.388(84) 1.97(54) 1.17(11) 2.08(69)

1.758807 0.201(17) 0.730(86) 0.45(11) 1.84(64) 1.05(14) 1.95(72)

1.882824 0.211(16) 0.769(76) 0.439(69) 1.69(41) 0.92(13) 1.52(57)

2.004400 0.175(14) 0.604(65) 0.327(58) 1.24(31) 0.73(10) 1.18(43)

2.240774 0.124(22) 0.43(11) 3.249(98) 4.66(48) 0.40(16) 0.48(60)
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TABLE XII. Delta form factors from quenched Wilson fermions.

Axial Pseudoscalar

Q2 (GeV2) g1 g3 h1 h3 ~g ~h

0.000000 0.578(13) � � � � � � � � � � � � � � �
0.1728690 0.695(72) 14.0(2.9) 20.0(8.3) 390(330) 10.85(62) 120(130)

0.3389351 0.550(36) 7.03(78) 5.1(2.0) 97(41) 7.69(27) 59(23)

0.4989433 0.474(28) 4.52(45) 2.4(1.1) 33(17) 5.78(23) 26(11)

0.6535119 0.467(23) 3.99(31) 2.45(60) 26.8(9.0) 4.23(22) 10.3(6.8)

0.8031605 0.408(17) 2.88(18) 1.53(33) 13.1(3.6) 3.54(17) 11.6(3.3)

0.9483310 0.363(16) 2.18(14) 1.14(25) 8.1(2.4) 2.98(16) 8.9(2.3)

1.226705 0.326(17) 1.58(12) 1.02(18) 5.1(1.4) 2.21(17) 5.9(1.5)

m� ¼ 490ð4Þ MeV 1.360524 0.278(16) 1.253(95) 0.67(14) 3.2(1.0) 1.75(14) 4.1(1.1)

1.491113 0.252(17) 1.14(10) 0.42(13) 2.59(93) 1.30(14) 2.0(1.1)

1.618694 0.226(15) 0.935(78) 0.40(11) 2.02(63) 1.15(13) 2.01(82)

1.743467 0.202(20) 0.71(10) 0.54(14) 2.17(77) 1.02(16) 1.50(89)

1.865609 0.216(19) 0.751(87) 0.501(87) 1.74(48) 0.99(15) 1.79(70)

1.985279 0.173(16) 0.580(71) 0.348(73) 1.25(36) 0.73(12) 1.10(50)

2.217769 0.110(24) 0.41(12) �0:09ð13Þ �0:02ð58Þ 0.31(18) 0.21(72)

TABLE XIII. Delta form factors from quenched Wilson fermions. Results for h1 and h3 are plagued by statistical noise.

Axial Pseudoscalar

Q2 (GeV2) g1 g3 h1 h3 ~g ~h

0.000000 0.571(18) � � � � � � � � � � � � � � �
0.1726468 0.77(11) 17.4(4.5) 27(12) 560(490) 13.1(1.1) 290(230)

0.3381149 0.546(52) 7.4(1.1) 4.9(2.7) 102(61) 8.27(45) 59(40)

0.4972318 0.458(44) 4.53(66) 2.0(1.6) 33(24) 6.17(36) 27(18)

0.6506769 0.495(41) 4.28(51) 3.2(1.0) 32(15) 4.48(31) 15.4(9.8)

0.7990168 0.419(26) 2.96(25) 1.81(49) 13.4(5.2) 3.73(23) 14.4(4.4)

0.9427295 0.361(23) 2.14(19) 1.21(37) 7.5(3.4) 3.16(22) 11.2(3.2)

1.217848 0.354(25) 1.68(16) 1.42(26) 6.4(2.0) 2.41(25) 7.5(2.3)

m� ¼ 411ð4Þ MeV 1.349909 0.276(22) 1.23(12) 0.72(21) 3.4(1.4) 1.78(18) 4.4(1.4)

1.478675 0.251(24) 1.16(13) 0.44(19) 3.1(1.3) 1.23(18) 1.8(1.5)

1.604379 0.224(20) 0.93(10) 0.43(16) 2.26(87) 1.15(16) 2.4(1.1)

1.727230 0.203(28) 0.68(13) 0.65(21) 2.5(1.1) 0.96(21) 1.0(1.3)

1.847415 0.230(24) 0.75(11) 0.63(13) 1.87(64) 1.16(20) 2.9(1.0)

1.965099 0.171(18) 0.565(85) 0.39(10) 1.32(47) 0.73(15) 1.13(68)

2.193551 9.100(30) 0.37(14) �0:18ð19Þ 8.70(83) 0.16(21) �0:2ð1:1Þ

CONSTANTIA ALEXANDROU et al. PHYSICAL REVIEW D 87, 114513 (2013)

114513-22



TABLE XIV. Delta form factors from mixed-action fermions.

Axial Pseudoscalar

Q2 (GeV2) g1 g3 h1 h3 ~g ~h

0.000000 0.640(26) � � � � � � � � � � � � � � �
0.1240682 0.62(39) 15(26) 8(74) �100ð4500Þ 14.4(4.8) 230(1800)

0.2450231 0.51(17) 9.8(6.0) �2ð16Þ 120(540) 11.7(1.8) 440(320)

0.3630880 0.41(12) 6.0(3.1) �4:4ð7:7Þ �25ð200Þ 9.1(1.2) 260(140)

0.4784607 0.28(10) 1.9(2.1) �8:1ð4:9Þ �160ð104Þ 7.0(1.1) 87(83)

0.5913172 0.385(69) 4.0(1.1) �0:9ð2:5Þ �7ð40Þ 5.88(67) 85(37)

0.7018154 0.349(60) 3.42(78) �1:0ð1:9Þ 2(25) 5.41(61) 87(27)

0.9162911 0.368(57) 3.22(60) 1.1(1.3) 21(15) 3.46(56) 29(17)

1.020513 0.283(47) 2.07(43) �0:6ð1:0Þ �0:3ð9:3Þ 3.43(51) 35(12)

1.122869 0.222(50) 1.39(43) �1:15ð98Þ �9:6ð8:5Þ 2.22(52) 17(11)

1.223456 0.234(45) 1.43(36) �0:50ð77Þ �3:2ð6:3Þ 2.26(48) 13.3(8.5)

m� ¼ 353ð4Þ MeV 1.322363 0.212(66) 1.31(51) �1:1ð1:0Þ �5:6ð8:1Þ 2.34(77) 18(13)

1.419670 0.262(46) 1.50(31) 0.48(60) 2.5(4.2) 1.70(50) 7.0(7.1)

1.515454 0.237(48) 1.32(30) 0.12(53) 2.0(3.6) 2.08(54) 12.3(6.3)

1.702723 9.586(67) 0.41(38) �1:15ð83Þ �6:4ð4:8Þ 1.25(99) 14(11)

1.794332 0.148(44) 0.70(24) �0:35ð44Þ �1:8ð2:5Þ 1.07(56) 8.4(5.2)

1.884666 0.151(39) 0.65(20) 0.00(66) �0:3ð2:0Þ 0.90(48) 3.1(4.0)

1.973777 0.190(66) 0.82(32) 0.34(44) 1.3(2.3) 0.65(67) �6:1ð5:8Þ
2.061714 0.141(42) 0.66(20) 0.05(35) 0.5(1.8) 0.37(52) 5.4(4.0)

2.148521 0.173(56) 0.77(26) 0.38(35) 2.1(1.7) 1.07(59) 4.3(4.1)

2.234241 0.06(31) 0.4(1.6) �0:1ð2:6Þ 0.0(11.0) �0:5ð3:5Þ �5ð32Þ
2.402577 0.14(39) 0.5(1.5) 0.7(2.3) 2.5(9.2) 1.0(3.4) 2(18)

TABLE XV. Delta form factors from domain wall fermions.

Axial Pseudoscalar

Q2 (GeV2) g1 g3 h1 h3 ~g ~h

0.0 0.604(38) � � � � � � � � � � � � � � �
0.2060893 0.08(45) �5:6ð18:0Þ �44ð45Þ �1500ð2000Þ 9.4(9.3) �1100ð1800Þ
0.4030337 0.66(20) 9.3(4.3) 11(10) 130(240) 6.6(3.0) �300ð280Þ
0.5919523 0.79(19) 10.3(2.9) 13(6) 210(110) 4.5(2.4) �82ð140Þ
0.7737530 0.41(20) 3.5(2.3) 2.2(5.2) 8(65) 7.2(2.2) 125(90)

0.9491845 0.21(12) 0.6(1.7) �1:0ð2:5Þ �34ð25Þ 4.5(1.3) 42(39)

1.118873 0.51(14) 3.9(1.1) 4.8(2.2) 45(19) 1.3(1.4) �20ð32Þ
1.443061 0.47(21) 2.3(1.3) 4.3(2.6) 21(17) 3.2(1.9) 27(30)

1.598405 0.31(14) 1.25(76) 2.1(1.6) 4.7(8.8) 0.1(1.2) �1ð16Þ
1.749719 0.14(13) 0.91(69) 0.0(1.3) 2.2(7.2) 0.2(1.4) �12ð16Þ
1.897302 �0:09ð29Þ �0:3ð1:4Þ �2:2ð3:2Þ �11ð16Þ �4:6ð4:6Þ �62ð57Þ

m� ¼ 297ð5Þ MeV 2.041417 �0:03ð33Þ 0.1(1.6) �0:4ð2:9Þ 3(14) 0.2(3.1) 6(33)

2.182297 0.17(23) 0.51(91) 0.8(1.8) 4.6(7.7) 2.8(2.7) 9(18)

2.320150 �0:06ð14Þ �0:41ð57Þ �0:7ð1:1Þ �3:6ð4:4Þ 0.4(1.4) 2(11)
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