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The scalar strange-quark matrix element of the nucleon is computed with lattice QCD. A mixed-action

scheme is used with domain-wall valence fermions computed on the staggered MILC sea-quark

configurations. The matrix element is determined by making use of the Feynman-Hellmann theorem

which relates this strange matrix element to the change in the nucleon mass with respect to the strange-

quark mass. The final result of this calculation is mshNj�ssjNi ¼ 48� 10� 15 MeV and, correspond-

ingly, fs ¼ mshNj�ssjNi=mN ¼ 0:051� 0:011� 0:016. Given the lack of a quantitative comparison

of this phenomenologically important quantity determined from various lattice QCD calculations,

we take the opportunity to present such an average. The resulting conservative determination is

fs ¼ 0:043� 0:011.
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I. INTRODUCTION

Determining the strange content of the nucleon has been
a long-standing interest of nuclear and particle physicists.
The scalar strange content of the nucleon can be related to
kaon-nucleon scattering and phenomenologically to the
possible condensation of kaons in dense nuclear environ-
ments [1,2]. The strange content of the nucleon may also
play an important role in the scattering of dark-matter
particles off nuclei. The general low-energy coupling of
dark matter to nuclei has recently been worked out sys-
tematically using low-energy effective field theory [3,4].
The spin-independent coupling is the simplest and has
hence received the most attention historically. The spin-
independent elastic scattering of dark matter off a nucleon
is proportional to the square of the scalar matrix elements
hNjmq �qqjNi for quarks of flavor q. [5–13]. There are no

direct experimental means of measuring these matrix ele-
ments. The heavy quark q ¼ fc; b; tg matrix elements can
be computed from perturbative QCD and are reasonably
well known [14,15]. The light quark q ¼ fu; dg matrix
elements can be reasonably determined from �N scatter-
ing [16–18]. The scalar strange-quark matrix element
presents the most theoretical challenge to determine reli-
ably and has contributed one of the largest uncertainties in
dark-matter detection experiments [5,6,8] (cancellations
between different contributions to potential dark-matter-
matter cross sections lead to even larger uncertainty than
previously appreciated [12]). There have been estimates
using baryon chiral perturbation theory and SUð3Þ symme-
try [19] as well as constraints with earlier lattice calcula-
tions [20]. For these reasons, there has been a resurgent
interest in determining mshNj�ssjNi using lattice QCD,
beginning with the work in Refs. [10,21]. It is more com-
mon in the context of dark-matter searches to normalize
this quantity by the nucleon mass,

fs ¼ mshNj�ssjNi
mN

: (1)

There are two typical approaches used to determine
this quantity from lattice QCD. The scalar strange-quark
matrix element can be directly computed or one can take
advantage of the Feynman-Hellmann theorem,

mshNj�ssjNi ¼ ms

@mN

@ms

: (2)

Most groups use the direct method [22–28], one group uses
a hybrid approach which involves elements of both meth-
ods [29,30], and some groups use the Feynman-Hellmann
method [21,27,31–36]. For a recent review of the scalar
strange content of the nucleon, see Ref. [37].
The present work utilizes the Feynman-Hellmann

theorem which has the following distinct advantages over
the direct method: it is numerically less expensive and the
ground state contributions to the two-point correlation
functions can be significantly more reliably determined
than plateaus in direct matrix element calculations with
equal computing resources.
We begin by presenting details of our lattice calculation

in Sec. II and then present the determination ofmshNj�ssjNi
in Sec. III. We have found a quantitative comparison
of various lattice QCD calculations of this quantity lacking
in the literature. Given its important phenomenological
role, we were compelled to compile such a comparison,
which we provide in Sec. IV, along with the results of the
present work. While lattice calculations of fs still need
improvement, there is a welcoming consistency in the
determination of this quantity from a wide variety of lattice
calculations.
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II. DETAILS OF THE LATTICE CALCULATION
AND NUMERICAL RESULTS

The present work utilizes mixed-action lattice QCD
calculations with domain-wall fermion [38–42] propaga-
tors computed on the nf ¼ 2þ 1 asqtad-improved [43,44]

rooted, staggered sea-quark configurations generated by
the MILC Collaboration [45,46], (with hypercubic-
smeared [47–50] gauge links to improve the chiral
symmetry properties of the domain-wall propagators), a
strategy initiated by the LHP Collaboration [51–56].
A principal motivation for this choice is the good chiral
symmetry properties of the domain-wall action, while
utilizing the less numerically expensive lattice configura-
tions of the staggered action. It has been shown that the
chiral symmetry properties of the valence domain-wall
fermions highly suppresses sources of chiral symmetry
breaking from the sea-quark action [57–60]. This has led
to a number of important results, including a determination
of the kaon bag parameter BK [61]; the charmed and static
baryon spectrum [62,63]; charmed meson interactions with
pions and kaons [64]; hyperon axial charges [65]; a number
of results from the NPLQCD Collaboration including two-
hadron scattering lengths [66–72]; multi-meson interac-
tions, condensates and the three-pion interaction [73–75];
as well as a number of others [76–79]. There have been a
few other choices for mixed actions, all utilizing overlap
[80,81] valence-fermions on a variety of sea-quark con-
figurations. These include Wilson sea-fermions [82],
twisted-mass sea-fermions [83,84], domain-wall sea fer-
mions [85,86], and HISQ sea fermions [87]. Mixed-action
calculations are inherently unitarity violating with partially
quenched effects only vanishing in the continuum limit.
It is therefore imperative to compare numerical results
with the scaling violations predicted from the mixed-action
effective field theory [57–60,88–97]. This has been under-
taken to an exploratory extent with baryons [55,98], but the
only systematic studies have been with the a0 correlator
[93,97], which is highly contaminated by the unitarity

violating effects and a recent determination of low-energy
constants in the two-flavor chiral Lagrangian for pions
[99]. Despite the limited study of discretization effects,
there are reasons to believe they are small for many
quantities [55,57–59,100].

A. Parameters of the lattice QCD calculation

The present calculation utilizes the Feynman-Hellmann
theorem to determine the scalar strange-quark matrix ele-
ment in the nucleon, Eq. (2), limiting the work to a small
set of available ensembles. Details of the various ensem-
bles and parameters are collected in Table I. There are
two sets of ensembles at the b � 0:125 fm lattice spacing
with fixed light-quark mass and strange-quark masses
that straddle the physical strange-quark mass. These are
denoted by the sets msea ¼ fm010m030;m010m050g and
msea ¼ fm030m030;m030m050g, respectively.1 On the
b � 0:09 fm ensembles there are two sets, with fixed
light-quark mass and strange-quark masses straddling the
physical strange-quark mass. In this work, preliminary
results are presented only for one of these sets with msea ¼
fm0031m0186;m0031m031g. The values of the domain-
wall quark masses, the fifth-dimensional extent L5, and the
domain-wall mass M5 were taken from the NPLQCD
production runs [99].

B. Results of the lattice calculation

The light- and strange-quark propagators were com-
puted with a Gaussian-smeared source [101,102] and
both smeared (SS) and point (PS) sinks. Correlation func-
tions were then constructed with the quantum numbers of
the pion and proton. The pion masses were determined
with a fully correlated simultaneous fit to the SS and PS
correlation functions, with a single cosh used for both
correlators,

TABLE I. Parameters used in the present work. For some of the calculations, the time direction was chopped at t ¼ 32 with Dirichlet
boundary conditions (denoted by volumes with �32). For the MILC configurations, the notation m010m030 (and similar) means the
input quark mass values are bml ¼ 0:010 and bms ¼ 0:030 for the light and strange sea quarks, respectively.

� msea V M5 L5 bmdwf
l bmres

l bmdwf
s bmres

s Nsrc � Ncfg

b � 0:125 fm ensembles

6.75 m010m030 203 � 64 1.7 16 0.0138 0.001564(03) 0.081 0.000892(2) 53� 328
6.76 m010m050 203 � 64 1.7 16 0.0138 0.001566(11) 0.081 0.000913(2) 4� 656
6.76 m010m050 203 � 32 1.7 16 0.0138 0.001552(27) 0.081 0.000913(2) 24� 769
6.79 m030m030 203 � 64 1.7 16 0.0478 0.001052(04) 0.081 0.000809(4) 30� 367
6.81 m030m050 203 � 32 1.7 16 0.0478 0.001013(06) 0.081 0.000862(7) 24� 564

b � 0:09 fm ensembles

7.08 m0031m0186 403 � 96 1.5 12 0.0035 0.000431(3) 0.0423 0.000236(2) 1� 356
7.08 m0031m031 403 � 96 1.5 12 0.0035 0.000428(3) 0.0423 0.000233(2) 1� 422

1The notation msea ¼ m010m030 means the light quark has an
input light quark mass value in lattice units of bml ¼ 0:010 and
the strange-quark input mass value is bms ¼ 0:030.
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CðXSÞðtÞ � AðXSÞe�m�T=2 cosh ðm�ðt� T=2ÞÞ; (3)

where X ¼ S, P. In all cases, the configurations are binned
until the statistical uncertainty of the extracted masses
stopped changing appreciably. To determine the fitting
systematic, the length of the time extent used in the fit
and the starting time were varied over a wide range, with a
minimum plateau length of �0:5 fm. For each fit, the Q
value is used as a weight, where

Q �
Z 1

�2
min

d�2P ð�2; dÞ; (4)

with the probability distribution function for �2 with d
degrees of freedom,

P ð�2; dÞ ¼ 1

2d=2�ðd=2Þ ð�
2Þd=2�1e��2=2: (5)

The central value is determined from the weighted sum,

�m ¼
P

i miQiP
j Qj

: (6)

In many cases, the systematic is approximately Gaussian,
and so the 16% and 84% quantiles are used to determine
the systematic uncertainties.

The choice to use the Q values as weights is simply
motivated.Q ranges from ½0; 1�with a value of 1 indicating
the fit function and resulting parameters perfectly describe
the correlation function over the range of fit. It also allows
one to compare fits with different model functions (e.g.
single and double state fits). While not the only choice for
determining a fitting systematic, it is a convenient and
useful choice.

The results of these fits are plotted over a representative
window in time along with cosh-style effective masses,

mcosh
eff ðt; �Þ ¼ 1

�
cosh�1

�
Cðtþ �Þ þ Cðt� �Þ

CðtÞ
�
; (7)

in Figs. 1 and 2. The (black) squares are from the PS
correlation functions, while the (colored) open circles are
from the SS correlation functions. The right-side bar in
each plot displays the mass probability distribution func-
tion determined from

P iðmÞ ¼ QiP
j Qj

: (8)

In all plots, the inner (colored) band represents the statis-
tical uncertainty in the fit, while the outer band represents
the statistical and fitting systematic added in quadrature. In
the case of the msea ¼ m030m050 ensemble, only results
with Dirichlet boundary conditions in time are available.
For this case, the correlation functions are fit simulta-
neously with a single exponential,

CðXSÞðtÞ � AðXSÞ exp ð�m�tÞ; (9)

and compared with the standard effective mass,

mln
effðt; �Þ ¼

1

�
ln

�
CðtÞ

Cðtþ �Þ
�
: (10)

Clearly, in this case, the ability to explore the fitting
systematic is more limited. For reasons discussed in
Ref. [99], the dip in the effective mass is not believed to
represent a lower ground state energy, but rather contam-
inations from the Dirichlet boundary condition. The results
are collected in Table II.
The proton masses are trickier to determine as the

signal-to-noise ratio decays exponentially in time [104],

lim
t!1

SðtÞ
NðtÞ ¼ Ae�ðmN�3

2m�Þt: (11)

The mass determined in a given fit from ti to tf is then

susceptible to larger fitting systematics. It is not uncom-
mon for the effective mass plateau to shift by order one
standard deviation and form a new plateau, either higher or
lower at times when the statistical fluctuations grow appre-
ciably. It is therefore important to develop a systematic
analysis algorithm that both takes advantage of the precise
statistical fluctuations at early times while allowing for
the possibility that the late-time fluctuations represent the
true ground state. In Ref. [105], it was demonstrated that
correlation functions determined with Oð105Þ reasonably
statistically independent sources on Oð104Þ Monte Carlo
trajectories, a variety of analysis methods could be used all
producing consistent results. With fewer measurements,
not all methods work as well. One technique which works
better than others is the Matrix-Prony method [106]
(similar to the variational method which has gained popu-
larity lately), as described in Refs. [105,107]. The general
idea is to find linear combinations of correlation functions
which isolate various eigenstates and allow for a determi-
nation of the masses starting from earlier Euclidean times.
The Matrix-Prony method is well suited to matrices of

correlation functions that are neither square nor positive-
definite, as is often the case in lattice QCD calculations.
One begins with the ansatz that the (vector) of correlation
functions can be described with a transfer matrix,

yðtþ �Þ ¼ T̂ð�ÞyðtÞ; (12)

where in our case yðtÞ is composed of just two correlation
functions,

yðtÞ ¼ CPSðtÞ
CSSðtÞ

 !
: (13)

It is useful to factorize the transfer operator T̂ð�Þ ¼
M�1ð�ÞV and multiply on the right by the transpose vector
to form the matrix equation,

Mð�Þyðtþ �ÞyTðtÞ ¼ VyðtÞyTðtÞ: (14)
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To be useful, Eq. (12) must be satisfied over a range of
time,

Mð�Þ X
t0þ�t

t¼t0

yðtþ �ÞyTðtÞ ¼ V
Xt0þ�t

t¼t0

yðtÞyTðtÞ: (15)

A solution to Eq. (15) is given by

Mð�Þ ¼
� Xt0þ�t

t¼t0

yðtþ �ÞyTðtÞ
��1

;

V ¼
� Xt0þ�t

t¼t0

yðtÞyTðtÞ
��1

:

(16)

In order to guarantee the inverse can be found, enough
times must be summed over to ensure the corresponding

FIG. 1 (color online). Pion mass effective mass plots on the b � 0:125 fm ensembles.
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matrices are of full rank. One then solves the eigenvalue
equation for the principal correlators,

T̂ð�Þqn ¼ ð�nÞ�qn; with �n ¼ e�En: (17)

A point that differentiates the Matrix-Prony method
from other variational methods is the sum over time slices
in Eq. (15). Most variational methods pick a reference time
at which to perform the diagonalization of the correlation
functions, whereas with Matrix-Prony, one must sum over
a number of time slices greater than or equal to the number
of correlation functions. Moreover, one can increase con-
fidence in the subsequent analysis by maximizing �t in
Eq. (15). The original ansatz (12) is satisfied if over the
range of time, t0 to t0 þ �t, the resulting principal corre-
lation functions are well described by a single exponential.

In this work, to determine the fitting systematic, the
choices of t0 and �t are varied over a wide range, with
�t * 0:5 fm. For each choice, the ground state principal
correlation function is fit with a single exponential, Eq. (9),
over ranges of time ti � tf, chosen independently of t0 and

�t. The initial and final times in the fit are also varied over
a wide range under the constraint tf � ti * 0:5 fm. For

each fit, the Q value is recorded along with the statistical
uncertainty of the fit. The various fits are then averaged
with the weight similar to that of the pions, but also
suppressed by the statistical uncertainty of the fit,

�m ¼
P

i miwiP
j wj

with wi ¼ Qi

�i

: (18)

In this way, the plateaus at later times, with larger uncer-
tainties, and hence larger Q values, do not dominate the

FIG. 2 (color online). Pion mass effective mass plots on the b � 0:09 fm ensembles.

TABLE II. Computed pion and nucleon masses on the various ensembles. Additionally, the
value of r1=b used to convert to physical units is provided, obtained from Refs. [46,103].

� msea V bm� bmN
r1
b ðbmphy

l ; bm
phy
s ; �Þ

6.75 m010m030 203 � 64� 16 0:22178ð33Þð5428Þ 0:7177ð18Þð1926Þ 2.711(4)

6.76 m010m050 203 � 64� 16 0:22285ð28Þð4637Þ � � � 2.739(3)

6.76 m010m050 203 � 32� 16 � � � 0:7311ð19Þð3626Þ 2.739(3)

6.79 m030m030 203 � 64� 16 0:37323ð27Þð20Þ 0:8653ð17Þð2733Þ 2.821(7)

6.81 m030m050 203 � 32� 16 0:37493ð26Þð2411Þ 0:8740ð18Þð3632Þ 2.877(4)

7.06 m0031m0186 403 � 96� 12 0:10192ð38Þð5955Þ 0:4621ð64Þð9985Þ 3.687(4)

7.08 m0031m031 403 � 96� 12 0:10165ð35Þð8476Þ 0:4603ð48Þð7974Þ 3.755(4)
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determination of the fitting systematic. The resulting fits are
displayed along with effective mass plots of representative
Matrix-Prony determinations of the ground state principal
correlation function in Figs. 3 and 4. In these figures, the
colored effective mass points correspond to the time win-
dow over which the Matrix-Prony method is applied in the
representative choice of times t0 and �t, while the gray
effective mass points lie outside this region. As is evident,
the resulting systematic mass-probability distribution tends

not to be Gaussian. For simplicity, we still take the 16% and
84% quantiles to define the systematic uncertainty. The
inner colored bands represent the statistical uncertainty,
and the outer gray bands represent the statistical and
systematic uncertainties added in quadrature.

C. Scale setting

To convert from lattice units to physical units we use
the scale setting procedure described in Ref. [99]. The

FIG. 3 (color online). Proton mass and representative effective mass plots on the b � 0:125 fm ensembles.
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dimensionless lattice results are converted into r1
units with r1

b ðbml; bms; �Þ determined by the MILC

Collaboration on each ensemble. But importantly, it is
not the value computed on a given ensemble that is
used; it is rather the values that have been extrapolated
to the physical light- and strange-quark mass point,
r1
b ðbmphy

l ; bmphy
s ; �Þ, which have also been determined by

the MILC Collaboration [46,103], listed here in Table II.
While depending upon reference quark mass values, this
amounts to a quark-mass independent scale setting proce-
dure, such that all remaining light- and strange-quark mass
dependence of the computed observables is that of interest.
The MILC Collaboration has also determined the physical
value of r1,

rphy1 ¼ 0:31174ð20Þ fm; (19)

which is used to then convert all values into physical units,
Table III.
There is an important additional advantage to this method

of scale setting. To invoke the Feynman-Hellmann theorem,
the change in the nucleon mass with respect to a change
in the strange-quark mass must be undertaken with all other
parameters held fixed [29,30]. The MILC Collaboration
chose to make slight changes in the coupling � while
changing the light quark masses. Our scale setting procedure
allows us to asses the quantitative significance of the slightly
different values of � used on the pairs of ensembles,
fm010m030;m010m050g, fm030m030; m030m050g and
fm0031m0186;m0031m031g. For each pair, the relative dif-
ference in the values of�was less than 1% ( �

ð2Þ��ð1Þ

�ð2Þþ�ð1Þ < 0:01)

and the corresponding relative difference in the values

of r1
b ðbmphy

l ; bm
phy
s ; �ðiÞÞ are also less than 1%. While

strictly speaking, the change in ms was not undertaken
with all other parameters held fixed, the effect of this
change is contained well within the other uncertainties
on the determined values of mshNj�ssjNi, as detailed in
the next section.

III. THE STRANGE-SCALAR MATRIX
ELEMENT IN THE NUCLEON

As discussed in the Introduction, there are a few meth-
ods for determining the scalar strange- quark matrix

FIG. 4 (color online). Proton mass and representative effective mass plots on the b � 0:09 fm ensembles.

TABLE III. Computed masses and decay constants converted
to MeV with r1 ¼ 0:31174ð20Þ fm.

� msea V m� [MeV] mN [MeV]

6.75 m010m030 203 � 64� 16 380:5ð:6Þð:9:5Þ 1231ð3Þð34Þ
6.76 m010m050 203 � 64� 16 386:3ð:5Þð:8:6Þ � � �
6.76 m010m050 203 � 32� 16 � � � 1267ð3Þð65Þ
6.79 m030m030 203 � 64� 16 666.4(.5)(.4) 1545ð3Þð56Þ
6.81 m030m050 203 � 32� 16 682:7ð:5Þð:4:2Þ 1591ð3Þð76Þ
7.06 m0031m0186 403 � 96� 12 237.8(0.9)(1.3) 1078ð15Þð2622Þ
7.08 m0031m031 403 � 96� 12 241:6ð0:8Þð2:01:8Þ 1094ð11Þð1918Þ
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element in the nucleon. These include a direct calculation
of the matrix element employed by some groups [22–28],
an indirect determination through the Feynman-Hellmann
theorem [21,31–36], Eq. (2)2, and a hybrid approach
[29,30]. This work utilizes the Feynman-Hellmann
method. For each light quark mass ensemble, we have a
determination of the nucleon mass at values of the
strange-quark mass which straddle the physical strange-
quark mass. These results, Table III, can be used to
interpolate to the physical value of the strange-quark

mass, Taylor expanding about bm
phy
s , and determine the

two quantities

mNðmphy
s Þ; @mNðmsÞ

@ms

��������mphy
s

: (20)

To apply the Feynman-Hellmann theorem with all
parameters except ms held (approximately) fixed, the
following approximation for the derivative is used,

mshNj�ssjNi½MeV� ¼
r1
b

ð2Þ
bmð2Þ

N � r1
b

ð1Þ
bmð1Þ

N

r1
b

ð2Þ
bmð2Þ

s � r1
b

ð1Þ
bmð1Þ

s

�
r1
b

ð2Þ þ r1
b

ð1Þ

2
bmphy

s

� 197:3 MeV fm

r
phy
1 ½fm� ; (21)

where
rðiÞ
1

b denotes the value of r1
b ðbmphy

l ; bm
phy
s ; �ðiÞÞ for

the given ensemble with all parameters except bms held

approximately fixed and r
phy
1 ½fm� is taken from Eq. (19).

The MILC Collaboration has determined values of

the strange-quark mass to be bmphy
s ¼ 0:0350ð7Þ and

bmphy
s ¼ 0:0261ð5Þ on the b � 0:125 fm and b �

0:09 fm ensembles, respectively [46,108]. The resulting

values of mNðmphy
s Þ and mphy

s hNj�ssjNi are collected in
Table IV and the resulting interpolations are displayed
in Fig. 5. In these figures, the vertical dashed lines repre-
sent the 68% confidence interval for the determination of

bm
phy
s on the b � 0:125 fm and b � 0:09 fm ensembles.

The uncertainty on bm
phy
s is included in the analysis and

represented by the third uncertainty in Table IV. The
conversion to r1 units is performed as in Eq. (21) using
1
2 ðr1b

ð1Þ þ r1
b

ð2ÞÞ for each pair of ensembles. The estimated

correction due to the difference in � on the pairs of
ensembles is at the same level as the uncertainty arising

from the determination of bmphy
s , which are at least an

order of magnitude smaller than the statistical or other
systematic uncertainties. On the b � 0:125 fm ensembles,

a precise determination of the scalar matrix element is
obtained. However, on the b � 0:09 fm ensembles, the
results are too imprecise to determine a nonzero value.

A. Chiral extrapolation

The results for mshNj�ssjNi must be extrapolated to the
physical value of the pion mass. In Ref. [109], the two-
flavor extrapolation formula for this matrix element was
determined at next-to-leading order (NLO) in the chiral
expansion,

hNj�ssjNi ¼ hNj�ssjNi0 � g2�N�

4�2f2
ðhNj�ssjNi0

� h�j�ssj�i0ÞJ �
m�

þ ~Es

m2
�

8�2f2
; (22)

where hHj�ssjHi0 represent the leading-order (LO) contri-
bution to the scalar strange matrix element in the hadron
H, g�N� is the axial pion-nucleon-delta coupling appear-
ing in the SUð2Þ baryon chiral Lagrangian, J �

m�
is a

chiral loop function nonanalytic in the pion mass and
the delta-nucleon mass splitting (� ¼ m� �mN) and ~Es

is a low-energy constant appearing at NLO. In the
large-Nc expansion, the LO matrix elements for the
nucleon and the delta are both OðN�1

c Þ, but there is no
cancellation at this order [110], so one does not expect a
strong cancellation between these NLO contributions.3

In principle, one should use the partially quenched
formula, also provided in Ref. [109], and convert it to
the relevant mixed-action formula [59] to perform the
extrapolation. However, clearly the most significant short-
coming of the present work is the limited number of light
quark mass points. With nonzero results at only a single
lattice spacing, the mixed-action extrapolation cannot be
performed regardless. The best that can be done with the
present results is a simple, effectively zero degree of
freedom extrapolation using the formula,

mshNj�ssjNi ¼ c0 þ c2m
2
�: (23)

While this will not result in a precise and accurate deter-
mination of the scalar strange matrix element, it will

TABLE IV. Extracted values of mNðmphy
s Þ and m

phy
s hNj�ssjNi.

The first uncertainty is statistical, the second fitting systematics
and the third is from the uncertainty on the determination

of mphy
s .

m� [MeV] mNðmphy
s Þ [MeV] m

phy
s hNj�ssjNi [MeV]

383:4ð:6Þð:9:6Þ 1241(2)(3)(1) 62(8)(11)(1)

674.6(.5)(.4) 1556(2)(4)(2) 79(8)(13)(2)

240(1)(2) 1090(11)(17)(1) 50(40)(65)(1)

2The first attempt to determine the strange content of the
nucleon from lattice QCD with the Feynman-Hellmann method
utilized SUð3Þ baryon �PT analysis of b � 0:125 fm MILC
results [20], resulting in a value consistent with zero.

3See also Ref. [111] for further discussion on the baryon
masses in the large Nc counting.
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provide a good guide to the approximate value at the
physical point. While not a rigorous expectation, it has
been found that matrix elements of the nucleon tend to
have very mild pion mass dependence; see for example
the recent review [112]. Performing this simplistic pion

mass extrapolation, using the isospin averaged m
phy
� ¼

138:0 MeV, we obtain

m
phy
s hNj�ssjNijmphy

�
¼ 54� 11� 17 MeV: (24)

The extrapolation is displayed in Fig. 6.
Given the limited ability to perform the chiral extrapola-

tion, we also explore the light quark mass dependence of
fs ¼ mshNj�ssjNi=mN to improve the estimate of systematic
uncertainties. It has been observed that the nucleon mass
displays a remarkably linear dependence on the pion mass
[55,100]. For this reason, the following two extrapolation
functions are used to estimate extrapolation systematics:

FIG. 6 (color online). Light quark extrapolation ofmshNj�ssjNi
versus m2

�. The location of the vertical dashed line is given

by ðmphy
� Þ2.

FIG. 5 (color online). Nucleon mass versus the strange-quark mass on the b � 0:125 fm and b � 0:09 fm ensembles.

The vertical dashed lines represent the 68% confidence interval for the determination of bm
phy
s on the b � 0:125 fm and

b � 0:09 fm ensembles. The conversion to r1 units is performed as in Eq. (21) using 1
2 ðr1b þ r1

b Þð2Þð1Þ for each pair of ensembles.

SCALAR STRANGE CONTENT OF THE NUCLEON FROM . . . PHYSICAL REVIEW D 87, 114510 (2013)

114510-9



fs ¼ fð0Þs þ fð2Þs m2
�; (25a)

fs ¼ fð0Þs þ fð1Þs m�; (25b)

yielding the results

fs ¼ 0:049� 0:009� 0:013; (26a)

fs ¼ 0:049� 0:012� 0:018; (26b)

respectively. These extrapolations are displayed in Fig. 7.
The quantity fs is observed to have negligible light quark
mass dependence.

These results can be compared with the extrapolation
of mshNj�ssjNi by converting with the isospin averaged

nucleon mass m
phy
N ¼ 938:9 MeV. In Table V, these three

different extrapolation results are collected. Additionally, a
correlated weighted average is performed. To perform the
correlated average, Gaussian distributions of the results in
Table IV are created independently for each light quark
mass point, with NGauss ¼ 104 in all cases. For each sam-
ple, all three extrapolations are performed, preserving the
correlations between the fits, with inverse weights given by
the statistical and systematic uncertainties on the individ-
ual mass points. For each sample, these three results are
then averaged with weights given by the inverse uncertain-
ties from the individual analyses (quoted in Table V). This
yields the final result,

mshNj�ssjNi ¼ 48� 10� 15 MeV; (27a)

fs ¼ 0:051� 0:011� 0:016: (27b)

IV. RESULTS AND DISCUSSION

For the present work, the Feynman-Hellmann theorem
was invoked to determine the strange content of the
nucleon through a change mN as the strange-quark mass
is varied,

mshNj�ssjNi ¼ ms

@mN

@ms

:

By taking care to set the scale using values of r1=b, which
were extrapolated to the physical values of the light- and
strange-quark masses, the nucleon mass variation was
determined with all other parameters held constant (with
precision better than 1%), as is required for a proper
determination of this quantity [29,30]. There are several
groups who have used the Feynman-Hellmann theorem
[21,27,31–36] as well as more determinations with a direct
calculation of the matrix element [22–28] and results from
a hybrid approach [29,30]. Before making a detailed com-
parison with other works, we first highlight advantages
and disadvantages of the present work. The distinct advan-
tage of using the Feynman-Hellmann theorem over direct

FIG. 7 (color online). Extrapolation of fs. The location of the vertical dashed line in each plot is determined from m
phy
� .

TABLE V. Extrapolated values ofmshNj�ssjNi and fs. These results are averaged in a weighted
and correlated fashion described in the text.

Quantity Extrapolated Extrapolation Function m
phy
s hNj�ssjNi [MeV] fs

m
phy
s hNj�ssjNi Eq. (23) 56� 12� 17 0:059� 0:012� 0:019

fs Eq. (25a) 47� 9� 13 0:050� 0:009� 0:014
fs Eq. (25b) 47� 12� 17 0:050� 0:012� 0:018
Correlated Average � � � 49� 10� 15 0:053� 0:011� 0:016
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methods is that the ground state plateau of the nucleon can
be significantly more reliably determined than the plateau
for the matrix element calculation with equal computing
resources; see the plots of ratio determinations in any of
Refs. [22–28] (the direct calculation requires a vacuum
subtraction, adding substantial statistical noise). The
disadvantage of most groups employing the Feynman-
Hellmann theorem is the reliance upon SUð3Þ baryon
�PT [21,33–35], which is known to not have a converging
expansion for the nucleon mass [55,72,98,113,114].
Therefore, it is not clear that the full extrapolation system-
atic has been properly addressed in those works.4 This
concern is substantiated by the discrepancy between
independent SUð3Þ baryon �PT analyses and their
determination of fs [21,33–35].5 For further discussion
on the convergence problems using SUð3Þ baryon �PT
specifically for the scalar strange content of the nucleon,
see Ref. [118]. The current work does not suffer from
this issue.

The most severe limitation of the present work is the
small number of light quark mass points (two) for which
there is a nonzero determination of mshNj�ssjNi. Given the
significant numerical cost of the domain-wall propagators
on the b � 0:09 fm ensemble with m� ’ 240 MeV, it is
not clear how soon a more precise determination will be
obtained at this point. Given the very mild light quark mass
dependence observed in this work, and in nucleon matrix
elements in general, we believe the present determination
offers a reliable estimate of the scalar strange content of the
nucleon, but neither a precise nor demonstrably accurate
value. Our final result is

mshNj�ssjNi ¼ 49� 10� 15 MeV;

fs ¼ 0:053� 0:011� 0:016:

A. Lattice QCD comparison and average

Given the phenomenological importance of the
scalar strange content of the nucleon, see for example
Refs. [5–13], it is prudent to review the limitations of the
present determination and to compare and contrast these
results to other lattice QCD determinations. There are two
results which use the same MILC ensembles with stag-
gered valence quarks [29,30] and one determination with
the same mixed-action scheme but a direct determination
[28]. It is interesting to first compare our results with these.

Reference [30] (an update of [29]) quotes only the value of

hNj�ssjNi in MS (2 GeV). To convert this number into the
dimensionful, renormalization scheme invariant quantity,
we take the ratio of quoted values mshNj�ssjNi=hNj�ssjNi
from Ref. [29], which amounts to ms½MSð2 GeVÞ� ¼
86 MeV. Alternatively, we could use the strange-quark
mass determination of HPQCD [119] (updated by MILC

[120]), ms½MSð2 GeVÞ� ¼ 89:0ð4:8Þ MeV, but within un-
certainties, these are the same. Comparing to these works,
as well as the mixed-action calculation, good agreement is
found,

mshNj�ssjNi½MeV� ¼

8>>>><
>>>>:

59� 6� 8 Ref:½29�
54� 5� 6 Ref:½30�
43� 8� 6 Ref:½28�
49� 10� 15 present work

:

(28)

In the literature, there is currently no determination of fs
that considers all the available results from lattice QCD,
and so we take the opportunity to provide one here.6 We
use an approach similar to the FLAG working group of
FLAVIANET, which has provided lattice determinations
of various quantities important to low-energy hadronic
physics [121]. In particular, the FLAG working group has
developed a scheme to judge the confidence to place in
various determinations, based upon standards such as the
lightest pion mass used, whether or not a continuum limit
has been performed, and whether the infinite volume limit
has been performed. For each criterion, a green star is
awarded to results that meet the strictest constraints, an
orange circle is given to results with room for improvement
and a red square to those with room for significant im-
provement. This provides a useful guide to people outside
the lattice community and motivation for those in the
community to improve their results.
Using the standards of Ref. [121], most results for fs

receive an orange circle. There is one group that receives
the green star, and the rest receive a red square. The results
with a red square suffer either from too few light quark
mass points to make a reliable chiral extrapolation or they
rely too heavily on SUð3Þ baryon �PT. There are two
analyses that we promote from a red square to an orange
circle because while they rely heavily on SUð3Þ baryon
�PT, they have demonstrated a remarkable consistency
of their analysis with four or more independent lattice
calculations [33,34]. We exclude results that are either
not published or not in an e-print posting (as results in
conference proceedings often undergo larger-than-quoted
systematic changes). We further exclude results which
have not been extrapolated to the physical value of the
light quark mass, and results calculated without dynamical

4The work in Ref. [31] also uses SUð3Þ baryon �PT, but uses a
variety of other extrapolation methods, resulting in a conserva-
tive estimate of their uncertainties.

5Despite these criticisms, we point out in Ref. [34], a striking
agreement is found between baryon mass results extrapolated
from one set of lattice calculations [55,113], with SUð3Þ baryon
�PT, and then used to predict results from a completely inde-
pendent calculation [115]. Moreover, independent verification of
the consistency of various lattice calculations of the ground state
baryon spectrum and SUð3Þ baryon �PT has been found
[33,116,117].

6There is a recent review on the topic in Ref. [37], but a lattice
average is not provided.
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strange quarks (nf ¼ 2) are not included in the average.

To convert results from mshNj�ssjNi to fs, we use mN ¼
938:9 MeV. These results are displayed in Fig. 8.

For the scalar strange content of the nucleon, the current
state of results is such that a simple weighted average of
good (green star) results can not be performed in a mean-
ingful way. As can be seen in Fig. 8, there is good con-
sistency between most of the results. There are not a large
number of orange circle results, so we chose to include all
results in the average. Moreover, we believe despite their
red-square assignment, these results offer valuable infor-
mation which should not be ignored at this time.

A simple weighted average, using the quoted uncer-
tainties as the inverse weights, produces an unbelievably
small final uncertainty. This also ignores the fact that
systematic uncertainties are typically non-Gaussian, and
in the case of lattice QCD calculations, not cleanly sepa-
rable from the statistical uncertainties. Moreover, it does
not account for the quality of the results, judged using the
rubric of the FLAG working group. In an attempt to
include all these issues, the following ad hoc procedure
is used to perform a weighted average of all the results
(presented in Fig. 8):

(i) for each of the Nlatt ¼ 11 results, fi � ��
i , an inde-

pendent random sample is generated with a sample
size of Ndist ¼ 104, drawn from a uniform distribu-
tion between the quoted uncertainties,

for i in rangeðNlattÞ:
for j in rangeðNlattÞ:

fi;j ¼ random:uniformðfi � ��
i ; fi þ �þ

i Þ

(ii) for each random sample, a weighted average of all
results is performed, with weight

wi ¼ yi=�i; (29)

where �i is the symmetric uncertainty, �i ¼ 0:5 	
ð�þ

i þ ��
i Þ from a given result, and we arbitrarily

chose yi ¼ 1, 2, 3 for the red square, orange circle
and green star, respectively. An extra multiplicative
reduction of 0.5 is assigned to results which rely
heavily on SUð3Þ baryon �PT,

for j in rangeðNdistÞ:
�fj ¼

P
i wifi;jP
i0 wi0

:

The choice to weight with 1=�i instead of 1=�2
i is

partly motivated from the non-Gaussian behavior of
the systematic uncertainties that typically dominate
the lattice results.

(iii) the mean and 99% confidence intervals of the
resulting distribution are quoted, see Fig. 8.

A principal concern one should have about this average
is the choice of weights used, Eq. (29). To help judge the
stability of the average presented here, a variety of different
weights are chosen, and the subsequent averages are com-
pared and presented in Table VI. The different choices in
weights result in very consistent values. This is a statement
about the consistency of the values of fs from a variety of
lattice QCD calculations, and it is this striking consistency
that leads us to believe a lattice average with the present
results is meaningful (despite the shortcomings of most of
the individual results). The resulting lattice average, quoted
at the 99% confidence interval to be conservative, is

mshNj�ssjNi ¼ 40� 10 MeV; fs ¼ 0:043� 0:011:

(30)

As was first discussed in Refs. [10,21], there is now
compelling evidence from lattice QCD that the value of
the scalar strange content of the nucleon is substantially
smaller than previously estimated and does not play as
significant a role in dark-matter searches as previously
thought [5,6,8,12]. This has potential implications for the
importance of spin-dependent dark-matter searches as dis-
cussed in Ref. [11]. For a recent review of the lattice QCD

FIG. 8 (color online). Comparison and average of lattice QCD
calculations of fs as described in the text. Only values that have
been extrapolated to the physical quark masses are used. Results
that quote mshNj�ssjNi are normalized by mN ¼ 938:9 MeV to
convert to fs. The quoted uncertainties are taken as the statistical
and systematic uncertainties added in quadrature from a given
reference. nf ¼ 2þ 1 indicates a dynamical strange quark as

well as up and down. SUð3Þ is used to indicate results that rely
heavily on SUð3Þ baryon �PT. Some results are excluded for
various reasons but displayed to demonstrate their consistency:
[29] was updated in [30], the nf ¼ 2 results [22,24] were not

averaged with the nf ¼ 2þ 1, the results in [25] were prelimi-

nary and not extrapolated to the physical pion mass, the results in
[26,36] are preliminary and only exist in a conference proceed-
ings. All excluded results are presented as quoted in the litera-
ture, with no attempt to perform chiral extrapolations.
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determinations of the scalar strange content of the nucleon,
see Ref. [37].

B. Estimating the heavy quark matrix elements

Knowledge of fu, fd and fs can be used to determine the
values of fc, fb and ft [14,15]. In Ref. [15], these heavy
quark matrix elements were computed using perturbative
QCD to Oð�3

sÞ, finding7

fc ¼ 0:08896ð1� xudsÞ;
fb ¼ 0:08578ð1� xudsÞ;
ft ¼ 0:08964ð1� xudsÞ;

(31)

where

xuds ¼ fu þ fd þ fs: (32)

The light-quark matrix elements are given by the pion-
nucleon sigma term mNðfu þ fdÞ ¼ ��N , which has also
been determined from lattice QCD. As can be seen in
Ref. [37], the determination by the BMW Collaboration
[31] not only would have the only green-star ranking
but also is a good approximation for the average of all
lattice QCD calculations of this quantity, with a value
��N ¼ 39ðþ18

�8 Þ MeV. Combining this with our estimate

for fs yields a value xuds ¼ 0:085ðþ:022
�:014Þ, and values of

the heavy-quark matrix elements,

fc¼0:0814ðþ12
�20Þ; fb¼0:0785ðþ12

�19Þ; ft¼0:0820ðþ13
�20Þ;
(33)

or in dimensionful units,

mchNj �ccjNi ¼ 76ðþ11
�19Þ MeV;

mbhNj �bbjNi ¼ 74ðþ11
�18Þ MeV;

mthNj�ttjNi ¼ 77ðþ12
�19Þ MeV:

(34)

The resulting charm-quark matrix element is in good
agreement with the direct lattice QCD calculations of
this quantity [30,123].
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K. Orginos, A. Pochinsky, D. Renner, D. Richards, and
W. Schroers (LHPC), Phys. Rev. Lett. 96, 052001 (2006).
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