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Polyakov loop eigenvalues and their N dependence are studied in two- and four-dimensional SUðNÞ
Yang-Mills (YM) theory. The connected correlation function of the single-eigenvalue distributions of two

separated Polyakov loops in two-dinemsional YM is calculated and is found to have a structure differing

from the one of corresponding Hermitian random matrix ensembles. No large-N nonanalyticities are

found for two-point functions in the confining regime. Suggestions are made for situations in which

large-N phase transitions involving Polyakov loops might occur.
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I. INTRODUCTION

This work is concerned with SUðNÞ Yang-Mills (YM)
theory quantum chromodynamics with N colors (QCDN)
in four dimensions. QCDN admits a large-N expansion [1].
Lattice work has shown that there is confinement at finite
and infinite N [2]. Then, QCDN at N ¼ 1 (QCD1) is
similar to the starting point of the topological expansion
(TE) [3]. In TE one constructs iteratively an S matrix from
a set of postulated basic general properties. Another start-
ing point for the TE is provided by string theory. In both
cases one starts from a system consisting of an infinite set
of stable particles interacting weakly at linear order. Upon
iteration, other singularities build up. The expansion is
organized diagrammatically with an order given by the
genus of a Riemann surface.

The QCDN route is better founded than the string one.
We can safely assume that there exist Wightman n-point
functions of local gauge invariant observables that admit a
single valued continuation to the extended tube T 0

n�1 [4]
for anyN. These functions determine the leading nontrivial
term in 1

N of any amplitude entering the Smatrix. From this

off-shell starting point, one might be able to build a better
founded QCDN string theory [5]. Concretely, one would
need explicit forms of a least some of the sets of entries of
the S matrix.

Despite quite a few papers which achieved high levels of
popularity, there is not one nonperturbative physical number
that has been analytically calculated, or at least credibly
estimated, in QCDN (with or without a finite number of
quarks) at leading order in 1

N or 1
N2 . Nevertheless, interest in

large N does not seem to die out. Quite a few workers, me
included, still are trying toget somenewquantitative result in
QCDNwhich rests on the simplification afforded byN � 1.

My idea has been to find a simple physical single scale
observable whose behavior as a function of this scale
showed a universal behavior at the crossover separating
long from short scales. Large N comes in to provide this

universality by a large-N phase transition. The universality
then becomes a random-matrix type of universality. The
hope is to exploit it in order to match effective string
descriptions holding at large distances to perturbation the-
ory holding at short distances. For example, consider a
circular Wilson loop of radius r. For r large effective string
theory provides some universal information about the r
dependence, while at small r perturbation theory applies;
the new ingredient is that random-matrix universality
would provide the means to connect these two dependen-
cies. The hope is that an approximate connection between
the string tension and some standard perturbative scale
would then be calculable. The existence of the large N
phase transition is believable for the circular loop because
it has been established numerically for square loops.
However, it would be preferable to consider smooth loops
also on the lattice, and this leaves us with only Polyakov
loops winding around a compactified direction. The length
of this circle has to be bounded from below in order to stay

in the confined phase. The single-eigenvalue density, �ð1Þ,
of a Polyakov loop becomes uniform at N ¼ 1 on account
of the well-known ZðNÞ symmetry. This leaves us with

�ð2Þ, the connected correlation function of the �ð1Þ’s of two
separated Polyakov loops, as the simplest smooth observ-
able on the lattice.
In this paper, I focus on Polyakov loops. The outline of

the papers is as follows. Sections II and III A provide
background material. The concrete new results are in
Sec. III B. They consist of an evaluation of the single
Polyakov eigenvalue density connected two-point correla-
tion function under the assumption of second rank Casimir
dominance. A formula for any N (taken as odd, for sim-
plicity) is provided, the large-N limit is taken, and the
validity of the latter is checked numerically. Next, a brief
comparison with Monte Carlo data in four-dimensional
SUðNÞ Yang-Mills theory is carried out. There are
no large-N phase transitions. Incidentally it is noted that
the result does not show universal features known to
hold for large Hermitian matrix ensembles. Section IV
contains ideas for future work. A short summary concludes
the paper.
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II. VOLUME REDUCTION

QCDN is a field theory, but geometrically the funda-
mental variables are not fields defined over M ¼ R4 but
rather fields defined over loops in R4. This becomes par-
ticularly evident when one introduced a lattice UV cutoff:
One can derive an infinite set of equations connecting
various loop operators, and the equations reflect the ordi-
nary locality of four-space the field theoretical formulation
rests on, without any of the collateral expenditures (gauge
fixing, Faddeev-Popov ghosts, Gribov ambiguities) associ-
ated with formulating the continuum theory in terms of
gauge fields [6]. The loop equations self-truncate at infinite
N, feeding the hope that it ought to be easier to handle
nonperturbative issues of QCDN at N ¼ 1 [6]. Taking the
equations to the continuum is hampered by the nonexis-
tence of anything resembling a decent calculus in loop
space. One way to go around this obstacle is to try to guess
a well-defined solution directly in the continuum (which
obeys general symmetry/unitarity constraints) and show
that it satisfies a set of equations that can be viewed as a
concrete realization of the formal continuum loop equa-
tions [7]. This has led to progress in string theory and even
to a connection back to field theory, but not for QCDN [8].
As far as I know, we still do not have even one nontrivial
example where the formal loop equations have been credi-
bly defined in the continuum.

One consequence of the loop equation is that at N ¼ 1
the replacement of R4 by T4, where the sides of the torus
are all larger than the inverse deconfinement temperature,
preserves a large subset of observables with no dependence
on the actual finite length of these sides [9]. This is of some
help in numerical work, but the saving is quite limited [10].
The term describing this phenomenon is ‘‘reduction,’’ on
account of a reduction in the number of degrees of freedom
as far as the four volume size goes. Reduction can be
applied to any number of directions, and one assumes
that there is a hierarchy of scales associated with the
preservation of the associated ZkðNÞ, k ¼ 1, 2, 3, 4 [9].

The restriction on the sides of T4 ensures that the global
Z4ðNÞ symmetry now present is not broken spontaneously
by the N ¼ 1 limit. The preservation of the consequence
of this symmetry on expectation values of parallel transport
round noncontractible loops is a necessary ingredient for
reduction [11]. The equivalence between the R4 and T4

loops equations breaks down if Z4ðNÞ is not obeyed by
expectation values of winding loops at N ¼ 1 [12]. If the
Z4ðNÞ is preserved at N ¼ 1, the spacings between mo-
menta induced by the finite volume of T4 get continuously
filled in by the eigenvalue sets of winding loops [9].

Polyakov loops are the natural extra observables one has
when considering M ¼ S� R3. We assume that the com-
pact direction is large enough that the one ZðNÞ is preserved
at all N. When I slice M by three spaces parallel, or or-
thogonal, to the compact direction, I find two different trans-
fer matrices. They provide two Hamiltonian pictures. In one

picture ZðNÞ is just an extra global symmetry of the Hilbert
space, and the system is at zero temperature. In the other, the
system is at finite temperature. In either case, one has a
Hilbert space which can be chosen to transform irreducibly
under the symmetries commuting with the Hamiltonian. The
spaces and Hamiltonians are different, providing different
spectral representations of identical observables.
Reduction applies only to nonwinding loops; it is of

interest to see if any reduction-related simplifications
hold at N ¼ 1 also for winding loops [13].

III. CORRELATIONS OF TWO
POLYAKOV LOOPS

Define the parallel transport winding loop operator by

UPðxÞ ¼ Pe
i
Hx4

x4
A4ð ~x;�Þd�: (1)

The compact direction is 4. A�ðxÞ are the gauge fields given
by traceless Hermitian N � N matrices and ð ~xÞi ¼ xi, i ¼
1, 2, 3. P is path ordering. Polyakov loops are independent
of x4:

PRð ~xÞ ¼ 1

dR
�RðUPðxÞÞ: (2)

R labels an irreducible representation of SUðNÞ, �R is the
character in R, and dR is the dimension of R. If the number
of boxes in the Young pattern corresponding to R ismR, the
N-ality of R is given by n ¼ modðmR;NÞ. Under ZðNÞ I
have PR ! e2i�n=NPR.
Consider the case n � 0. Then hPRi ¼ 0, and GRðrÞ ¼

hPRð0ÞP �RðrÞi is generically nonzero. Here �R is conjugate to
R. r is a positive distance. Denoting the length of the
compact direction by l, the two-point function is a function
of R and the two length scales l, r. Define (formally)
WRðl; rÞ ¼ logGRðrÞ. We assume that the � parameter in
front of the

R
d4xTr½F ^ F� term in the action is set to

zero, so GRðrÞ is real and positive. The definition is only
formal because after renormalization there will be an arbi-
trary term inWRðl; rÞ of the form�Rl. Thus, @Wðl; rÞ=@l is
well defined up to an additive constant [14].

A. Simplest asymptotic properties

Since l > 1=Tc where Tc is the deconfinement tempera-
ture, the first reaction would be thatW cannot be computed
in perturbation theory. Nevertheless, to some extent, the
quantity

lim
l!1

@2Wðl; rÞ=@l@r ¼ dVRðrÞ=dr (3)

can [15]. Instead of the l ! 1 limit in Eq. (3), one takes an
infinite uncompactified x4 axis and replaces l by T and
Wðl; rÞ by the logarithm of a rectangular Wilson loop of
shape T � r. Inspection of Feynman diagrams shows
that in the T ! 1 limit, one has an expansion for VRðrÞ
up to two-loop order in the coupling which ought to be
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useful for r small enough. To go to higher loops, one
needs to include nonanalytic terms in the coupling
[16]. Potantial nonrelativictic quantum chromodynamics
provides a prescription for how to do this, but I doubt that it
is unique [17].

In this expansion the path integral over A4 is expanded
around A4 ¼ 0, which breaks the ZðNÞ. This may not
matter for the two-point Polyakov loop function at infinite
l. Whether it can be used at any finite l is an open question,
so long as l > 1=Tc. If there were a credible perturbative
regime in which the l scale can somehow be removed from

the problem, one would expect that �ð2Þ might show some
crossover as r is varied. Then, the ingredients necessary for
a large-N phase transition to develop are present. The hope
is that, for r small enough, the eigenvalues of one Polyakov
loop would restrict the fluctuations of the eigenvalues of
the other Polyakov loop to such a degree that the period-
icity in the angle differences would barely be felt. For r
large this periodicity would get restored to full strength. A
separating crossover at finite N would become a phase
transition at infinite N. The intuition behind the focus on
eigenvalues is that collectively their fluctuations explore
the distance of parallel transport operators from unity. Only
when the compactness of the group is felt does one expect
nonperturbative effects to become important. Compactness
is felt only when parallel transport exceeds a certain dis-
tance from unity. We shall see that the hope for a transition
is not realized.

Beyond perturbation theory, VRðrÞ is the ground state
energy of the Hamiltonian associated with evolution in the
x4 direction in the sector defined to transform under the local
gauge group as R at ~r ¼ ð0; 0; 0Þ and �R at ~r ¼ ðr; 0; 0Þ,
r > 0. This ground state is d2R degenerate. When one com-
putes the partition function viewing l as the inverse tempera-
ture, the degeneracy of the ground state cancels the prefactors
normalizing the Polyakov loop operators. There is no overall
factor of N2 in the physical piece of the free energy.

Because of the representation content of the Hilbert
space which breaks translation invariance, there is no
physical interpretation in this picture for plane waves
propagating in the x1;2;3 directions superposing ground

state states.1 The dependence of dVðrÞ=dr on r for
r ! 1 starts with a constant (the string tension of open
strings with fixed endpoints transforming as R and �R,
respectively) and continues to subleading orders; several
terms in this expansion are universal. I shall describe below
in more detail this aspect in another asymptotic limit.

One can also consider the large r-separation fixed l
limit:

F RðlÞ ¼ lim
r!1@

2WRðl; rÞ=@l@r: (4)

Confinement in this context means that lim l!1F RðlÞ ¼
�n > 0, with �n depending only on the assumed nonzero
N-ality of R, n;�n ¼ �N�n.F RðlÞ gives the l derivative of
the r derivative at r ¼ 1 of eigenvalues of the Hamiltonian
describing evolution in any one of the directions xj, j ¼ 1,

2, 3 in the n sector of the global ZðNÞ. Now, it does make
sense to superpose states and project on zero spatial
momentum. This gives the ground state energy in the
n-winding sector. One can look at several subleading

terms in the large-l expansion. For this define F RðlÞ ¼
�nF̂Rðl ffiffiffiffiffiffi

�n
p Þ,
F̂ðxÞ ¼ 1þ c1=x

2 þ c2=x
4 þ c3=x

6 þ � � � (5)

Assuming an effective string theory description, one de-
rives from symmetry principles alone that the coefficients
c1;2;3 are universal calculable finite numbers, independent

of R (and consequentially of n). They are actually also
independent of any other detail regarding the field theory,
except the assumption of confinement and applicability of
effective string theory [18].
To summarize, at any finite N, WRð1; rÞ and WRðl;1Þ

with R of nonzero N-ality have some universal coefficients
in their asymptotic expansions in r and l, respectively,
which follow from the assumption of confinement and
applicability of effective string theory. Numerical checks
have yielded results consistent with this. The N ! 1 limit
provides no further simplification with respect to these
properties.2 There is a hope that the N ! 1 limit could
provide a clear demarcation point for the domain in which
the asymptotic expansion of long strings can make any
sense at all, but the universal predictions of effective string
theory are insensitive to this.

B. Looking for large-N phase transitions

Effective string theory can also be applied to the case
where l and r are both taken to infinity; a brief overview
with references to original work can be found in Ref. [10].
This can be done also for ordinary contractible rectangular
Wilson loops in R4. Reduction applies in these cases. There

1In potantial nonrelativictic quantum chromodynamics one
deals with an expansion in inverse quark mass; in this context
it is possible to provide a meaningful definition of the spatial
Fourier transform of VðrÞ because the sources can move. At
three-loop order, the expansion in powers of the strong-force
coupling breaks down, but the nonanalytic term responsible for
this (in this framework) can be derived.

2One should distinguish between the dream string theory, which
is equivalent to QCDN (it is unknownwhether such a dream string
theory actually exists), and the effective string theory I am talking
about; the dream (closed-)string theory would have a coupling
constant, which goes as 1

N2 , and the N ! 1 limit would turn the
interactions off. One would need the N ! 1 limit in order to
justify the focus on the lowest genus surface relevant to the
correlation under investigation. The effective string theory on
the other hand has already summed up all contributions from
handles of the dream string theory, and the universal results
provided by the cylinder are N independent.
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is no lower limit on l or r, and therefore there is a perturba-
tive regime. Renormalization to remove perimeter diver-
gences is still required. Again, for individual irreducible
representations, large N provides no additional constraints
on the universal large l, r results of effective string theory.
However, now there is an evident connection to a perturba-
tive regime where both l and r are small. This connection is
smooth. Only by looking at many representations simulta-
neously does one detect a large-N transition: one finds a
nonanalyticity in the single-eigenvalue distribution at a
point which serves as a boundary between the perturbative
and nonperturbative regime [19]. The boundary location
depends on an arbitrary dimensional smearing parameter.
This parameter is a remnant of the need to eliminate the
perimeter divergence. It is defined in a manner independent
ofR [20]. Only at infiniteN is there awell-defined transition
point. For any finiteN, one has only a crossover. Numerical
and analytical considerations indicate that the large-N tran-
sition has a certain random-matrix model universality [19].

At any finite N, the Polyakov loop two-point function
has a discontinuity as l is varied through l ¼ 1

Tc
separating

the confined and deconfined phases. Since one can com-
pute VRðrÞ in perturbation theory at l ¼ 1, one may hope
that a specifically large N transition as r is varied takes
place at any l in the confined phase.

Lattice checks of predictions of effective string theory
have overall been successful, at times even surprisingly
successful; this has nothing to do with N being large
enough. Just like effective Lagrangians for massless pions
work already on the lattice since these Lagrangians can
parametrize any reasonable UV behavior, effective string
theory should also hold directly on the lattice so long as
one is in the rough phase. For long strings the lattice
violation of Oð4Þ invariance makes an impact determined
by symmetries. If I replace the hypercubic lattice by an F4

lattice [21], the effective string theory predictions may
apply even better. So, the success of lattice checks of
effective string theory might be ‘‘explained’’ by the rela-
tive unimportance of the proximity of the field theoretical
continuum limit. For example, QCDN with scalar matter
fields in the adjoint has no continuum limit; on the lattice it
would confine, and effective string theory would make
some universal predictions in the rough phase of the loop
under consideration.

In general, strings are less sensitive to high mode cutoffs
than field theories are [22]. In four dimensions there is an
exception [22] which has to do with the fluctuations in the
extrinsic string curvature. Potentially significant deviations
from effective string theory were observed in Ref. [10] and
independently in Ref. [23]; in Ref. [10] these deviations
were tentatively attributed to the corners of lattice loops
because of the perturbation theory experience with the
corner divergences in Wilson loops.

The technical reason for the universality of the large-N
transition in the case of contractible Wilson loops has been

second rank Casimir dominance of the dependence3 on the
representation R. One may then map the size parameters
that are varied into an appropriate measure of separation in
two-dimensional YM. So, I ask whether there is a large-N
phase transition to be found in an analysis of Polyakov loop
correlators in YM on a two-dimensional cylinder.

1. Eigenvalue-eigenvalue correlation function
in two-dimensional YM

In general, it is known that there are large-N nonanaly-
ticities in two-dimensional (2D) YM on a cylinder [24].
Here I wish to see if they show up in the two-point function
of the single-eigenvalue distributions associated with two
separated Polyakov loops. In the context of large-size
Hermitian matrices, two-point single-eigenvalue correla-
tion functions have been shown to have some universal
properties [25]. A side result of the calculation below will
be to check whether this universality extends to the sim-
plest unitary matrices’ ensemble with a global ZðNÞ sym-
metry. From experience with Hermitian matrix models, I
expect smooth and strongly fluctuating contributions to the
two-point eigenvalue function of equal magnitude; the
oscillating piece has to be first separated out, and only
the remaining smooth piece can exhibit a universal large-N
phase transition.
In the subsequent equations, the assumption that N is

odd is made implicitly. The partition function of SUðNÞ
YM on a 2D cylinder connecting two loops, 1 and 2, is
given by [24]

ZNðUP1
; UP2

jtÞ ¼ X
R

�RðUP1
Þe� t

2NC2ðRÞ� �RðUP2
Þ: (6)

t is the area in some area unit. Let �ð1Þ
1 ð�Þ and �ð1Þ

2 ð	Þ be
the single-eigenvalue distributions associated with the
N � N unitary matrices UP1;2

[26]:

�ð1Þð�;UÞ ¼ 2�

N

XN
k¼1


2�ð�� �kÞ: (7)

The �k are the eigenvalues ofU, and 
2� is the 2�-periodic
delta function. The character expansion of � is

�ð1Þð�;UÞ¼1þ 1

2N
lim
�!0þ

XN�1

p¼0

X1
q¼0

ð�1Þpe��ðpþqþ1Þ

�½eiðpþqþ1Þ��ðp;qÞðUÞþe�iðpþqþ1Þ��ðp;qÞðUÞ�:
(8)

3The expectation value of contractible Wilson loops of all
sizes can be written as exponents of expressions in which the
dependence on the representation enters predominantly through
the second rank Casimir. In order to get eigenvalue distributions,
one needs to sum over a set of representations. The factors
multiplying the Casimirs are smooth in the geometrical parame-
ters of the loop. This structure can induce large-N phase
transitions.
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The irreducible representation ðp; qÞ has a Young pattern in
the shape of a width-one hook, with 1þ p rows and 1þ q
columns. We wish to calculate the connected two-point
function

h�ð1Þ
1 ð�Þ�ð1Þ

2 ð	Þic ¼
Z

dUp1
dUp2

�ð1Þ
1 ð�Þ�ð1Þ

2 ð	Þ
� ½ZNðUp1

; Up2
jtÞ � 1�: (9)

dU is the Haar measure on SUðNÞ. In order for a pair
ðp; qÞ1 and ðp; qÞ2 to contribute, I need that there be a
singlet in their direct product. AsN is odd, this will happen
only when one pair is the conjugate of the other. For odd N
there are no ðp; qÞ self-conjugate pairs. For t > 0 I have

h�ð1Þ
1 ð�Þ�ð1Þ

2 ð	Þic ¼ 1

N2

XN�1

p¼0

X1
q¼0

ð�1Þpe� t
2NCðp;qÞ

� cos ½ðpþ qþ 1Þð�� 	Þ�: (10)

Here [26],

Cðp; qÞ ¼ ðpþ qþ 1Þ
�
N � pþ qþ 1

N
þ q� p

�
: (11)

One can reorganize the sums to get

N2h�ð1Þ
1 ð�Þ�ð1Þ

2 ð	Þic � <J ¼ J a þ J b: (12)

The real part is taken using Eq. (8) with fixed small � and
subsequently setting � ¼ 0:

J a ¼
XN
n¼1

e
�tðN�1Þ

2N2 nðnþNÞ 1� ð�1Þne t
Nn

2

1þ e
t
n

cos ðnð�� 	ÞÞ

(13)

J b ¼
X1

n¼Nþ1

e
�tðN�1Þ

2N2 nðnþNÞ 1� ð�1ÞNetn
1þ e

t
n

cos ðnð��	ÞÞ:

(14)

J a contains the two-point connected correlations

hTrðUk
p1
ÞTrðUyk

p2
iðtÞ for k ¼ 1; . . . ; N.

To obtain the large-N limit, I write an integral represen-
tation [26], exploiting the quadratic nature of the Cðp; qÞ
dependence on p, q:

J ¼ Nu

t
e
�t

2ð1� 1

N2Þ
Z dxdy

2�
e�N

2tðx2þy2ÞþðxþiyÞ2
2t

� 1þ uNe�Nðxþt
2Þþt

2þ t
N

1þ ue
�ðxþt

2Þþ t
2Nþ t

N2

1

1� ue
iy�2

2þ t
2Nþ t

2N2

: (15)

Here, u ¼ exp ½ið�� 	Þ�. The y integral can be done by
saddle point with ysp ¼ 0. To leading order in N, I get

J �
ffiffiffiffi
N

t

s
ue

�t
2þ t

2N2

Z dxffiffiffiffiffiffiffi
2�

p e�N
2tx

2þ 1
2tx

2 1þ uNe�Nðxþt
2Þþt

2

1þ ue�x�t
2þ t

2N

� 1

1� ue�t
2

: (16)

We need to keep the factor et=2N in the denominator of the
first fraction in the integrand in order to ensure its regular-
ity for xþ t=2< 0 because then the numerator divides
evenly by the denominator. Carrying out the integral by
saddle point, I find two contributions, corresponding to the
saddle points x1sp ¼ 0 and x2sp ¼ �t. The large-N limit is

taken at finite nonzero =ðuÞ and finite positive t. The limits
=ðuÞ ! 0 and t ! 0 do not commute with the limit
N ! 1. The final results for the leading large-N behavior
comes out to be

<J �1

2

sinh t
2 cos�þe

t
2ðsinh t

2 cosN��sin�sinN�Þ
sinh2 t

2þsin2�
:

(17)

Here, � ¼ �� 	. The result is the sum of a smooth term
and a rapidly oscillating one. There are no large-N phase
transitions.
The nonoscillating term is

<J non-oscillating � 1

2

sinh t
2 cos�

sinh 2 t
2 þ sin 2�

: (18)

It does not exhibit the universal structure seen in continu-
ous chains of large Hermitian matrix models [25]. Most
likely, the main difference is that for the unitary matrix
ensemble I solved above, there is no analogue of the non-
trivial potential

R
dtTrVðMðtÞÞ term in the action for the

Hermitian MðtÞ matrices. While the explicit form of V is
irrelevant, its mere presence is relevant.
To get a feel for the goodness of the large-N limit and

also check whether its derivation was correct, I present
Figs. 1 and 2. One can see that the large-N approximation
deteriorates when N decreases, when � is close to k�,
k 2 Z and when t is small, but otherwise holds well.

2. Some four-dimensional examples

I now turn to four dimensions and report on some
numerical simulation done in order to see qualitatively
whether, overall, the data looks similar to the 2D case. I
only wish to confirm that also in the four-dimensional case,
there are no signs of a large-N transition. I do not aim here
for anything quantitative and am content with low numeri-
cal precision.
The connected single-eigenvalue distribution for two

Polyakov loops in four dimensions will be a function of �
and 	 similarly to the 2D case. For finite N, there is no
reason for this function to depend only on the angle differ-
ence. The ZðNÞ symmetry only provides invariance under
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simultaneous shifts of � and 	 by 2�k=N. Initial simula-
tions were done collecting two-dimensional histograms in
the�,	 plane. Is was found that within practical numerical
accuracy, collapsing the histograms along constant �� 	
lines did not lose any information. This means that I may as

well consider the following finite-N definition of �ð2Þ:

�ð2Þð�� 	Þ ¼ N

2�

Z �=N

��=N
d�h�ð1Þ

1 ð�þ �Þ�ð1Þ
2 ð	þ �Þic:

(19)

�ð2Þ depends only on the angle difference on account of the
ZðNÞ symmetry.

In order to eliminate the UV divergences in four dimen-
sions, the gauge field configurations were smeared. Unlike
in previous work [20], gauge fields along the direction
separating the Polyakov loops were left unsmeared; smear-
ing was only done for gauge fields tangent to all orthogonal
three spaces. Thus, the gauge fields entering the Polyakov
loop are smeared. This is enough to remove the perimeter
divergence, as can be seen from the formula of a massless
propagator smeared in the above manner at infinite volume:

Gðx; sÞ ¼
Z d4p

ð2�Þ4 e
ip4x4þi ~p� ~x e�2s ~p2

p2
4 þ ~p2

: (20)
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FIG. 2. Solid line: exact result; dashed line: large N. (a) N ¼ 29, t ¼ 0:3; (b) N ¼ 29, t ¼ 1; (c) N ¼ 29, t ¼ 5.
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FIG. 1. Solid line: exact result; dashed line: large N. (a) N ¼ 11, t ¼ 0:3; (b) N ¼ 11, t ¼ 1; (c) N ¼ 11, t ¼ 5.
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FIG. 3. MC data on 124 at b ¼ 0:36 and at smearing s ¼ 0:25. (a) N ¼ 29, r ¼ 1, b ¼ 0:36; (b) N ¼ 29, r ¼ 2, b ¼ 0:36;
(c) N ¼ 29, r ¼ 3, b ¼ 0:36.
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One has then Gð0; sÞ ¼ 1
16�s , and the short distance singu-

larity is regulated away. This removes the perimeter diver-
gence at the cost of a dependence on the new scale

ffiffiffi
s

p
. At

the level of Feynman diagrams, it is obvious that this
eliminates all UV perimeter divergences to any finite order
because the extra diagrams the smearing introduces have a
tree structure, reflecting the determinism of the smearing
equation, which, in continuum notation reads

Fis ¼ D
adjoint
j Fij: (21)

Like in Ref. [20], s is a coordinate along a new direction. i, j
label directions orthogonal to the direction of separation
between the two Polyakov loops. D and F are the covariant
derivative and field strength, respectively. The three-
dimensional character of the smearing means that the
quantities F RðlÞ are s independent on account of the limit
r ! 1, which projects on the ground state of the relevant
Hamiltonian. Smearing only affects the (regularized) matrix
element of the operator between the singlet ZðNÞ ground
state and the nontrivial ZðNÞ ground state.

In simulations I employed s ¼ 0:25 in lattice units,
which is a moderate amount of smearing, found adequate
in the study of contractible Wilson loops [10].
Figures 3–5 show results from a lattice volume of 124

with N ¼ 29 at inverse ’t Hooft couplings b ¼ 0:360,
0.365, 0.370 and separation r ¼ 1, 2, 3 in lattice units.
We see that at fixed b, the general behavior resembles the
analytical results in two dimensions with t increasing with
r. One also sees a trend of increase in the difference from
two dimensions as the angle difference increases. Only the
angle difference range of ð0; �Þ is plotted on account of the
symmetry under the simultaneous sign switch of�,	. As b
increases the effective t decreases, as expected on account
of asymptotic freedom. The errors on the Monte Carlo
(MC) data are of the order of 10% but cannot be reliably
estimated.
Each figure shows, in addition to raw data, a smoothed

curve obtained by a cubic spline smoothing method. The
method of smoothing consists of a minimization of a
weighted combination of some average of curve curvature
and deviation from the data. The smoothing procedure

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4

5
x 10−3 N=29, r=1,  b=0.37

phi/pi

C
or

r

 

 
smooth
data

(a)

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4
x 10−3 N=29, r=2,  b=0.37

phi/pi

C
or

r

 

 
smooth
data

(b)

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4
x 10−3 N=29, r=3,  b=0.37

phi/pi

C
or

r

 

 
smooth
data

(c)

FIG. 4. MC data on 124 at b ¼ 0:365 and at smearing s ¼ 0:25. (a) N ¼ 29, r ¼ 1, b ¼ 0:365; (b) N ¼ 29, r ¼ 2, b ¼ 0:365;
(c) N ¼ 29, r ¼ 3, b ¼ 0:365.
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FIG. 5. MC data on 124 at sb ¼ 0:37 and at smearing s ¼ 0:25. (a) N ¼ 29, r ¼ 1, b ¼ 0:37; (b) N ¼ 29, r ¼ 2, b ¼ 0:37;
(c) N ¼ 29, r ¼ 3, b ¼ 0:37.
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is quite ad hoc and only serves to produce curves to guide
the eye.

IV. OTHER POSSIBILITIES

A. Where to look for a large-N phase transition
in four dimensions

I discovered no analogues to the large-N phase transition
found for contractible Wilson loops in R4 in this case. The
reason must be that one cannot make l small. If I try, I hit a
discontinuity already at finiteN; this discontinuity becomes
quite spectacular atN ¼ 1 [27]. There seems to be no way
to qualitatively distinguish between the finite-N disconti-
nuity and the N ¼ 1 one.

So, I would like to work in a metastable phase where
l < 1

Tc
but ZðNÞ is still a good symmetry. More mathemati-

cally, I want to analytically continue in l from the low-
temperature to the high-temperature phase. As pointed out
in Ref. [28], there is a way to define also a string descrip-
tion there. The instability in the string theory occurs when
some winding string states go tachyonic [29].4

Numerically, one might try to go into the metastable
phase by using quenching. Originally quenching was in-
troduced as a device to maintain the global Z4ðNÞ of T4 and
reduction to zero volume [12], but the idea was flawed
[31]. The flaw was that it still left alive an annealed
mechanism for breaking the Z4ðNÞ to some proper sub-
group. Without respecting full Z4ðNÞ symmetry, reduction
fails. However, when a single direction is compactified, the
preservation of the single ZðNÞ would not suffer from this
flaw. To be sure, I choose prime N because then, unlike
Z4ðNÞ, ZðNÞ has not proper subgroups.

The point would be to check numerically whether the
condensation of winding states, which would occur beyond
the Hagedorn temperature, is something that occurs in the
analytically continued field theory at finite N as a phase
transition (continuous or not). The alternative might be that
there is no such ordinary phase transition, since l is small
enough to enter a field theoretic perturbative regime where
string theory of any traditional sort is inapplicable. Then,
on the basis of analogy with the contractible Wilson loops,
one would guess that a large-N phase transition would

develop in the two-point single-eigenvalue correlation
function. The investigation of this is left for the future.
The large-N phase transition for contractible loops is

seen only when considering simultaneously many irreduc-
ible representations. They may be viewed as coming from
multiple windings of the boundary of the loop. Since the
loop is contractible, winding numbers are not conserved. In
the Polyakov case, they are, at least for windings between 0
and N � 1.
The analytic continuation from lTc > 1 to lTc < 1

should provide a way to compute (for small r and l)
Wðl; rÞ from the two Polyakov loop correlator directly
and for arbitrary irreducible representations. The analytic
continuation would amount to expanding around the one-
loop unstable saddle point, given by

PðxÞ ¼ 1

dR
�R½diagðei2�jN Þ�: (22)

For odd N, j ¼ 0; . . . ; N � 1, where ‘‘diag’’ indicates a
diagonal matrix with the listed elements on its diagonal.
This configuration is ZðNÞ invariant but unstable at one-
loop order.

B. Correlations of three Polyakov loops

There are two ingredients in 2D YM: One is the
‘‘propagator’’ defining the cylinder with fixed circular
boundaries, and the other is the ‘‘vertex,’’ which sews
together three boundaries [24]. This indicates that it would
be of interest to study the connected correlation function of
three Polyakov loops.
The simplest example is to take two Polyakov loops in

the fundamental and a third in the irreducible representa-
tion made by combining two antifundamentals into a sym-
metric or antisymmetric irreducible representation. Take N
as greater than or equal to 5 and odd. The three loops are
positioned at distinct locations in R3. In Euclidean space,
using a different slicing, this looks like a finite temperature
setting for one among the many possible generalizations to
large N of N ¼ 3 baryons. Three infinitely heavy quarks
are connected by a V-shaped string configuration.
One could go to Minkowski space and endow these

locations with zero masses, forcing them to evolve in time
at the velocity of light. For open strings in Minkowski
space, such a situation was looked at in the context of
cosmic strings. For N ¼ 3 this was considered in several
papers, but the string tensions were taken to be equal [32].
An effective string theory valid at large separations would
need to handle a case where one couples two strings of the
same tension to one of a different tension. It seems to me
that string tension considerations would favor a V-shaped
arrangement of ‘‘fundamental’’ strings. It would be inter-
esting to apply the methods of effective string theory to
this setup. Assuming the V shape, in the field theory, there
would be a coupling associated with the vertex of the V.
For large N it would go as g

N4 with a finite g.

4A simple way to understand winding states is by bosonizing
the two-dimensional scalar field describing the compactified
dimension on a cylinder [30]. The fermions one gets are solitons
of the original theory, and their integer charges under Uð1Þ and
Uð1Þ5 are given by the right and left winding numbers. The
constraint on the closed string states that ties the left and right
movers ends up leaving one extra integer labeling the string
modes. For a small circumference, nontrivial winding modes
have positive mass squares, overcoming the negative additive
contribution reflecting the ordinary tachyon, but for a larger
circumference, some of the winding modes have negative mass
square. The smallest nonzero windings cross the tachyonic
threshold at the Hagedorn temperature.
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Back to fixed sources, the three-point function of
Polyakov loops for the antisymmetric case is given by

2

N3ðN � 1Þ hTrðUP1
Þ½TrðUy2

P2
Þ � ðTrðUy

P2
ÞÞ2�TrðUP3

Þi
� ðra; rb; �Þ: (23)

Here, P1 is at (0, 0, 0), P2 is at ðra; 0; 0Þ, and P3 is at
(ra þ rb cos�, rb sin �, 0) with ra � rb and ra, rb > 0. The
new ingredient is the presence of corners. In the case of
rectangular Wilson loops, corners may change the rules of
effective string theory by exhibiting a field theoretical
dependence on loop sides, which is not exponentially sup-
pressed even for asymptotically large loops. Here, the same
question can be addressed in a different setup. On a hyper-
cubic lattice, only � values which are multiples of �

2 are

accessible. Numerically there would be high noise prob-
lems, but it is worth a try. One could then get back at our
main theme and consider the connected three-point func-
tion of the eigenvalues of the three loops. To search for
large-N phase transitions, one would need to look at three-

point connected correlations �ð3Þ, depending on two
eigenvalue-angle differences at infinite N.

It might be of interest to consider the problem of collid-
ing two same-direction wound Polyakov loops in
Minkowski space. The three-point vertex would enter
twice to produce a two to two particle scattering dominated
by the exchange of the symmetric and antisymmetric long

strings with masses above and below threshold. The dis-
tribution of the excited string modes of the two separate
outgoing strings might provide a thought experiment remi-
niscent to the Bjorken model for high-energy nucleus-
nucleus collisions [33].

V. SUMMARY

The correlations among single-eigenvalue distributions
associated with various Polyakov loops have been studied
for the simplest arrangement and found to provide no
large-N generated nonanalyticities. The results might be
of some interest in random-matrix theory. One needs the
interplay between different windings to get large-N phase
transitions and also a perturbative regime. One idea was to
somehow analytically continue in l to lTc � 1 and follow
the evolution of the single-eigenvalue distribution of a
Polyakov loop as a function of l. The other was to construct
arrangements involving mixtures of Polyakov loops of
different winding numbers.
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