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We present a formulation of domain-wall fermions in the Schrödinger functional by following a

universality argument. To examine the formulation, we numerically investigate the spectrum of the free

operator and perform a one-loop analysis to confirm universality and renormalizability. We also study the

breaking of the Ginsparg-Wilson relation to understand the structure of chiral symmetry breaking from

two sources: the bulk and the boundary. Furthermore, we discuss the lattice artifacts of the step scaling

function by comparing with other fermion discretizations.
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I. INTRODUCTION

In the study of CP violation by CKM unitary triangle
analysis, hadron matrix elements of four-fermion opera-
tors, such as BK, play a vital role. Accurate calculations of
this quantity from first principles are important for the
lattice QCD community. In such calculations, having chiral
symmetry is crucial to avoid an operator mixing problem
that requires extremely high accuracy. Although lattice
chiral fermions [1–3] are a clean formulation, they require
enormous computing power to perform dynamical simula-
tions. In comparison, ordinary fermion formulations, like
Wilson-type fermions and staggered fermions, are rela-
tively cheap. Nowadays, however, thanks to the develop-
ment of computer architecture and algorithms, dynamical
simulations with lattice chiral fermions have become fea-
sible even for three flavors [4]. In particular, the RBC/
UKQCD Collaboration [5] is currently using domain-wall
fermions (DWFs) to compute BK. In the course of their
computation, there are many sources of systematic errors
that one has to control. Among them, the nonperturbative
renormalization could be serious. At the moment, the
collaboration has been using conventional schemes, such
as the RI/MOM scheme and its variants [6,7]. However,
these schemes potentially contain a ‘‘window problem,’’
which requires a quite large lattice volume. To avoid such
difficulties, a new scheme was invented, known as the
Schrödinger functional (SF) scheme [8]. This scheme pro-
vides a reliable way of estimating errors in the nonpertur-
bative renormalization. If one wants to use this scheme for
the renormalization ofBK given by the RBC Collaboration,
first of all, one has to formulate DWF in the SF setup. This
is the purpose of the present paper.

While chiral fermions are useful for computing the bare
BK to avoid the mixing problem, a formulation for such
fermions in the SF setup is a nontrivial task because SF
boundary conditions break chiral symmetry explicitly. We

will address this issue in the next section. However,
Taniguchi [9] made the first attempt to formulate overlap
fermions by using an orbifolding technique. Subsequently,
he provided a formulation for domain-wall fermions [10],
and then he and his collaborators [11] calculated a renor-
malized BK in quenched QCD. Sint [12] developed such
techniques by using a flavor twisting trick. However, these
orbifolding formulations are constrained by the require-
ment that the number of flavors be even. Thus, apparently
such formulations are incompatible with current trends
toward dynamical three-flavor simulations. To overcome
this difficulty, Lüscher [13] gave a completely different
approach relying on a universality argument, dimensional
power counting and symmetry considerations. Some
perturbative calculations were performed in Ref. [14].
A crucial property of this formulation is that there is no
restriction on the number of flavors. Since only overlap
fermions were considered in Ref. [13], our main purpose
here is to formulate the other chiral fermions, namely,
domain-wall fermions.
The rest of the paper is organized as follows. Section II

gives the formulation of domain-wall fermions in the SF
setup, after a brief review of the universality argument. We
present several pieces of numerical evidence in Secs. III
and IV to show that our formulation is working properly.
We also discuss the lattice artifacts for the step scaling
function in Sec. V. In the last section, we conclude by
giving some remarks and an outlook.

II. FORMULATION

In the following, we assume that the reader is familiar
with the SF in QCD [8,15]. After giving a brief reminder of
the universality argument, we give a formulation for DWF
and finally check the chiral symmetry breaking structure
numerically.

A. Universality argument

This subsection is a review of Lüscher’s work in
Ref. [13]. In the massless continuum theory, the Dirac
operator D satisfies the anticommutation relation with �5,
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�5DþD�5 ¼ 0: (1)

The above is true even in the SF setup, although the
boundary conditions

Pþc ðxÞ ¼ 0 at x0 ¼ 0; (2)

P�c ðxÞ ¼ 0 at x0 ¼ T; (3)

with P� ¼ ð1� �0Þ=2, break chiral symmetry explicitly.
Equation (1) means that the operator itself does not know
about boundary conditions. In the continuum theory, infor-
mation such as boundary conditions is embedded in the
Hilbert space. In fact, the corresponding propagator, which
is a solution of the inhomogeneous equation,

DSðx; yÞ ¼ �ðx� yÞ; (4)

fails to satisfy the anticommutation relation. Instead, it
follows

�5Sðx; yÞ þ Sðx; yÞ�5 ¼
Z
z0¼0

d3zSðx; zÞ�5P�Sðz; yÞ

þ
Z
z0¼T

d3zSðx; zÞ�5PþSðz; yÞ:

(5)

This can be derived by using partial integration on the SF
manifold which has two boundaries at time slice x0 ¼ 0
and T. The nonvanishing right-hand side in Eq. (5) shows
an explicit chiral symmetry breaking. Since such a break-
ing term is supported only on the time boundaries, the
chiral symmetry is preserved in the bulk.

If someone naively tries to formulate chiral fermions on
the lattice as discussed in Ref. [9], one may define an
overlap operator, for example, with the Wilson kernel in
the SF setup [15]. However, such an operator immediately
satisfies the Ginsparg-Wilson (GW) relation and thus can-
not reproduce Eq. (5) in the continuum limit. This indicates
that such a naive formulation does not work and further-
more may belong to another boundary universality class,
which is not what we want. In this way, it is a nontrivial
task to formulate chiral fermions in the SF setup.

Some years ago, Lüscher [13] proposed a clever way to
overcome this situation. First, consider the relation for the
propagator in Eq. (5). This indicates that the GW relation
has to be modified by boundary effects. Thus one has to
find a modified overlap operator that breaks the GW rela-
tion near the time boundaries and correctly reproduces
Eq. (5) in the continuum limit. Actually, finding such a
modified operator is not so hard. However, a new question
that naturally arises is how the SF boundary conditions
emerge. For the Wilson fermion case [15], because there is
a transfer matrix, it is natural for fermion fields to follow
the SF boundary conditions. However, for chiral fermions,
there is no such transfer matrix that can be defined from

nearest neighbor interaction in the time direction.
Therefore, it is not an easy task.
Lüscher [13] gave another point of view to see how

fields respect the boundary condition. In the quantum field
theory, the correlation function can tell us what kinds of
boundary conditions are imposed. As an example, let us
see how the boundary conditions emerge for Wilson fer-
mions whose action is given by

Sw ¼ X
x

�c ðxÞDwðmÞc ðxÞ; (6)

DwðmÞ ¼ 1

2

�X
�

ðr� þr�
�Þ�� � a

X
�

r�
�r�

�
þm; (7)

where r� and r�
� are forward and backward covariant

difference operators, respectively,

r�c ðxÞ ¼ 1

a
½Uðx;�Þc ðxþ a�̂Þ � c ðxÞ�; (8)

r�
�c ðxÞ ¼ 1

a
½c ðxÞ �Uðx� a�̂;�Þ�1c ðx� a�̂Þ�: (9)

In the SF setup, the sum over x in the action is a little bit
subtle. We assume that the dynamical fields are c ðxÞ with
a � x0 � T � a, and the fields c ðxÞ with x0 � 0 and
T � x0 are set to zero. For this setup, the propagator may
be defined by

h�ðxÞ �c ðyÞi ¼ a�4�x;y; (10)

�ðxÞ ¼ �Sw
� �c ðxÞ : (11)

For 2a � x0 � T � 2a, Eq. (11) becomes

�ðxÞ ¼ DwðmÞc ðxÞ: (12)

On the other hand, at x0 ¼ a, we obtain

�ðxÞ ¼ 1

a
Pþc ðxÞ �r0P�c ðxÞ

þ 1

2

�X
k

ðrk þr�
kÞ�k � a

X
k

r�
krk

�
c ðxÞ þmc ðxÞ:

(13)

By substituting Eq. (13) into Eq. (10) with x � y, we
obtain

1

a
Pþhc ðxÞ �c ðyÞijx0¼a�r0P�hc ðxÞ �c ðyÞijx0¼aþ���¼ 0:

(14)

In the continuum limit, the first term is dominant,

1

a
Pþhc ðxÞ �c ðyÞijx0¼0 ¼ 0: (15)
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This shows that in the naive continuum limit, the Dirichlet-
type boundary condition (Pþc jx0¼0 ¼ 0) is stable against

the Neumann one (r0P�c jx0¼0 ¼ 0), and in the end the SF

boundary conditions in Eq. (2) emerge. It is plausible that
similar results are also obtained for the chiral fermions case,
as long as the locality and symmetry are kept in a proper
way, although we expect that the coefficient of the lowest
dimensional operators ( 1a Pþc ) may be different from the

case above, and additional higher dimensional terms may
appear in Eq. (13). The important point here is that contin-
uum SF boundary conditions emerge dynamically in the
continuum limit of the correlation function. This boundary
condition is natural and automatically guaranteed to emerge
from the dimensional power-counting argument. Therefore,
when we construct chiral fermions in the SF, we only have
to prepare a modified operator by introducing an additional
term that breaks the chiral symmetry near the time bounda-
ries. Once this condition is fulfilled, then such an operator
automatically becomes the desired one in the continuum
limit without fine-tuning. A final important note is that the
form of the boundary term is irrelevant as long as it will go
into a preferred boundary universality class. Therefore,
there is a large amount of freedomwhen choosing boundary
terms, and one can use this freedom for practical purposes.

Following these guiding principles, Lüscher [13] pro-
posed the operators

�aDN ¼ 1� 1

2
ðUþ ~UÞ; (16)

U ¼ AðAyAþ caPÞ�1=2; ~U ¼ �5U
y�5; (17)

A ¼ 1þ s� aDwð0Þ; �a ¼ a=ð1þ sÞ; (18)

with the parameter in the range jsj< 1. Dwð0Þ is the
massless Wilson operator in the SF. The key point here is
the presence of the P term in the inverse square root, which
is given by

aPðx; yÞ ¼ �x;y�x0;y0ð�x0;aP� þ �x0;T�aPþÞ: (19)

Note that this term is supported near the time boundaries
and thus called a boundary operator. The presence of this

term breaks the GW relation explicitly, and the breaking is
given by

�B ¼ �5DN þDN�5 � �aDN�5DN: (20)

It was shown in Ref. [13] that this term is local and
supported in the vicinity of the boundaries up to the ex-
ponentially small tails.
Although this operator breaks chiral symmetry explic-

itly, other symmetries (the discrete rotational symmetries
in three dimensions, C, P and T, flavor symmetry and so
on) have to be maintained since the boundary conditions in
Eqs. (2) and (3) are invariant under these symmetries. In
addition, this operator has �5 Hermiticity. In this way, the
universality-based formulation can avoid breaking impor-
tant symmetries, such as the flavor symmetry. This is a
distinctive feature of this formulation compared with the
orbifolding technique, where flavor symmetries cannot be
maintained or there is a constraint on the number of flavors.
Before leaving this subsection, let us summarize the

guiding principles of formulating chiral fermions in the
SF setup. What we learned from this construction is that,
for an originally chiral fermion operator, one has to intro-
duce an additional term to break the chiral symmetry and
then demand that such breaking only appears near the time
boundaries. Furthermore, one must maintain important
symmetries as well as �5 Hermiticity. Once these condi-
tions are fulfilled, it is automatically guaranteed that the
lattice operator will correctly reproduce the continuum
results according to the universality argument.

B. Formulation of domain-wall fermions

Let us apply the guiding principles given in the previous
subsection to domain-wall fermions. We propose a mass-
less1 domain-wall fermion action

S ¼ a4
X
x;x0

XLs

s;s0¼1

�c ðx; sÞðDDWFÞxs;x0s0c ðx0; s0Þ; (21)

where a massless operator with Ls ¼ 6, for example,2 in
four-dimensional block form is given by

aDDWF ¼

a ~Dw �PL 0 0 0 cB

�PR a ~Dw �PL 0 cB 0

0 �PR a ~Dw �PL þ cB 0 0

0 0 �PR � cB a ~Dw �PL 0

0 �cB 0 �PR a ~Dw �PL

�cB 0 0 0 �PR a ~Dw

2
6666666666664

3
7777777777775
; (22)

with the chiral projections

1The mass term can be introduced in the usual way, namely, a4mf

P
x

P
T�a
x0¼a½ �c ðx; 1ÞPRc ðx; LsÞ þ �c ðx; LsÞPLc ðx; 1Þ�.

2We restrict ourselves to an even number of Ls, which is the case usually implemented.
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PR=L ¼ ð1� �5Þ=2: (23)

We also assume that the dynamical fields are c ðx; sÞ with
a � x0 � T � a. The block elements in Eq. (22) are four-
dimensional operators, and a ~Dw is given by

a ~Dw ¼ aDwð�m5Þ þ 1: (24)

The domain-wall height parameter usually takes a value in
a range 0< am5 < 2.

An important ingredient here is the presence of B in
Eq. (22) terms in the cross-diagonal elements. The reason
for this s dependence is to break the chiral symmetry in a
similar way to the usual mass term [16]. As mentioned
before, such chiral symmetry breaking should be present
only near time boundaries; therefore, we choose the
B term as

Bðx; yÞ ¼ �x;y�x0;y0�5ð�x0;aP� þ �x0;T�aPþÞ; (25)

which is supported near the boundaries. In this way, the
time dependence is fixed. The spinor structure (�5P�) is
determined by imposing the discrete symmetries C, P and
T and �5 Hermiticity. These requirements are not strong
enough to determine the spinor structure completely, and
therefore there is some freedom. The structure proposed
here is only one of many solutions. Actually, we examined
several choices of the spinor structure in the boundary term
and confirmed numerically the universal results in the
continuum limit for the lowest eigenvalue. In the follow-
ing, we take this boundary term in Eq. (25).

The boundary coefficient c is supposed to be nonzero to
correctly reproduce the continuum theory, as we will see in
Sec. III. It also plays an important role in canceling bound-
ary OðaÞ cutoff effects and has a perturbative expansion

c ¼ cð0Þ þ cð1Þg20 þOðg40Þ: (26)

In the same way as in [14], which is based on enforcing an
axial Ward-Takahashi identity at tree level, we tune the first

coefficient cð0Þ as a function of the domain-wall height
am5,

cð0Þ ¼ 0:5089� 0:0067ðam5 � 1Þ þ 0:0488ðam5 � 1Þ2
� 0:0216ðam5 � 1Þ3 þ 0:0673ðam5 � 1Þ4: (27)

This is valid in the region where the bulk OðaÞ can be
neglected,3 that is, for sufficiently large Ls. In the process
of this determination, one needs to define the operators of
the axial vector current and pseudoscalar density. We give
their definition together with that of the conserved axial
current in Appendix A 3.

C. Structure of chiral symmetry breaking at tree level

In this subsection, let us check the important properties
of the operator defined in the previous section. A reader
may worry that, even though the additional boundary term
is localized to the time boundary, after integrating over the
fifth-dimensional degree of freedom, such breaking effects
may leak into the four-dimensional bulk and ruin the bulk
chiral symmetry. To settle this question, we numerically
investigate the structure of chiral symmetry breaking by
looking at the breaking of the GW relation

�ðLsÞ ¼ �5D
ðLsÞ
eff þD

ðLsÞ
eff �5 � 2aD

ðLsÞ
eff �5D

ðLsÞ
eff ; (28)

with the effective four-dimensional operator [17,18]

detD
ðLsÞ
eff ¼ det ½DDWF=DPV�: (29)

The Pauli-Villars (PV) operator is defined as the massive
DWF operator with amf ¼ �1. To obtain the effective
operator, first of all, we have to define physical quark
fields,

qðxÞ ¼ PLc ðx; 1Þ þ PRc ðx; LsÞ; (30)

�qðxÞ ¼ �c ðx; 1ÞPR þ �c ðx; LsÞPL: (31)

In terms of the propagator of domain-wall fermions
defined by

DDWFSDWFðx; y; s; tÞ ¼ a�4�x;y�s;t; (32)

that of the physical field is expressed as

½qðxÞ �qðyÞ�F¼Sqðx;yÞ
¼PLSDWFðx;y;1;LsÞPLþPLSDWFðx;y;1;1ÞPR

þPRSDWFðx;y;Ls;LsÞPL

þPRSDWFðx;y;Ls;1ÞPR: (33)

In terms of Sq the effective operator is given by

aDðLsÞ
eff ¼ ð1þ a3SqÞ�1: (34)

In the SF setup, �ðLsÞ in Eq. (28) contains not only bulk
chiral symmetry breaking but also boundary breaking. The
former is supposed to be removed by taking Ls to infinity.
In such a limit, boundary breaking effects remain and they
are expected to be localized near the time boundaries. To

see this situation, we numerically compute �ðLsÞ for a free
operator. In the free case, we can perform the Fourier
transformation for spatial directions. We study the
momentum configuration p ¼ ð0; 0; 0Þ in the following.
The remaining dimensions are only the time direction
and spinor space; therefore, for a given Ls and a fixed

spatial momentum configuration, �ðLsÞ is a matrix with
dimension 4ðT=a� 1Þ. Figure 1 shows the magnitude of

ln ðk�ðLsÞðx0; y0ÞkspinÞ, where the norm is taken for the

3Actually, we observe that OðaÞ improvement does not work
for small Ls and values of am5 that are far from 1. For example,
OðaÞ terms in fA and fP (defined in Appendix A 3) at tree level
do not vanish simultaneously with the same value of cð0Þ.
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spinor space only. By increasing Ls, bulk symmetry break-
ing is reduced. Finally, at Ls ¼ 24, only boundary breaking
effects remain and they are localized exponentially near
the time boundaries. This is the expected behavior for
overlap fermions [13]. We conclude that the presence of
the boundary term causes chiral symmetry breaking, which
decays exponentially away from the time boundaries for
the effective four-dimensional operator.

III. SPECTRUM OFA FREE OPERATOR

In this section, we investigate the free spectrum of the
DWF operator to confirm universality at tree level. We set
T ¼ L in this section.

A. Spectrum of Dy
DWFDDWF

To achieve better chiral symmetry, the (physical) eigen-
modes of the domain-wall operator should be localized
near the boundaries of the fifth direction and propagate
in the space-time directions. This should also be true in the
SF setup, since the chiral symmetry is supposed to be
maintained in the bulk. To observe such phenomena, we
numerically compute the lowest eigenmode of the operator

Dy
DWFDDWF with the trivial gauge configurationUðx;�Þ ¼

1. In the free case, we can perform the Fourier transforma-
tion for spatial directions and project out the momentum
configuration p ¼ ð0; 0; 0Þ. Thus, remaining indices of the
vector space are now the spinor, the time x0 and the extra
dimension s,

Dy
DWFDDWFc ðx0; sÞ ¼ �c ðx0; sÞ; (35)

where the spinor indices are suppressed. We set input
parameters am5 ¼ 1 and � ¼ 0. � is the parameter that
controls the spatial boundary condition for fermion fields.
(For more details, we refer to [19].)

We numerically compute the lowest eigenvalue and the
corresponding eigenfunction kc ðx0; sÞkspin. We examine

not only the case c ¼ 1 but also c ¼ 0 to investigate the
importance of the presence of the boundary operator. The
scaling behavior of the eigenvalue is shown in Fig. 2. For

c ¼ 1, Ls dependence is too small to see on this scale. The
lowest eigenvalues properly converge to their continuum
values; therefore, universality is confirmed. Furthermore,
the associated eigenfunction shows nice localization be-
havior, namely, being localized for the fifth direction and
propagating for the time direction, as shown in the left
panel of Fig. 3, revealing that this mode is a physical one.
For c ¼ 0 in Fig. 2, although all Ls ¼ 4, 16, 32 results

tend to converge to the continuum limit, large Ls results
have a bending phenomenon in the small a=L region and
show no power decay in terms of a=L. This indicates that if
one takes Ls to infinity before taking the a=L ¼ 0 limit, the
eigenvalue will likely converge to zero. If this is so, the
theory with Ls ¼ 1 does not belong to the correct univer-
sality class. Furthermore, the eigenfunction in the right
panel in Fig. 3 is localized on the edges in the time-s plane.
This is a typical unphysical mode. On the other hand,
interestingly, for small Ls, the scaling behavior is rather
mild. In the small Ls case, the chiral symmetry breaking of
domain-wall fermions is rather similar to that of the ordi-
nary Wilson fermions. As in the Wilson fermion case, the
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FIG. 2 (color online). The lowest eigenvalue of L2Dy
DWFDDWF

with am5 ¼ 1. Some combinations of parameters c and Ls are
shown. The continuum value is �2=4 ¼ 2:467 . . . . For c ¼ 1,
since the Ls dependence is so weak on this scale, we show only
Ls ¼ 4 results.
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FIG. 1 (color online). The color range ½�14; 0� corresponds to the value of ln k�ðLsÞðx0; y0Þkspin for the zero spatial momentum
configuration with the parameters T=a ¼ 20, mf ¼ 0, am5 ¼ 1 and c ¼ 1.
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bulk chiral symmetry breaking for DWFs due to finite Ls

plays some role in producing the correct continuum limit.
This is the reason why DWFs with smaller Ls and no
boundary term B can produce the continuum results.

The results in this subsection show that the boundary
term with c � 0 plays an important role in putting the
theory in the correct universality class.

B. Spectrum of Dy
qDq

Not all eigenmodes of DDWF are physical ones, and how
to eliminate the unphysical mode is not clear. To extract

physical modes only, let us study the eigenmodes of Dq,

where unphysical modes are excluded. The operator Dq is

defined from Sq in Eq. (33),

DqSqðx; yÞ ¼ a�4�x;y: (36)

We numerically compute the lowest ten eigenvalues of

Dy
qDq with the parameter set to am5 ¼ 1, � ¼ 0, �=5 and

c ¼ 1 in the presence of the background gauge field
(choice A in Ref. [20]). The values obtained for L=a ¼
T=a ¼ 6, 12, 24 are summarized in Table I. All tables are
given in Appendix B. The scaling behavior of the eigen-
values is shown in Fig. 4. Although we show two cases of
Ls, namely, Ls ¼ 4 and Ls ¼ 32, it is hard to see the
difference on this scale. We observe that they converge to
the continuum values given in Ref. [19]. This behavior
persists for a variety of values of c, 0:5 � c � 1:5. This
result confirms the universality at tree level.

IV. ONE-LOOP ANALYSIS OF SF COUPLING

To further check the universality at the quantum level as
well as the renormalizability, we perform the one-loop-
order calculation of the SF coupling.

A. Definition and results

We compute the fermion contribution to the SF coupling
[19] p1;1ðL=a; LsÞ (we set L ¼ T as usual) at one-loop

order for massless domain-wall fermions. The one-loop
coefficient is given as

p1;1ðL=a; LsÞ ¼ 1

k

@

@�
ln det ðDDWF=DPVÞj�¼�¼0; (37)

with the normalization (see [19] for details)

k ¼ 12ðL=aÞ2½sin ð�Þ þ sin ð2�Þ�; � ¼ 1

3
�ða=LÞ2:

(38)

The parameters � and � parametrize the background gauge
field [20]. In the actual calculation, we expand the �
derivative and use the fact that the determinant is factor-
ized for individual spatial momentum p and color sector b,
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FIG. 4 (color online). The a=L dependence of the lowest ten
eigenvalues of L2Dy

qDq in the presence of the background gauge

field. The left (right) panel is for � ¼ 0 (� ¼ �=5). The parame-
ters are set to am5 ¼ 1 and c ¼ 1. The red points at a=L ¼ 0 are
continuum values [19].
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FIG. 3 (color online). kc ðx0; sÞkspin with zero spatial momentum and the parameters T=a ¼ Ls ¼ 40, � ¼ 0 and am5 ¼ 1. The
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p1;1ðL=a; LsÞ ¼ 1

k
Tr

�
D�1

DWF

@DDWF

@�
�D�1

PV

@DPV

@�

�

¼ 1

k

X
p

X3
b¼1

tr

�
ðDb

DWFÞ�1ðpÞ @D
b
DWFðpÞ
@�

� ðDb
PVÞ�1ðpÞ @D

b
PVðpÞ
@�

�
: (39)

The trace tr concerns the spinor, the time indices and the
fifth coordinate only. It may be worthwhile to note that for
our definition of DWF,

@DDWF

@�
¼ @DPV

@�
(40)

holds since the mass term does not involve the gauge field.
We compute p1;1 on the lattices of size L=a ¼

4; 6; . . . ; 48 and Ls ¼ 6, 8, 10, 12, 16 with parameters
0:7 � am5 � 1:3 and � ¼ �=5. Subsets of the results are
summarized in Table II for am5 ¼ 1, Ls ¼ 6 and L=a ¼
4; 6; . . . ; 48. Separate contributions from DWF and PV are
also shown there.

B. Coefficients of Symanzik’s expansion

From Symanzik’s analysis of the cutoff dependence of
Feynman diagrams on the lattice, one expects that the
one-loop coefficient has an asymptotic expansion in terms
of a=L,

p1;1ðL=a; LsÞ ¼
X1
n¼0

ða=LÞn½AnðLsÞ þ BnðLsÞ ln ðL=aÞ�:

(41)

Note that the coefficients An and Bn (n ¼ 0; 1; 2; . . . )
depend on Ls. We can reliably extract the first few coef-
ficients by making use of the method described in
Ref. [21].

For the usual renormalization of the coupling constant,
B0 at Ls ¼ 1 should be 2b0;1, where b0;1 is the fermion

part of the one-loop coefficient of the 	 function for Nf

flavors of QCD,

b0 ¼ b0;0 þ Nfb0;1; (42)

b0;0 ¼ 11

ð4�Þ2 ; (43)

b0;1 ¼ � 2

3

1

ð4�Þ2 : (44)

We confirmed that B0ðLsÞ for large Ls (say, Ls ¼ 16)
converges to 2b0;1 ¼ �0:008443 . . . up to three significant
digits for the values of am5 that we investigated. When the
tree-level OðaÞ improvement is realized, we expect that
B1 ¼ 0 holds. We check this to 10�3 for the same parame-
ter region as before. This shows that the formula for the

boundary coefficient in Eq. (27) works well to achieve the
tree-level OðaÞ improvement to the precision considered
here. In the following analysis, we set exact values B0 ¼
2b0;1 ¼ �1=ð12�2Þ and B1 ¼ 0.
A0 gives information about a ratio of � parameters. The

obtained values of A0ðLsÞ as a function of Ls are shown in
Fig. 5. By combining the previous results from
Refs. [19,22], the values of A0 at infinity Ls can be obtained
and are shown in Fig. 5 as the horizontal lines. We observe
that our results at finite Ls properly converge to the known
results at infinity Ls.
To achieve one-loop OðaÞ improvement, we need to

determine the coefficient of the fermion part of the bound-

ary counterterm cð1;1Þt [19] at one-loop order. If one imposes
an improvement condition [19], one finds that

cð1;1Þt ¼ A1=2: (45)

Therefore, we need the value of A1. The obtained values of
A1 are given in Table III. For future reference, we provide

an interpolation formula for cð1;1Þt as a polynomial of am5

for larger Ls, where the value of A1 is saturated,

cð1;1Þt ¼ 0:00434þ0:01102ðam5�1Þ�0:00858ðam5�1Þ2;
(46)

for 0:7 � am5 � 1:3.

V. LATTICE ARTIFACTS OF THE STEP SCALING
FUNCTION TO ONE-LOOP ORDER

In this section, we investigate lattice artifacts of the step
scaling function [23] 
ð2; uÞ, which describes the evolu-
tion of the running coupling �g2ðLÞ ¼ u under changes of
scale L by a factor 2,

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 6  8  10  12  14  16

A
0

Ls

am5=0.7
am5=0.8
am5=0.9
am5=1.0
am5=1.1
am5=1.2
am5=1.3

FIG. 5 (color online). Ls dependence of A0 for 0:7 � am5 �
1:3. The horizontal lines show the values of A0 in the infinity Ls

limit, which are obtained by combining the results of the
previous literature [19,22].
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ð2; uÞ ¼ �g2ð2LÞ; u ¼ �g2ðLÞ: (47)

The lattice version of the step scaling function is denoted
by �ð2; u; a=LÞ, which contains lattice artifacts. Such lat-
tice artifacts are described by the relative deviation

�ðu; a=LÞ � �ð2; u; a=LÞ � 
ð2; uÞ

ð2; uÞ : (48)

By expanding the relative deviation in terms of the cou-
pling constant u, one obtains

�ðu; a=LÞ ¼ �1ða=LÞuþOðu2Þ; (49)

where the one-loop deviation �1ðs; a=LÞ may be decom-
posed into a pure gauge and a fermion part [19],

�1ða=LÞ ¼ �1;0ða=LÞ þ Nf�1;1ða=LÞ: (50)

We are currently only interested in the fermion part. We
consider domain-wall fermions; thus, the fermion part of
the one-loop deviation �1;1ða=L; LsÞ contains Ls depen-

dence. In terms of the one-loop coefficient of the SF
coupling p1;1, the one-loop deviation is given by

�1;1ða=L; LsÞ ¼ p1;1ð2L=a; LsÞ � p1;1ðL=a; LsÞ
� 2b0;1 ln ð2Þ: (51)

Depending on the value of the boundary counterterm cð1;1Þt ,

we denote by �ð0Þ
1;1 the tree-level OðaÞ improved version

with cð1;1Þt ¼ 0, and by �ð1Þ
1;1 the one-loop OðaÞ improved

one for cð1;1Þt in Eq. (45).
We show numerical results for the one-loop deviation

in Tables IV and V and Fig. 6, where we include those of
the Wilson-type fermions [19] and overlap fermions [14]
for comparison. The Ls dependence of the DWFs is

small. In the case of the clover action, cð1;1Þt is set to

be the proper value to achieve one-loop OðaÞ improve-

ment, and for Wilson fermions it is set to cð1;1Þt ¼ 0. We
observe that the lattice artifacts for domain-wall fermi-
ons are small for the case of tree-level boundary OðaÞ
improvement compared with other fermions, while they
are large for the case of one-loop boundary OðaÞ
improvement.

VI. CONCLUSION AND OUTLOOK

In this paper, we provide a new formulation of
domain-wall fermions in the SF setup by following the
universality argument of Lüscher. In contrast to the
previous formulation by Taniguchi, ours can deal with
the boundary OðaÞ improvement properly, and there is
no constraint on the number of flavors. To check that our
formulation works properly, we investigate the spectrum
and eigenmodes of the free operator and perform a one-
loop analysis of the SF coupling constant. Then we
confirm the universality at tree level and one-loop level
and observe that all results investigated show the desired
behaviors.
Before starting simulations, the boundary improvement

coefficient c should be determined to one-loop order.
This involves calculations of the SF correlators, fA, fP,
etc., given in Appendix A. These calculations could be
performed in a way similar to the case of the Wilson
fermion.
As mentioned before, one of the most important prop-

erties of the universality-based formulation is that there are
no restrictions to the number of flavors. By taking advan-
tage of this property, we may compute the renormalization
factor of BK for Nf ¼ 3 QCD.

ACKNOWLEDGMENTS

We would like to thank Sinya Aoki, Yasumichi
Aoki, Norman Christ, Michael Endres, Taku Izubuchi,

-0.004

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0  0.05  0.1  0.15  0.2  0.25

δ 1,
1(0

)

a/L

Wilson
overlap s=0

DWF am5=1 Ls=6
DWF am5=1 Ls=16

-0.004

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07

δ 1,
1(1

)

(a/L)2

Clover
overlap s=0

DWF am5=1 Ls=6
DWF am5=1 Ls=16

FIG. 6 (color online). The relative deviations with the various actions for tree-level OðaÞ improvement �ð0Þ
1;1 (left panel) and one-loop

OðaÞ improvement �ð1Þ
1;1 (right panel), for � ¼ �=5 as a function of a=L and ða=LÞ2, respectively. For comparison, those of the

Wilson-type fermion with cð1;1Þt ¼ 0 and the clover fermion with cð1;1Þt ¼ 0:019141 [19] are included in the plot of �ð0Þ
1;1 and �ð1Þ

1;1,

respectively.

SHINJI TAKEDA PHYSICAL REVIEW D 87, 114506 (2013)

114506-8



Changhoan Kim, Robert Mawhinney and the members of
the RBC Collaboration for helpful discussions. We are
grateful to Stefan Sint for his hospitality during our stay
at Trinity College in Dublin, where this work was initiated.
This work is supported by the U.S. Department of Energy
under Grant No. DE-FG02-92ER40699.

APPENDIX A: FERMION CORRELATORS

In this appendix, I summarize the fermion correlators,
the boundary fields and so on that are often used in the SF
setup.

1. Boundary fields

As given in Ref. [13], the lattice versions of the fermion
boundary fields are defined as

�ðxÞ ¼ Uðx� a0̂; 0ÞP�qðxÞjx0¼a; (A1)

��ðxÞ ¼ �qðxÞPþUðx� a0̂; 0Þ�1jx0¼a; (A2)

� 0ðxÞ ¼ Uðx; 0Þ�1PþqðxÞjx0¼T�a; (A3)

�� 0ðxÞ ¼ �qðxÞP�Uðx; 0Þjx0¼T�a: (A4)

Here, note that we use the physical quark fields defined in
Eqs. (30) and (31).

2. Propagators

The propagators for the physical quark fields and the
boundary fields are given by

½qðxÞ �qðyÞ�F ¼ Sqðx; yÞ; (A5)

½qðxÞ ��ðyÞ�F ¼ Sqðx; yÞUðy� a0̂; 0Þ�1Pþjy0¼a; (A6)

½qðxÞ �� 0ðyÞ�F ¼ Sqðx; yÞUðy; 0ÞP�jy0¼T�a; (A7)

½�ðxÞ �qðyÞ�F ¼ P�Uðx� a0̂; 0ÞSqðx; yÞjx0¼a; (A8)

½� 0ðxÞ �qðyÞ�F ¼ PþUðx; 0Þ�1Sqðx; yÞjx0¼T�a; (A9)

½�ðxÞ �� 0ðyÞ�F ¼ P�Uðx� a0̂; 0ÞSqðx; yÞ
�Uðy; 0ÞP�jx0¼a;y0¼T�a; (A10)

½� 0ðxÞ ��ðyÞ�F ¼ PþUðx; 0Þ�1Sqðx; yÞ
�Uðy� a0̂; 0Þ�1P�jx0¼T�a;y0¼a: (A11)

3. Operators

We consider the degenerate quark mass case, and an
extension to the flavor space is done in a trivial way. In
terms of the physical quark fields, the local operators are
defined as

Aa
�ðxÞ ¼ �qðxÞ���5

1

2
�aqðxÞ; (A12)

PaðxÞ ¼ �qðxÞ�5

1

2
�aqðxÞ: (A13)

The conserved axial vector current is given by

A a
�ðxÞ ¼

XLs

s¼1

sign

�
s� Ls þ 1

2

�
ja�ðx; sÞ; (A14)

where

ja�ðx; sÞ ¼ �c ðxþ a�̂; sÞPð�Þ
þ Uðx;�Þ�1 1

2
�ac ðx; sÞ

� �c ðx; sÞPð�Þ� Uðx;�Þ1
2
�ac ðxþ a�̂; sÞ; (A15)

with Pð�Þ
� ¼ ð1� ��Þ=2.

4. Correlators

The fermion correlators for the local operators in the SF
are given by

fAðx0Þ ¼ �a6
XNf

a¼1

X
y;z

1

N2
f � 1

�
Aa
0ðxÞ ��ðyÞ�5

1

2
�a�ðzÞ

�
;

(A16)

fPðx0Þ ¼ �a6
XNf

a¼1

X
y;z

1

N2
f � 1

�
PaðxÞ ��ðyÞ�5

1

2
�a�ðzÞ

�
;

(A17)

f1 ¼ � a12

L6

XNf

a¼1

X
u;v;y;z

1

N2
f � 1

�
�
�� 0ðuÞ�5

1

2
�a� 0ðvÞ ��ðyÞ�5

1

2
�a�ðzÞ

�
: (A18)

After Wick contraction, they become

fAðx0Þ ¼ a6
X
y;z

1

2
h½�ðzÞ �qðxÞ�F�0�5½qðxÞ ��ðyÞ��5i; (A19)

fPðx0Þ ¼ a6
X
y;z

1

2
h½�ðzÞ �qðxÞ�F�5½qðxÞ ��ðyÞ��5i; (A20)

f1 ¼ a12

L6

X
u;v;y;z

1

2
h½�ðzÞ �� 0ðuÞ�F�5½� 0ðvÞ ��ðyÞ�F�5i; (A21)
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where the propagators are given in Appendix A 2 and we
have used

XNf

a¼1

tr

��
�a

2

�
2
�
¼ N2

f � 1

2
: (A22)

These correlators are the same as those of Wilson fermions
except that the propagators are replaced by those of the
physical quark field Sq.

For the conserved axial vector current, a correlator is
given by

fAðx0Þ ¼ �a6
XNf

a¼1

X
y;z

1

N2
f � 1

�
Aa

0ðxÞ ��ðyÞ�5

1

2
�a�ðzÞ

�
:

(A23)

As an example, at tree level, this can be expressed in terms
of the propagator for domain-wall fermions as

fAðx0ÞjU¼1 ¼
XLs

s¼1

sign

�
s� Ls þ 1

2

�
1

2
Tr½�PþSDWFðx; y; s; 1Þ�0PLSDWFðy; xþ a0̂; 1; sÞ

þ P�SDWFðxþ a0̂; y; s; 1Þ�0PLSDWFðy; x; 1; sÞ þ PþSDWFðx; y; s; 1ÞPRSDWFðy; xþ a0̂;Ls; sÞ
� P�SDWFðxþ a0̂; y; s; 1ÞPRSDWFðy; x;Ls; sÞ � PþSDWFðx; y; s; LsÞPLSDWFðy; xþ a0̂; 1; sÞ
þ P�SDWFðxþ a0̂; y; s; LsÞPLSDWFðy; x; 1; sÞ þ PþSDWFðx; y; s; LsÞ�0PRSDWFðy; xþ a0̂;Ls; sÞ
� P�SDWFðxþ a0̂; y; s; LsÞ�0PRSDWFðy; x;Ls; sÞ�: (A24)

APPENDIX B: TABLES OF NUMERICAL RESULTS

TABLE I. The lowest ten eigenvalues of the Hermitian operator L2Dy
qDq for Ls ¼ 4, 32. The upper (lower) panel is for � ¼ 0

(� ¼ �=5). b represents the color sector, and d is the degeneracy for one flavor.

L=a ¼ 6 L=a ¼ 12 L=a ¼ 24

n Ls ¼ 4 Ls ¼ 32 Ls ¼ 4 Ls ¼ 32 Ls ¼ 4 Ls ¼ 32 b d

� ¼ 0
1 3.161141 3.160760 2.591269 2.591267 2.350053 2.350053 2 2

2 5.658392 5.658925 5.191148 5.191161 4.990293 4.990293 2 2

3 9.050173 9.045312 8.196497 8.196424 7.888424 7.888424 3 2

4 11.981137 11.963010 10.635061 10.634737 10.177881 10.177878 1 2

5 13.098016 13.101850 12.434736 12.434839 12.281233 12.281235 3 2

6 22.037107 22.078353 20.612026 20.613136 20.436083 20.436098 1 2

7 30.304338 30.232012 25.944369 25.942289 24.578258 24.578235 2 2

8 30.810696 30.865401 26.708727 26.709232 25.378691 25.378700 2 2

9 30.585955 30.530965 27.241272 27.239584 27.184415 27.184395 1 6

10 31.026393 30.978110 28.357563 28.355829 28.438888 28.438866 3 6

� ¼ �=5
1 5.924559 5.922886 5.232916 5.232896 4.952553 4.952553 2 2

2 6.428276 6.423570 5.566868 5.566810 5.214696 5.214695 1 2

3 9.221621 9.223322 8.721989 8.722031 8.548948 8.548949 2 2

4 13.912656 13.926143 13.392223 13.392552 13.267533 13.267537 1 2

5 15.970852 15.951467 14.513964 14.513548 14.162258 14.162253 3 2

6 21.508691 21.520321 19.983404 19.983750 19.838031 19.838036 3 2

7 35.296282 35.214384 29.231042 29.228128 27.743584 27.743548 2 2

8 35.861910 35.932144 30.057783 30.058382 28.612335 28.612346 2 2

9 30.468452 30.406862 27.727188 27.725168 27.806412 27.806386 1 6

10 31.520474 31.475867 28.021244 28.019681 27.896264 27.896245 3 6
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TABLE II. The one-loop coefficient of the SF coupling p1;1ðL=a; LsÞ with Ls ¼ 6, am5 ¼ 1 and � ¼ �=5. In Eq. (39), there are two
sources of contributions: DWF and PV, which are shown separately in the table.

L=a p1;1ðL=a; 6Þ DWF contribution PV contribution

4 �0:0090558230 �0:0463742376 �0:0373184146
6 �0:0128831139 �0:0614487481 �0:0485656342
8 �0:0155107254 �0:0717039592 �0:0561932338
10 �0:0176883193 �0:0786362064 �0:0609478871
12 �0:0194881626 �0:0835634805 �0:0640753179
14 �0:0209908578 �0:0872753290 �0:0662844712
16 �0:0222708990 �0:0902037775 �0:0679328785
18 �0:0233830732 �0:0925954634 �0:0692123901
20 �0:0243655725 �0:0946007679 �0:0702351955
22 �0:0252452627 �0:0963170183 �0:0710717556
24 �0:0260415528 �0:0978103244 �0:0717687716
26 �0:0267688671 �0:0991273624 �0:0723584952
28 �0:0274382013 �0:1003021397 �0:0728639383
30 �0:0280581232 �0:1013600906 �0:0733019674
32 �0:0286354356 �0:1023206640 �0:0736852285
34 �0:0291756284 �0:1031990186 �0:0740233902
36 �0:0296831955 �0:1040071669 �0:0743239714
38 �0:0301618611 �0:1047547685 �0:0745929075
40 �0:0306147460 �0:1054496923 �0:0748349463
42 �0:0310444913 �0:1060984224 �0:0750539311
44 �0:0314533516 �0:1067063577 �0:0752530061
46 �0:0318432669 �0:1072780356 �0:0754347687
48 �0:0322159188 �0:1078173020 �0:0756013832

TABLE III. The value of A1 for Ls ¼ 6, 8, 10, 12, 16 and 0:7 � am5 � 1:3.

Ls

am5

0.7 0.8 0.9 1.0 1.1 1.2 1.3

6 � � � � � � 0.0102(8) 0.0125(9) 0.0145(7) � � � � � �
8 � � � 0.0047(4) 0.0074(9) 0.0097(9) 0.0119(9) 0.0135(4) � � �
10 0.0004(2) 0.0040(9) 0.0066(9) 0.0090(9) 0.0111(9) 0.0129(9) 0.0135(2)

12 0.0007(9) 0.0037(9) 0.0064(9) 0.0088(9) 0.0108(9) 0.0126(9) 0.0139(8)

16 0.0006(10) 0.0036(9) 0.0063(9) 0.0087(9) 0.0107(9) 0.0125(9) 0.0137(10)

TABLE IV. The relative deviation �ð0Þ
1;1 with am5 ¼ 1 and � ¼ �=5 for tree-level boundary OðaÞ improvement.

L=a

Ls

6 8 10 12 16

4 �0:000602 �0:000518 �0:000527 �0:000538 �0:000545
6 �0:000753 �0:000562 �0:000522 �0:000516 �0:000517
8 �0:000908 �0:000737 �0:000688 �0:000674 �0:000669
10 �0:000825 �0:000695 �0:000655 �0:000643 �0:000637
12 �0:000701 �0:000599 �0:000569 �0:000560 �0:000555
14 �0:000595 �0:000511 �0:000487 �0:000480 �0:000476
16 �0:000512 �0:000439 �0:000419 �0:000413 �0:000411
18 �0:000448 �0:000383 �0:000365 �0:000360 �0:000358
20 �0:000397 �0:000338 �0:000322 �0:000318 �0:000316
22 �0:000356 �0:000302 �0:000288 �0:000284 �0:000282
24 �0:000322 �0:000273 �0:000259 �0:000256 �0:000254
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