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The quantum Oð2Þ model in 2þ 1 dimensions is studied by simulating the 3D Oð2Þ model near

criticality. Finite densities are introduced by a nonzero chemical potential �, and the worm algorithm is

used to circumvent the sign problem. The renormalization is discussed in some detail. We find that the

onset value of the chemical potential coincides with the mass gap. The � dependence of the density rules

out Bose-Einstein condensation and might be compatible with an interacting Fermi gas. The �-T phase

diagram is explored using the density and the magnetic susceptibility. In the cold but dense regime of the

phase diagram, we find a superfluid phase.
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I. INTRODUCTION

The Oð2Þ model as a statistical field theory in three
dimensions has always enjoyed great phenomenological
importance: To name only a few applications, it illuminates
the superfluid transition (� point) of pure 4He [1], it
describes the electromagnetic penetration depth in certain
high-Tc superconducting materials [2] and it might provide
insights in the Bose-Einstein condensation of atomic vapor
(hard sphere bosons) [3]. It is well known (see, e.g., [4])
that the 3D classical theory possesses a second-order
phase transition at a critical inverse temperature �c ¼
0:45420ð2Þ separating the disordered phase at �<�c

from an ordered state for �>�c. In solid state physics,
the atomic characteristic length a sets the fundamental
scale of the theory. For later use, we introduce the dimen-
sionless correlation length as the physical correlation
length in units of the atomic scale, i.e., �lattð�Þ :¼ �=a.
It is this correlation length which diverges at the phase
transition.

The Oð2Þ model inherits its name from a global Oð2Þ
symmetry, which lets us define a (Noether) current. The
generalization of the Oð2Þ model to include a finite chemi-
cal potential, which favors the proliferation of density, has
recently attracted a lot of interest: The probabilistic weight
is now complex, and the model inhibits the numerical study
with classical Monte Carlo methods based upon impor-
tance sampling with respect to a real and positive proba-
bilistic weight. Thus, the model shares this notorious sign
problem with the theory of strong interactions, i.e., QCD,
at finite baryon densities. The QCD phase diagram as a
function of temperature and chemical potential is still not
known from first-principles calculations, and the prospects
are bleak unless a change of paradigm lets us address
theories with sign problems on more generic grounds.
Such breakthroughs might equally well be made in the
context of simplistic theories such as the Oð2Þ model at
finite densities. Over the recent past, quite some progress
has been made in this direction: Monte Carlo simulations
which are based upon importance sampling with respect to

the density of states, an always real and positive quantity,
might circumvent the sign problem [5,6]. The so-called
complex Langevin approach [7,8] is based upon a com-
plexification of the fields and might be ideally suited to
address complex action systems. This approach has been
largely explored over the recent years [9,10] including the
SUð3Þ spin model at finite densities [11]. Concerns about
its reliability have been raised recently, since the approach,
although it converges, does not give the correct answer in
certain cases. While the Bose gas is a spectacular success
story for the complex Langevin approach [9,12], the
approach fails to produce the correct answer for a close
relative, the Oð2Þ model in certain regions of parameter
space [13]. Progress has been made recently by devising
criteria for correctness of the method [14,15]. Another
promising idea, firstly put forward by Chandrasekharan
in [16], is based upon a reformulation of the theory in
terms of new, potentially nonlocal variables in a sign-
problem free manner. In particular, the so-called world
line or worm algorithm [17,18] has been identified as an
approach with a wide range of applications including
theories with sign problems. As pointed out by
Gattringer, the so-called SUð3Þ spin model, which is
motivated from dense QCD in the limit of heavy quarks,
is accessible by means of worm (also called flux-type)
algorithms even at finite densities [19–22]. Most relevant
for the study here is the flux representation of the Oð2Þ
model [23,24]. A thorough analysis of the classical
model at finite densities has been presented by
Chandrasekharan in [25]. Finally, the so-called fermion
bag approach has recently been put forward in [26,27]
and might have the potential to gain new insights into
fermionic theories with sign problems.
Although a range of classical theories with sign prob-

lems have been explored in the recent past, to the best of
our knowledge such an investigation of a finite density
quantum field theory has not yet been performed. In the
present paper, we will bridge this gap and systematically
explore the quantum limit of the Oð2Þ model at finite
densities. For this purpose, we rely to a large extent on
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the flux-type algorithm [25] which will give us access to
the full phase diagram as a function of temperature and
chemical potential. Generic quantum phenomena such as
superfluidity will be described by a first-principles
simulation.

On a practical note, the quantum limit of the model is
accessible using simulations of the classical theory and by
performing a detailed scaling analysis near the critical
point. This will then reveal the properties of the quantum
Oð2Þ theory in 2þ 1 dimensions. Let us explore the
correspondence between classical and quantum theory a
bit further: In the latter context, the inverse temperature �
is reinterpreted as the spin-spin coupling strength, and the
temperature T is now attained by the extent of the torus in
the ‘‘time’’ direction. The inverse correlation length is now
interpreted as the mass gap, m ¼ 1=�. This mass takes
over the role of the fundamental scale of the quantum field
theory and is kept fixed under a change of the coupling
strength �. The formerly introduced atomic length a
(also called the lattice spacing in the quantum context)
merely plays the role of a regulator. This regulator a
now necessarily depends on the coupling strength:
mað�Þ ¼ 1=�lattð�Þ. Tuning the coupling � to the critical
value (at a fixed value for m) implies that the lattice
spacing tends to zero. This then installs the continuum
limit of the quantum theory.

II. MODEL SETUP AND SYMMETRIES

In 2þ 1 dimensions, the Oð2Þ model, also called the xy
model, is formulated on a cubic grid of size V ¼ NtNxNy.

Dynamical degrees of freedom are the angles�x which are
associated with the sites x of the lattice and which parame-
trize the unit vectors

~nx ¼ ðcos ð�xÞ; sin ð�xÞÞT: (1)

Action and partition functions are given by

S0 ¼
X

‘¼hx;�i
~nTx ~nxþ� ¼ X

‘¼hx;�i
cos ð�x ��xþ�Þ; (2)

Z ¼
Z

D�x exp f�S0½��g; (3)

where � is the coupling constant, and where xþ � is the
neighboring site of x in the � direction. The sum in (2)
extends over all links ‘ of the lattice. The model possesses
a global Oð2Þ symmetry,

~nx ! Oð�Þ ~nx ) �x ! �x þ�; (4)

where Oð�Þ 2 Oð2Þ. This displacement symmetry gives
rise to the Noether current:

j�ðxÞ / sin ð�x ��xþ�Þ: (5)

Indeed, defining the divergence of the current by

��j�ðxÞ /
X
�

½j�ðxÞ � j�ðx��Þ�; (6)

and using the identity (for any x0)

Z
D�x

@

@�x0

exp f�S0½��g ¼ 0;

we find that any number of insertions of the divergence
(6) into the partition function causes the integral to vanish,
e.g.,

Z
D�x��j�ðx0Þ exp f�S0½��g ¼ 0: (7)

The model can then be readily generalized to finite charge
densities, by introducing a chemical potential � to the
action in the usual way [28]:

S½�� ¼ X
‘¼hx;�i

cos ð�x ��xþ� � i���0Þ: (8)

Thus, the imaginary part of the action is proportional to the
conserved charge j0ðxÞ (5), i.e.,

S½�� ¼ X
‘¼hx;�i

½cosh ð�Þ cos ð�x ��xþ�Þ

� i sinh ð�Þ��0 sin ð�x ��xþ�Þ�: (9)

For large values of the coupling �, the global Oð2Þ
symmetry (4) is spontaneously broken in the infinite
volume limit. The operator cos ð�xÞ is not invariant under
the symmetry transformation, and its expectation value
serves as an order parameter in the infinite volume limit.
Note, however, that for any finite volume V, the expecta-
tion value

hcos ð�xÞi ¼ 0; (10)

i.e., it vanishes for any value of the coupling�. This can be
easily seen by performing the variable transformation

�x ! �x þ ’ (11)

in the integral (3). In order to trace out any indications
for spontaneous symmetry breaking at finite volumes, we
add a source term to the action which breaks the Oð2Þ
symmetry explicitly. We then study the response of the
expectation value in (10) to variations of the external
source. Here, we choose

Z½j� ¼
Z

D�x exp

�
�S½�� þ j

X
x

cos ð�xÞ
�
: (12)

The response function is defined by

Rjð�Þ ¼ hcos ð�xÞi ¼ 1

V

@

@j
lnZ½j�: (13)

To decide whether the Oð2Þ symmetry is spontaneously
broken, we take the limits and find
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lim
j!0

lim
V!1Rjð�Þ

�¼ 0 Wigner-Weyl realization;
� 0 spontaneous sym. breaking;

where the order of the limits is crucial. For this program, it
is sufficient to study small perturbations j only, which
leads us in leading order and finite volumes to

Rj¼�ð�ÞjþOðj2Þ;

�ð�Þ¼ 1

V

@2

@j2
lnZ½j�jj¼0¼

�
cosð�x0Þ

X
x

cosð�xÞ
�
;

(14)

where � is (half of) the so-called magnetic susceptibility. If
� remains finite in the infinite volume limit, the response
function vanishes in the limit of vanishing source j, and the
system is in the Wigner-Weyl phase. Hence, a diverging
magnetic susceptibility in the infinite volume limit is a
necessary condition for the spontaneous symmetry
breakdown.

Note also that � can be viewed as the expectation value
for

P
cos ð�Þ where the factor cos ð�x0Þ acts as a reference

against which the spin orientation is counted. The magnetic
susceptibility can be written in a manifestly Oð2Þ invariant
form. To this end, we rewrite the expectation value on the
right-hand side of (14) as

1

2

X
x

fhcos ð�x ��x0Þi þ hcos ð�x þ�x0Þig:

Using the variable transform (11), we conclude that the
latter expectation value vanishes for j ¼ 0 (at any finite
volume). Thus, we can write the magnetic susceptibility as

�ð�Þ ¼ 1

2

X
x

hcos ð�x ��x0Þi; (15)

which is manifest Oð2Þ invariant. Introducing the spin
correlation function, by

Gðx� yÞ ¼ h ~nx � ~nyi; (16)

the magnetic susceptibility can be easily related to the
integrated spin correlation function:

�ð�Þ ¼ 1

2

X
x

Gðx� x0Þ: (17)

The latter identity explains the role of �ð�Þ as an
order parameter for the spontaneous breaking of the Oð2Þ
symmetry: In the disordered phase, the spin correlation
function exponentially decreases over the distance of the
correlation length �, and �ð�Þ is independent of the system
size. If the correlation length near criticality exceeds the
system size, we find by means of the sum at the right-hand
side of (17) that �ð�Þ diverges with the volume.

III. THE STATISTICAL FIELD THEORY

A. Algorithms and first results

1. Wolff cluster algorithm

For vanishing chemical potential, i.e., � ¼ 0, and
vanishing source j, the Wolff cluster algorithm [29] offers
a very efficient way to simulate theOð2Þmodel. The reason
is that the clusters, which are updated in one Wolff step,
grasp the physics of the model. This implies that the
autocorrelation time depends only weakly on the system
size as reflected by a dynamical critical exponent close to
zero. The algorithms proceeds as follows:
(1) Choose a random unit vector ~r.
(2) Activate the link between two neighboring sites x

and y with probability

Pðx; yÞ ¼ 1� exp fmin ½0;�2�ð ~nx � ~rÞð ~ny � ~rÞ�g:

(3) Select a random site x0 and find the subset C of all
spins which are connected to �x0 by activated links.

(4) Replace

~nx ! ~nx � 2ð ~nx � ~rÞ~r 8 x 2 C:

Observables are best calculated using the so-called
improved estimators [30,31]. In particular, the magnetic
susceptibility can be directly related to the cluster proper-
ties and as such calculated ‘‘on the fly’’:

�ð�Þ ¼
�
1

Vc

�X
x2C

~r � ~nx
�
2
�
; (18)

where C denotes a particular Wolff cluster, and Vc is the
number of sites belonging to this cluster C.

2. One-shot heat bath algorithm

Heat bath algorithms offer an easy access to expectation
values formulated in the terms of the original spin degrees
of freedom. We here use the heat bath algorithm to test and
benchmark the flux algorithm outlined in the next subsec-
tion. For this purpose, we have developed a heat bath
algorithm with 100% acceptance rate, which has been
inspired by the method from Bazavov and Berg in [32].
In step 1, we choose the spin�x for the local update step. If
hxyi denotes the links joining the sites x and y, the action
can be written as

�
�

X
y2hxyi

cos ð�yÞ þ j

�
cos ð�xÞ

þ
�
�

X
y2hxyi

sin ð�yÞ
�
sin ð�xÞ ¼ A cos ð�x � c Þ;

where A and c depend on �, j and the neighboring spins.
In step 2, we define
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fð�xÞ ¼
Z �x

�	
exp fA cos ðv� c Þgdv:

We then choose a random number u 2 ½0; 1� and solve the
equation

fð	Þu ¼ fð�xÞ

for the new value �x for the spin at site x. In practice, the
integration was performed using the Gauss Legendre
method, while the nonlinear equation was solved using
bisection.

3. Worm algorithm

For finite values of the chemical potential, i.e., � � 0,
the action (8) possesses imaginary parts. The theory is
hampered by the infamous sign problem and cannot be
simulated at reasonably sized lattices using the cluster or
the heat bath algorithm. The Oð2Þ model is one of the rare
cases where simulations are nevertheless feasible by using
the so-called worm algorithm [17,18,25,33]. The algorithm
has been thoroughly discussed in [25]. We here briefly
review the algorithm for the Oð2Þ model at finite chemical
potential before we take it a step further to derive the
Kramers-Wannier duality in the next section. Using the
identity

e� cos ð�Þ ¼ X1
k¼�1

Ikð�Þeik�; (19)

where Ik ¼ I�k is the modified Bessel function of the first
kind, the partition function (12) becomes

Z½0� ¼
Z

D�xe
�S½��

¼
Z

D�x

X
fk‘g

Y
‘¼hxyi

Ik‘ð�Þe���0k‘eik‘ð�x��yÞ

¼ X
fk‘g

Y
‘

Ik‘ð�Þe���0k‘
Y
x

�

�X
‘2x

k‘

�
; (20)

where � specifies the direction of the link ‘. The notation
‘ 2 x refers to all links which are attached to the site x:

X
‘2x

k‘ ¼
X
�

ðkx;� � kx��;�Þ:

If an integer ‘‘flux’’ k‘ is associated with each link ‘ of the
lattice, the �-function constraint in (20) implies that the
total (directed) flux which enters a site must vanish.

Including the case of a finite chemical potential �, the
worm algorithm has been widely used in [25] to explore
properties of the Oð2Þ model. The algorithm works as
follows [25]:

(1) Pick a starting point x and set the counter c ¼ 0.
(2) Choose at random one of the six directions (includ-

ing negative ones); let y ¼ xþ � be the neighboring

site associated with the chosen direction (� ¼ �1,
�2, �3) and ‘ the associated link hxyi ¼ ‘.

(3) If a positive direction was selected, with probability
exp ð���0ÞIk‘þ1ð�Þ=Ik‘ð�Þ change k‘ to k‘ þ 1 and

move to the neighboring site y. Otherwise stay. In
any case, increase c ! cþ 1.
If a negative direction was selected, with probability
exp ð����0ÞIk‘�1ð�Þ=Ik‘ð�Þ change k‘ to k‘ � 1

and move to the neighboring site y. Otherwise
stay. In any case, increase c ! cþ 1.

(4) Stop if the current position coincides with the start-
ing position, i.e., if y ¼ xs.

The average action is easily obtained by

Að�Þ ¼ @

@�
lnZ ¼ X

‘

�I0k‘ð�Þ
Ik‘ð�Þ

�
: (21)

It has been argued in [25] that the magnetic susceptibility is
given in terms of the average number of counts c:

�ð�Þ ¼ 1

2
hci: (22)

4. Action average and magnetic susceptibility

High precision simulations of the model have been
reported in the literature for zero chemical potential, e.g.,
in [30,34] and for finite densities in [25]. We will bench-
mark the outcome of our algorithms against these findings
before we will move on to study the quantum field theory
(QFT) limit at finite densities in the next section. We will
employ
(i) the Wolff algorithm to obtain the correlation length

in units of the lattice spacing, which will set the QFT
scale,

(ii) the worm algorithm for the simulations at finite
densities,

(iii) the heat bath algorithm to cross-check the numeri-
cal results.

To begin with, we have compared all three algorithms by
calculating the average action as a function of the coupling
� using a 323 lattice. Our findings are shown in Fig. 1. We
find a nice agreement for all three algorithms for a range of
� values covering the disordered phase for �<�c, �c ¼
0:45420ð2Þ [30], as well as the ordered phase �> �c. Our
results for the magnetic susceptibility � are shown in
Figs. 2 and 3. The transition from the Wigner-Weyl phase
to the phase with a spontaneously brokenOð2Þ symmetry is
clearly visible in Fig. 2. As expected the Wolff and the
worm algorithms work flawlessly in the broken phase
while the results from the heat bath algorithm are plagued
by large autocorrelation times. The region of � just a bit
smaller than �c is of particular interest for the QFT limit.
Here, all three algorithms perform well (see Fig. 3). A good
agreement with the fit
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�ð�Þ ¼ �0

�
1� �

�c

��

; �& �c; �0 ¼ 0:5045ð1Þ;

�c ¼ 0:45420ð2Þ; 
¼ 1:324ð1Þ; (23)

presented in [4,30] is observed (note there is a factor of 1=2
difference in the definition of our magnetic susceptibility
and that in [4,30]).

B. Winding sectors and dual theory

1. Flux percolation

By virtue of the periodic boundary conditions, the closed
flux lines of the worm algorithm might wind around the
torus. Since we currently work with a symmetric lattice of
equal size N in all directions, we confine ourselves to the
study of the winding in the time direction. The winding
number nw can be calculated during the construction of a
particular flux line. Here, we only need to keep track of
how often the flux line leaves the torus at the Nt ¼ N and
Nt ¼ 1, respectively. Every time the flux line leaves the
torus at Nt ¼ N in the positive time direction, we increase
nw by one unit while if the flux line leaves the torus at
Nt ¼ 1 negative time direction, we decrease nw by one
unit. One naively might expect that the average winding
number is conclusive on the winding of the flux lines. This
is, however, not true due to the abundance of small size flux
lines which all carry nw ¼ 0. The more interesting quantity
is the percolation probability Ppercol: If we choose ran-

domly a particular link of a flux line configuration, how
big is the probability that this link is a part of a flux line
which at least winds once through the torus? If L denotes
the number of links of a particular flux line and if

Lw ¼
�
L for nw � 0;

0 else;
(24)

the percolation probability is given by

Ppercol ¼ hLwi=hLi: (25)
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FIG. 3 (color online). Detail of the magnetic susceptibility
as a function of � close but smaller than the critical value
(323 lattice).
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FIG. 2 (color online). The magnetic susceptibility per volume
as a function of � for the 3D Oð2Þ model using a 323 lattice.
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FIG. 1 (color online). The average action as a function of � for
the 3D Oð2Þ model using a 323 lattice.

PHASE DIAGRAM OF THE QUANTUM Oð2Þ MODEL IN . . . PHYSICAL REVIEW D 87, 114504 (2013)

114504-5



Figure 4 shows our numerical result as a function of �.
Note that due to the integration of the �x in (20) all
reference to the global Oð2Þ symmetry has been lost in
the flux line representation of the partition function. Here,
we find empirically that the flux lines do not percolate in
the Wigner-Weyl phase while the flux lines start winding
around the torus in the phase with spontaneously broken
symmetry. This is intuitively clear by noting that the
correlation length diverges for � ! �c. In the flux repre-
sentation, a finite average cluster size implies a finite
correlation length by virtue of (30). Hence, the cluster
size necessarily diverges at the critical coupling implying
percolation in the finite volume system.

2. Kramers-Wannier duality

The reformulation of a classical field theory in terms of
flux variables has been dubbed the dual formulation in the
literature (see, e.g., [35]). By its nature, this reformulation
is nonlocal, using the original lattice, and it is therefore
quite different from the generic Kramers-Wannier duality,
which employs local degrees of freedom related to the dual
lattice. Starting from the worm algorithm as formulated in
Sec. III A 3, we here derive the dual formulation of the
dense Oð2Þ model in the Kramers-Wannier sense. We will
find a close relation to the flux formulation: The dual
theory turns out to be a gauge theory with the fluxes being
the nonlocal but gauge invariant degrees of freedom of this
formulation.

Starting point is the flux formulation (20). Our aim
will be to resolve the �-function constraint on the flux
elements k‘ using local variables. Naturally, the emerging
dual theory is free of the sign problem at finite chemical

potential as the flux line formulation (20) is. To this end,
each element of the lattice, i.e., site x, link ‘, plaquette p
and elementary cube c, is mapped in the usual way to the
dual lattice:

x ! c; ‘ ! p; p ! ‘; c ! x;

where the ‘‘bold’’ quantities denote the entities on the dual
lattice. Fields depending on the entities are mapped as
well, e.g.,

k‘ ! kp:

The �-function constraint in (20) then becomes on the dual
lattice X

‘2x

k‘ ¼ 0 ! X
p2c

kp ¼ 0; (26)

where p 2 c addresses all plaquettes p which build up the
faces of the cube c. The crucial point is that this constraint
can be solved locally for the theory with zero windings. kp
are plaquette variables on the dual lattice, and the latter
constraint (26) is reminiscent of the Bianchi identity of a
Z-gauge theory. Hence, we solve the constraint by intro-
ducing the integer valued link field Z of the dual lattice by

kp ¼ X
‘2p

Z‘: (27)

The definition of the links Z‘ which represent the plaquette
kp is not unique. The gauge transformed links,

Z�
‘¼x� ¼ �ðxÞ þ Z‘¼x� ��ðxþ�Þ;

where �ðxÞ is integer valued, still give rise to the same
plaquette in (27). A Z-gauge symmetry arises in the link
representation of the dual theory. The partition function
(20) of the dual theory can be written as

Z½0� ¼ X
fZ‘g

Y
p

Ikp exp f�kp0 g; (28)

where kp0 ¼ kp for spatial plaquettes and kp0 ¼ 0 for time-

like plaquettes. The dual formulation sheds light onto the
‘‘worms’’ of the flux line representation. By virtue of (27),
this flux is given by the plaquettes of the dual Z-gauge
theory. On the other hand, the dual plaquette defines the
vorticity of the dual theory. Vorticity is conserved by the
Bianchi identity, and nontrivial vorticity comes from
closed staples of plaquettes. Hence, we find that the closed
flux lines, i.e., the ‘‘worms,’’ appear to be the vortices of
the dual formulation.
So far, we have established a local equivalence between

the standardOð2Þmodel and the Z-gauge theory on the dual
lattice. For a complete correspondence, we also have to
match the boundary conditions of both formulations. This is
a nontrivial task: Let us consider, e.g., periodic boundary
conditions for the dual theory. If A is the maximal
planar surface in the xy plane and (A) its boundary, we
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FIG. 4 (color online). The percolation probability Ppercol (25)
as a function of � (323 lattice).
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find that the total flux through this plane necessarily
vanishes: Y

‘2ðAÞ
Z‘ ¼ 0:

On the other hand, the standard formulation of the Oð2Þ
model with periodic boundary conditions does not restrict
the worm configurations to the sector of zero winding in
the z direction. Obviously, we have to give up periodic
boundary conditions for the Z-gauge theory if we want
correspondence. If nw is the worm winding number, the
corresponding Z-gauge theory simulating this sector fea-
tures nontrivial boundary conditions such as

Z2ðx¼ 1;1;1Þ ¼ Z2ðx¼ Nx;1;1Þ þ nw ðperiodic elseÞ;
where the subscript ‘‘2’’ indicates the y direction of the
link. The issue, however, is that it is a priori unknown with
which weight these winding sectors must contribute
in order to correspond to the standard Oð2Þ model with
periodic boundary conditions. We expect, however, that
the nontrivial winding sectors are not important in the
disordered phase. In this case, we would expect a corre-
spondence between the standard and the dual formulation
both with periodic boundary conditions.

We have verified this by a direct simulation. The action
density calculated with the Z-gauge theory with periodic
boundary conditions (i.e., zero winding number nw ¼ 0) is
contrasted to the result from the Oð2Þ model with periodic
boundary conditions in Fig. 5. As expected, both action
densities agree in the strong coupling phase for � � �c.
For � & �c, the correlation length is sufficiently large to

observe a sizable dependence on the boundary conditions.
Large differences are observed in the broken phase when
windings have a role to play.
We find that the 3D Oð2Þ (or xy) model is dual to a

theory of vortices. This might explain part of its
phenomenological success for solid state systems the ther-
modynamics of which are influenced by vortex dynamics
(see, e.g., [2]).

IV. QUANTUM FIELD THEORY—WIGNER-WEYL
PHASE

A. Finite temperatures

Here, we study the emerging quantum field theory in the
critical limit of the Oð2Þ statistical field theory. We will
consider finite temperatures, but we will confine ourselves
to zero density.
If we approach the critical coupling �c from below, i.e.,

�<! �c, the Oð2Þ theory remains in the Wigner-Weyl

phase, while the correlation length �ð�Þ in units of the
lattice spacing a diverges. For � close to the critical
coupling, one finds a scaling relation of the type [30,31]

�ð�Þ ¼ �0 �
�
1� �

�c

���
: (29)

The correlation length is best calculated using an improved
estimator and the Wolff algorithm. In fact, it was shown
that the spin correlation function (16) can be estimated by
[30,31]

Gðx� yÞ ¼ 2

�
N3

Vc

ð ~r � ~nxÞð~r � ~nyÞ�ðC; xÞ�ðC; yÞ
�
; (30)

where

�ðC; xÞ ¼
�
1 for x 2 C;

0 else:

The scaling parameters have been obtained to good accu-
racy by fitting the scaling relation (29) to Monte Carlo data.
Reference [4] reports

�c ¼ 0:454157ð14Þ; � ¼ 0:6711ð16Þ;
�0 ¼ 0:4866ð26Þ: (31)

from an analysis of high precision data. For large corre-
lation length, the theory becomes independent from the
underlying lattice structure and can be effectively de-
scribed by a QFT. The QFT limit is attained by defining
a fundamental length scale which plays the role of the
only free parameter of this theory. Here, we choose the
so-called mass gap m of the theory which is provided by
the inverse correlation length. The scaling relation (29)
then implies a dependence of the lattice spacing a on the
‘‘bare coupling’’ �:

mað�Þ ¼ ��1ð�Þ: (32)
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FIG. 5 (color online). Action density for the standard 3D Oð2Þ
model in comparison with model with winding number nw ¼ 0
only.
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The bare coupling � is tuned towards the critical
coupling. This implements the QFT limit by sending the
lattice spacing (in physical units) to zero. The bare
coupling � is no longer a free parameter of the theory,
but its role has been taken over by the dimensionful
parameter m (dimensional transmutation). In following,
we will use (32) to eliminate the lattice regulator að�Þ in
favor of the physical mass parameter m and will assume
that (29) is a good approximation for the true correlation
length �ð�Þ for the range of � values used throughout this
paper. This assumption is checked by calculating observ-
ables at different renormalization points � and in physical
units. Any violations of the scaling relation would then be
detected by a nonuniversal behavior. For the choice of �
values below, we found good universal scaling for the
observables under discussion.

QFT observables are constructed from the ‘‘bare’’ ob-
servables by scaling the quantity of interest in units of the
mass gap m (to the power of its canonical dimension) and
by taking into account the wave function renormalization.
Because of its relation to the correlation function, the
canonical dimension of the magnetic susceptibility is
two, and we write

Z�ð�Þ�ð�Þ ¼ �qfta
2; (33)

where Z� is the wave function (or better composite opera-

tor) renormalization constant. With the help of (23), (29),
and (32), we find

�qft=m
2 ¼ Z�ð�Þ �ð�Þ

�2ð�Þ ¼ Z�ð�Þ�0

�2
0

�
1� �

�c

�
2��


:

(34)

In a ‘‘minimal subtraction scheme,’’ we would choose

Z�ð�Þ ¼
�
1� �

�c

��d�
; (35)

where the anomalous dimension for this operator d� turns

out to be quite small:

d� ¼ 
� 2� � �0:018ð2Þ: (36)

Needless to say, the actual value of the renormalized
quantity �qft must be fixed by a renormalization condition.

Finite temperatures, i.e., T � 0, are implemented by
reducing the extent of the lattice in the time direction:

T ¼ 1

Ntað�Þ ; T=m ¼ �ð�Þ=Nt; (37)

where Nt is the number of lattice points in the time direc-
tion. Once the observable has been renormalized achieving
vacuum values which enjoy a physical interpretation in the
continuum limit a ! 0, we can start to make predictions at,
e.g., finite temperatures. Here, we study the temperature
dependence of the magnetic susceptibility. To this aim, we
primarily carried out calculations at � ¼ 0:44 using a

642 � Nt lattice. For a study of the lattice spacing (in)
dependence, we also did simulations utilizing a 322 � Nt

lattice and � ¼ 0:414. Note that both simulations imple-
ment roughly the same spatial volume since

að� ¼ 0:414Þ � 2að� ¼ 0:44Þ:

Our findings are summarized in Fig. 6. The overall agree-
ment between the two curves is satisfactory bearing in
mind that the last points at large T correspond to Nt ¼ 2
for which we might expect quite some rotational symmetry
breaking effects. We observe the magnetic susceptibility
stays roughly constant for T & 0:4m while for T � m it
has fallen approximately to half its vacuum value.

B. Cold but dense matter

Let us now study finite densities by turning on the
chemical potential. The physical chemical potential �phys

is related to the bare chemical potential �, the parameter,
e.g., featuring in (20), by

� ¼ �physa ) �phys=m ¼ �ð�Þ�: (38)

We will do so at zero temperatures, which are adopted by
performing simulations using a symmetric lattice, N ¼ Nt.
Again, we study the QFT limit of the Oð2Þ theory, but now
for nonzero values of the chemical potential.
The first observable which we will study is the matter

density. The matter density is easily accessible using the
worm algorithm [see (20)]:

0 0.5 1 1.5 2 2.5 3
T/m

0

0.25

0.5
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1

χ(
T

) 
/ χ

(0
)

N=64, =0.44
N=32, =0.414

β
β

FIG. 6 (color online). Magnetic susceptibility � in the QFT
limit of the 3D Oð2Þ model as a function of the temperature T in
units of the mass gap.
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�¼ T

V2

@lnZ

@�phys

¼ 1

V2Nt

@lnZ

@�
¼ 1

V2

� X
x2timeslice

k‘

�
;

‘¼hx;0i;
(39)

where V2 ¼ N2a2 is the ‘‘spatial’’ volume and the summa-
tion extends over all sites x which are part of a given time
slice (see also [25]). Because of current conservation, any
choice for the time slice gives the same answer. In physical
units, we find

�=m2 ¼ �2ð�Þ
N2

� X
x2time slice

k‘

�
; ‘ ¼ hx; 0i: (40)

Since the charge is conserved, there is no wave function
renormalization of the density. This is confirmed by a
direct calculation (see Fig. 7) using several � values rang-
ing from 0.42 to 0.45 implying that the corresponding
lattice spacing a changes by a factor of approximately
4.2. Yet, the density in physical units nicely falls on top
of a uniform curve. Most importantly, we observe that the
density vanishes for chemical potentials smaller than the
mass gap, i.e., �<m. In other words, the onset chemical
potential agrees with the mass gap, and the simulation is
free of a Silver-Blaze problem [36]. Secondly, the density
smoothly starts to rise with the chemical potential at the
onset value. This is markedly different from the case of a
free Bose gas for which we would observe that the density
diverges logarithmically when approached from above.
This would indicate the well known phenomenon of
Bose-Einstein condensation. However, our data are more
compatible with a quadratic rise of the density with the

chemical potential which is reminiscent of a free 2D Fermi
gas at low temperatures:

�Fermi / ð��mÞ2:
Although the standard Oð2Þ model is formulated in terms
of bosonic degrees of freedom, it is not ruled out that the
model near the onset transition is well described by an
effective fermion theory. To trace this out further, we have
fitted the numerical data in Fig. 7 to a simple scaling law:

�=m2 ¼ a0ð�=m� 1Þa1 : (41)

We find, however, that the data are not well represented by
this ansatz. Performing independent fits to each set for a
given �, the results are collated in the first two rows of
Table I.
We point out that the data are quite well fitted by the

ansatz

�=m2 ¼ b0�=mþ b1ð�=mÞ2: (42)

The coefficients b0, b1 are also listed in Table I. Figure 7
shows the curves from the fit according to (41), called fit 1,
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3d xy model, 32
3

β
β
β
β

FIG. 7 (color online). The charge density � as a function of the
chemical potential in units of the mass gap m in the QFT limit
(323 lattice).

TABLE I. Fitting the density to the power law ansatz (41) and
to (42).

� ¼ 0:42 � ¼ 0:43 � ¼ 0:44 � ¼ 0:45

a0 0.77(1) 0.82(1) 0.827(5) 0.70(2)

a1 1.2(1) 1.27(2) 1.42(2) 1.66(2)

b0 0.54(2) 0.55(2) 0.55(2) 0.58(1)

b1 0.25(3) 0.26(2) 0.27(1) 0.281(6)
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FIG. 8 (color online). Magnetic susceptibility � in the QFT
limit of the 3D Oð2Þ model as a function of the chemical
potential � in units of the mass gap.
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and according to (42) called fit 2. The fitting curves have been
generated using the fit parameters obtained for � ¼ 0:42.

It is interesting to note that a free Fermi gas at small but
nonzero temperature would suggest the � dependence
shown in (42). In this case, the fitting coefficient b0 should
be proportional to the temperature. In order to explore the
potential correspondence between the Oð2Þ quantum
model and a Fermi gas, further simulations for different
lattice sizes and aspect ratios are necessary. This is left to
future studies. We also point out that in the case of a free
gas of hard sphere bosons [37] one expects a linear rise of
the density with the chemical potential � * �c. Note,
however, that the coefficient b1 should be negative in the
latter case.

Let us finally explore the magnetic susceptibility �
below and above the onset value of the chemical potential.
Figure 8 shows � normalized to its zero temperature value
�0 in order to remove the renormalization constant. The
inlay of this figure shows that �=�0 is indeed independent
of the renormalization point specified by �. Although the
density remains zero for �<m, the chemical potential
impacts on the properties of the theory as indicated by the
increase of �=�0 with �. For �>m, the data for �=�0

largely depend on the value �. Note that the simulations
(except for � ¼ 0:45) are carried out for a fixed number of
lattice points. Here, a change of � also implies a change of
the lattice volume. This is indeed the cause for the apparent
scaling violations: Figure 9 shows the magnetic suscepti-
bility per volume, i.e., �=�0=ðm3VÞ. The volume V is the
physical volume and the mass gap is introduced to render
this factor dimensionless. The factor �0 is again necessary
to remove the renormalization constant. We observe good
scaling for the magnetic susceptibility in units of the
(physical) volume for a wide range of � values. An exemp-
tion is the result for � ¼ 0:45. For this �, the correlation
length equals roughly a third of the system size and finite
volume effects come into play. At � ¼ 0:45, we also
calculated �=�0=ðm3VÞ for a N3 ¼ 643 lattice. A good
agreement with the results from smaller � and for a N3 ¼
323 lattice is recovered. We interpret the physics behind
these findings as follows: For �>m, matter starts popu-
lating the ground state. This alters the interaction between
the spins such that the Uð1Þ global symmetry of the model
breaks spontaneously leading to a superfluid phase.
We are finally in the position to calculate the phase

diagram of the 2þ 1 dimensional quantum Oð2Þ theory
in the �=m and T=m plane. We have carried simulations
with � ¼ 0:44 using a lattice size of 64� Nt, where Nt ¼
2 . . . 32. We performed simulations for �a ¼ 0:01 . . . 0:6
in steps of 0.01. Naturally, the temperature steps from
(37) are not equally spaced. We used a cubic spline
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FIG. 9 (color online). Magnetic susceptibility � per total
volume as a function of the chemical potential � (N3 lattice).

FIG. 10 (color online). Phase diagram: Magnetic susceptibility � per total volume (left) and density (right).
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interpolation to generate a regularly spaced 60� 60 data
set before plotting.

To detect the superfluid phase in the phase diagram, we
plotted the renormalized magnetic susceptibility in units of
the physical volume, i.e., �=�0=ðm3VÞ, where V is the
(physical) volume of the 3-torus, i.e., V ¼ L2=T. The result
is shown in Fig. 10, left panel. As expected, we find the
superfluid phase in the cold but dense region. Increasing
temperature at a fixed chemical potential �>m rapidly
dissolves the superfluid phase. Also shown is the density in
the�-T plane. At low temperatures, we observe the onset at
� � m. For � � m, we observe an increase of the density
with temperature, which is due to thermal excitations with
more particles overcoming the mass gap than antiparticles.

V. CONCLUSIONS

Using existing simulation techniques such as the Wolff
cluster algorithm and the worm algorithm, we have thor-
oughly analyzed the 3DOð2Þmodel in the continuum limit
� ! �c. In this limit, the model represents the quantum
Oð2Þ model in 2þ 1 dimensions. The mass gap m takes
over the role of the free (scale) parameter, while the lattice
spacing a is fine-tuned by the � dependent correlation
length, mað�Þ ¼ 1=�ð�Þ.

We have analysed the zero density limit by calculating
the (renormalized) magnetic susceptibility as a function of
the temperature. As usual, the temperature depends on the
extent Nt of the torus in the time direction, i.e., T=m ¼
�ð�Þ=Nt. We find good scaling over more than a factor of 4
in the lattice spacing. The magnetic susceptibility is rather

independent of the temperature for T < m=2 while a rather
steep descent is observed for T * m.
Charge is defined by means of the Noether current of

the globalOð2Þ symmetry of the theory, and finite densities
are introduced using the chemical potential �. In a first
step, we analyzed the � dependence of the (renormalized)
magnetic susceptibility and the density at ‘‘zero’’ tempera-
ture (isotropic lattice). Simulations are carried out using
the worm algorithm. The onset chemical potential �c is
found to agree with the mass gap m of the theory. At � *
�c, the density smoothly rises with increasing� ruling out
Bose-Einstein condensation. In fact, the � dependence of
the density is more in line with a free Fermi gas (at small
temperatures). More investigations are needed to under-
stand the theory close to onset in terms of an effective
theory. This is left to future work.
For � � �c, the magnetic susceptibility scales with the

volume and signals the spontaneous breakdown of theOð2Þ
symmetry and therefore superfluidity. We finally present
the results for the full �-T phase diagram. In the cold but
dense regime we find a superfluid phase, which is rapidly
resolved by increasing the temperature.
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