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I calculate, at one loop in staggered chiral perturbation theory, the matrix elements of the complete set

of five local operators that may contribute to B mixing both in the standard model and in beyond-the-

standard-model theories. Lattice computations of these matrix elements by the Fermilab Lattice/MILC

collaborations (and earlier by the HPQCD collaboration) convert a light staggered quark into a naive

quark, and construct the relevant four-quark operators as local products of two local bilinears, each

involving the naive light quark and the heavy quark. This particular representation of the operators turns

out to be important in the chiral calculation, and it results in the presence of ‘‘wrong-spin’’ operators,

whose contributions however vanish in the continuum limit. If the matrix elements of all five operators are

computed on the lattice, then no additional low-energy constants are required to describe wrong-spin

chiral effects.
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I. INTRODUCTION

The mixing of neutral B mesons provides a fertile area
for precision tests of the standard model. The fact that the
mixing is a second order weak process and is also sup-
pressed by small Cabibbo-Kobayashi-Maskawa angles in
the standard model makes it sensitive to new physics. In
order to take full advantage of experimental measurements
of the mixing, one needs to determine the hadronic matrix
elements of the effective weak operators. For B mixing the
relevant operators are local four-quark operators with
�b ¼ 2, where b is b-quark number, and the relevant states
are B0

d and �B0
d mesons or B0

s and �B0
s mesons. A first-

principle evaluation of such operator matrix elements is
possible with lattice QCD.

Lattice computations usually involve an extrapolation in
light quark masses to the physical up and downmasses, and
always require an extrapolation in lattice spacing a to
a ¼ 0, the continuum. These extrapolations can be con-
trolled by using a version of chiral perturbation theory that
includes the effects of the discretization errors associated
with the choice of lattice action. In two recent lattice
calculations of B mixing [1,2], staggered light quarks
are combined with nonstaggered heavy quarks using non-
relativistic QCD [3] or the Fermilab action [4], respec-
tively. In such cases, the appropriate chiral theory is
‘‘rooted, heavy-meson staggered chiral perturbation
theory’’ (rHMS�PT) [5].

In this paper, I calculate B mixing to one-loop order in
rHMS�PT. Roughly speaking, I work to leading order in
the heavy-quark expansion, although I do include the large
1=mB effects: the hyperfine splitting of B and B� and the
flavor splitting of Bs and Bd. This is a systematic approxi-
mation in the power counting introduced by Boyd and

Grinstein [6] and discussed recently in Ref. [7] for the
lattice calculation of heavy-light meson decay constants.
If instead one prefers a power counting strictly in 1=mB,
which sets the splittings to zero, it is easy to take that limit
of the results given in this paper.
In the rHMS�PT calculation, it is important to take into

account the exact form of the lattice operator used to
approximate the continuum one. References [1,2] con-
struct the four-quark operators as the local product of
two local bilinears,1 each formed from a heavy antiquark
field and a light quark field with the ‘‘naive’’ lattice dis-
cretization. As proposed in Ref. [8] and discussed below,
the naive field is constructed in turn from the simulated
staggered fields (or more precisely, the naive propagator is
constructed from the staggered propagator). Both the use
of naive fields and the local nature of the four-quark
operator influence the form of the corrections at one loop.
It is not hard to understand the qualitative effect of the

lattice locality of the four-quark operator. Because of
lattice doubling symmetry, a (single-component) staggered
quark field actually corresponds to the 16 continuum de-
grees of freedom of four ‘‘tastes’’ of four-component Dirac
particles. On the lattice, the spin and taste degrees of free-
dom can be made explicit in position space by combining
the 16 staggered components associated with an elemen-
tary hypercube [9]. For our four-quark operators, the two
light staggered quarks are tied to the same space-time
point, so that their spin and tastes are coupled. The cou-
pling produces undesired contributions to the operator,
with ‘‘wrong spin’’ and ‘‘wrong taste.’’ These undesired
contributions appear at Oð1Þ in the lattice spacing.

1That is, all four fields are located at the same lattice point.
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Fortunately, in the matrix elements considered here,
continuum SUð4Þ taste symmetry suppresses wrong-taste
contributions and therefore wrong-spin contributions. On
the lattice, SUð4Þ taste symmetry is violated at Oða2Þ, so
the undesired contributions come in at that order. Since
Oða2Þ corrections appear at one loop in rHMS�PT, that is
the order at which we find wrong-spin, wrong-taste con-
tributions to B mixing.

Similarly, it is clear that the effect of using naive quarks
in the operators and interpolating fields must be to sum
over tastes, since the naive quarks have no explicit taste
index. However, the details are nontrivial. It turns out that
the heavy-light meson propagator is simply an average
over the initial and final tastes, which are equal to each
other. The three-point function involves a complicated sum
over tastes of the staggered quarks in the interpolating
fields and four-quark operator, and there is coupling be-
tween the spin matrices in the operator and the taste sum.
These details play a key part in the discussion below.

A calculation in rHMS�PT can be thought of as
‘‘staggering’’ the corresponding continuum calculation,
which here would be in heavy-meson chiral perturbation
theory. In fact, when the continuum calculation includes
partial quenching effects, it is often possible to deduce the
proper staggered version without having to recalculate ex-
plicitly any of the diagrams (see, for example, Ref. [10]). In
the current case, a partially quenched continuum calcula-
tion does exist [11]. However, the complications due to the
naive-to-staggered translation and thewrong spin-taste con-
tributions make it necessary to perform the staggered cal-
culation from scratch. Nevertheless, Ref. [11] is extremely
useful here, and provides a check of the current results in the
a! 0 limit.

The B mixing matrix elements for any four-quark
operator that can appear in the standard model and in
possible extensions such as supersymmetry can be written
in terms of the matrix elements of the following five
operators [12]:

O1 ¼ ð �b��LqÞ½ �b��Lq�; O2 ¼ ð �bLqÞ½ �bLq�;
O3 ¼ ð �bLq�½ �bLqÞ; O4 ¼ ð �bLqÞ½ �bRq�;

O5 ¼ ð �bLq�½ �bRqÞ;
(1)

where pairs of round or square parentheses indicate
how the color indices are to be contracted, and R and L
are the right and left projectors: R ¼ ð1þ �5Þ=2 and
L ¼ ð1� �5Þ=2. Operators, O1, O2 and O3 appear in the
standard model, with O1 (which mixes with O2 under
renormalization) governing the mass differences of the
neutral B eigenstates, �Md and �Ms. Operators O4 and
O5 appear in extensions of the standard model. Additional
operators with R$ L can also contribute beyond the
standard model, but parity implies that their mixing
matrix elements in QCD are equal to those of the above
operators. In addition to parity, Fierz transformations are
needed in order to write the mixing matrix elements of

any four-quark operator with these quantum numbers
in terms of those in Eq. (1); for a detailed explanation
see Ref. [13].
I note that the corresponding projectors R, L in Ref. [11]

do not have the factor of 1=2, so the operators there are
differently normalized. Since in any case unknown
low-energy constants will enter in the chiral theory, this
normalization difference is unimportant here.
The fact that Eq. (1) is a complete set of operators for B

mixing implies that wrong-spin contributions to the opera-
tors do not in fact lead to any new low-energy constants in
the chiral theory. Wrong-spin contributions to operator Oi

merely lead to the appearance of the low-energy constants
associated with operators Oj�i in the one-loop expression

for the Oi matrix element. Thus, a staggered lattice calcu-
lation that computes the matrix elements of all the opera-
tors in Eq. (1) will not suffer from increased systematic or
statistical errors due to the wrong-spin issue. Existing
calculations [1,2] study the matrix element of O1 exclu-
sively. In the case of Ref. [1], the one-loop contributions of
wrong-spin operators were not known at the time, so one
presumably should include some additional systematic
error in their result. In the case of Ref. [2], it was not
possible to make a complete study of this effect because the
matrix elements of the other operators were not computed.
However, an associated systematic error was estimated.
In the relevant staggered simulations, the fourth root of

the fermion determinant is taken in order to eliminate the
fourfold multiplicity of tastes in the sea. The rooted theory
then suffers from nonlocal violations of unitarity at non-
zero lattice spacing [14,15]. However, there are strong
theoretical arguments [16–19], as well as other analytical
and numerical evidence [20–24], that the local, unitary
theory of QCD is recovered in the continuum limit.
Furthermore, it is straightforward to take rooting into
account in the chiral theory. One simply needs to multiply
each sea quark loop by a factor of 1=4 [25,26]. This can be
done either by following the quark flow [27] to locate the
loops, or—more systematically—by replicating the sea
quarks nr times and taking nr ¼ 1=4 in the result of the
chiral calculation [17,19]. Since I will need to work out the
quark flows in any case, I use the former method below.
The remainder of this paper is organized as follows.

Section II briefly reviews the basics of rHMS�PT, focusing
in particular on those aspects that will be important here. In
Sec. III, I discuss the connection between naive and stag-
gered quarks, and how it influences the structure of the
four-quark operators and the interpolating heavy-light me-
son fields. The calculation of the one-loop diagrams is
detailed in Sec. IV. I also briefly explain why taste viola-
tions coming from mixing under renormalization do not
need to be considered at this order. Section V compiles the
final formulas for the chiral and continuum extrapolation
of the matrix elements of the operators defined in Eq. (1);
corresponding results for the B (‘‘bag’’) parameters are
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collected in the Appendix. I conclude in Sec. VI and make
some additional comments about existing and future lattice
computations of B mixing. A preliminary account of the
current calculation appears in Ref. [28].

Though I denote heavy quarks as b quarks and heavy
mesons as B mesons throughout, the current calculation in
rHMS�PT also applies to the local matrix elements in
neutral D mixing, with the usual caveat that the omitted
1=mQ terms (Q is a generic heavy quark) are larger in that

case. However, long distance contributions are presumably
much more important in theD case [29] than in the B case.
Such contributions are beyond the scope of this work, and
are likely to be difficult to compute on the lattice. See
however Ref. [30] for a lattice approach to long-distance
effects in the kaon system.

II. BASICS OF RHMS�PT

Here, I give a brief summary of some of the basic
features and definitions from staggered chiral perturbation
theory, both of heavy-light mesons and of light mesons
(‘‘pions’’). In this summary, I follow Ref. [10] fairly
closely, but adapt the notation slightly, to make it more
similar to that of Ref. [11]. The reader is referred to the
literature [5,10,25,26,31,32] for more details. For conve-
nience in making connection to Ref. [11], I write the
Lagrangian and do the perturbative calculations in
Minkowski space.

Let PðbÞq be the field that annihilates the pseudoscalar
meson containing a heavy quark b and a light quark �q (the
�B0 for q ¼ d), while P�ðbÞ�;q does the same for the vector
meson ( �B�0 for q ¼ d). To take advantage of heavy-quark

spin symmetry, pseudoscalar and vector fields are com-
bined in the field

HðbÞq ¼ 1þ 6v
2
½��
ðMÞP

�ðbÞ
�;q þ i�ðMÞ5 PðbÞq �; (2)

which destroys a meson, while

�HðbÞq ¼ ½��
ðMÞP

�ðbÞy
�;q þ i�ðMÞ5 PðbÞyq � 1þ 6v

2
(3)

creates a meson. Here v is the meson velocity, and the (M)

on �
�
ðMÞ and �ðMÞ5 indicates that they are Minkowski-space

matrices: �0
ðMÞ ¼ �0, �j

ðMÞ ¼ i�j, and �ðMÞ5 ¼ �5, with ��

and �5 the Euclidean (Hermitian) Dirac matrices. The label
q indicates the ‘‘flavor-taste’’ index of the light quark in the
meson. For n flavors of light quarks, q can take on 4n
values. Later, I will write q as separate flavor (x) and taste
(a) indices, q! ðx; aÞ.

Under SUð2Þ heavy-quark spin symmetry, the heavy-
light field transforms as

HðbÞ ! SHðbÞ; �HðbÞ ! �HðbÞSy; (4)

with S 2 SUð2Þ, while under the SUð4nÞL � SUð4nÞR
chiral symmetry,

HðbÞ ! HðbÞUy; �HðbÞ ! U �HðbÞ; (5)

with U 2 SUð4nÞ defined below. We keep the light flavor
and taste indices implicit here.
The lightmesons are combined in aHermitian field�ðxÞ.

For n staggered flavors, � is a 4n� 4n matrix given by

� ¼

U �þ Kþ � � �
�� D K0 � � �
K� K0 S � � �
..
. ..

. ..
. . .

.

0
BBBBBB@

1
CCCCCCA
: (6)

I show the n ¼ 3 portion of� explicitly, and in fact detailed
final results below will assume n ¼ 3. Each entry in
Eq. (A3) is a 4� 4 matrix, written in terms of the 16
Hermitian basis elements of the Clifford taste algebra. It
is convenient to take the generators of this algebra to be
�� ¼ ��� [9], where � denotes complex conjugation. Thus

we write, for example,

U ¼ X16
�¼1

U��
�
�
; (7)

�� ¼ f�5; i���5; ���ð�< �Þ; ��; Ig; (8)

with ��� � ði=2Þ½��; ���.
It is useful to divide the indices � into pairs of indices:

�! ð�; t�Þ, where � labels the SO(4) representation (P,A,T,

V,I) and t� labels the element within each representation.

Thus t� runs from 1 toN�, whereN� is the dimension of each

representation (1,4,6,4,1, respectively). We then can write

U ¼X
�

XN�

t�¼1
U�;t��

�
�;t� : (9)

The component fields of the flavor-neutral elements of
� (namely U�;t� ; D�;t� ; . . . ) are real; the other (flavor-

charged) fields (�þ�;t� ; K
0
�;t� ; . . . ) are complex.

The mass matrix is the 4n� 4n matrix

M ¼

muI 0 0 � � �
0 mdI 0 � � �
0 0 msI � � �
..
. ..

. ..
. . .

.

0
BBBBBB@

1
CCCCCCA
; (10)

where the portion shown is again for the n ¼ 3 case.
From � one constructs the unitary chiral field � ¼

exp ½i�=f�, with f the tree-level pion decay constant. In
our normalization, f� f� ffi 131 MeV. Terms involving

the heavy-lights are conveniently written using� � ffiffiffiffi
�
p ¼

exp ½i�=2f�. These fields transform trivially under the
SUð2Þ spin symmetry, while under SUð4nÞL � SUð4nÞR
we have

�! L�Ry; �y ! R�yLy; (11)
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�!L�Uy¼U�Ry; �y!R�yUy¼U�yLy; (12)

with global transformations L 2 SUð4nÞL and R 2
SUð4nÞR. The transformation U, defined by Eq. (12), is a
function of � and therefore of the coordinates.

It is convenient to define objects involving the � field
that transform only with U and Uy. The two possibilities
with a single derivative are

V� ¼ i

2
½�y@��þ �@��

y�; (13)

A� ¼ i

2
½�y@��� �@��

y�: (14)

V� transforms like a vector field under the SUð4nÞL �
SUð4nÞR chiral symmetry and, when combined with the
derivative, can form a covariant derivative acting on the
heavy-light field or its conjugate:

ðHðbÞD �Þq ¼ HðbÞ
q0 D
 q0q

� � @�H
ðbÞ
q þ iHðbÞ

q0 V
q0q
� ;

ðD!�
�HðbÞÞq ¼ D

!qq0

�
�HðbÞ
q0 � @� �HðbÞq � iVqq0

� �HðbÞ
q0 ;

(15)

with implicit sums over repeated indices. The covariant
derivatives and A� transform under the chiral symmetry as

HðbÞD
 

� ! ðHðbÞD
 

�ÞUy; D
!

�
�HðbÞ ! UðD!�

�HðbÞÞ;
A� ! UA�U

y: (16)

We can write the leading order (LO) chiral Lagrangian as

LLO ¼ Lpion þLHL; (17)

where Lpion is the standard staggered chiral perturbation

theory (S�PT) Lagrangian for the light-light mesons, and
LHL is the contribution of the heavy-lights. In Minkowski
space, we have

Lpion ¼ f2

8
Trð@��@��yÞ þ 1

4
�f2 TrðM�þM�yÞ

� 2m2
0

3
ðUI þDI þ SI þ � � �Þ2 � a2V ; (18)

�V ¼ C1 Trð�5��5�
yÞ þ C3

1

2

X
�

½Trð������Þ þ H:c:� þ C4

1

2

X
�

½Trði���5�i���5�Þ þ H:c:�

þ C6

X
�<�

Trð��������
yÞ þ C2V

1

4

X
�

½Trð���ÞTrð���Þ þ H:c:� þ C2A

1

4

X
�

½Trði���5�ÞTrði���5�Þ þ H:c:�

þ C5V

1

2

X
�

Trð���ÞTrð���
yÞ þ C5A

1

2

X
�

Trði���5�ÞTrði���5�
yÞ; (19)

LHL¼�iTrð �HðbÞHðbÞv �D
 Þþg�Trð �HðbÞHðbÞ��

ðMÞ�
ðMÞ
5 A�Þ:

(20)

Here Tr denotes a trace over flavor-taste indices and, where
relevant, Dirac indices. The product �HðbÞHðbÞ is treated as a
matrix in flavor-taste space: ð �HðbÞHðbÞÞqq0 � �HðbÞq HðbÞ

q0 . The
covariant derivative D

 
acts only on the field immediately

preceding it. For convenience, I work with diagonal fields
(U;D; . . . ) and leave the anomaly (m2

0) term explicit in
Eq. (18). We can takem2

0 ! 1 and go to the physical basis
(�0; 	; . . . ) at the end of the calculation [33].

At tree level, the light-light meson composed of quarks
of flavor x and y, and with SOð4Þ taste representation �, is

M2
xy;� ¼ �ðmx þmyÞ þ a2��: (21)

Here �� is the taste splitting, which can be expressed in

terms of C1, C3, C4 and C6 in Eq. (19) [25]. The residual
SOð4Þ taste symmetry [31] at this order implies that the
mesons within a given taste representation are degenerate
in mass.

I now list some key expressions from the Feynman rules
given in Ref. [10], but adapted to the current notation.
Using separate indices for flavor ðx; yÞ and taste
ða; a0; c; c0Þ, the (quark-line) connected pion propagator
in Minkowski space is

f�xy
aa0�

yx
c0cgconnðpÞ ¼

X
�

i

p2 �M2
xy;� þ i


�X
t�

�
�;t�
a0a �

�;t�
cc0

�
:

(22)

Here, I have used the fact that ��;t� is Hermitian to
replace the complex conjugation in Eq. (9) by interchange
of indices on the right-hand side, which will be conve-
nient later.
Similarly, the disconnected (hairpin) propagator is

f�xx
aa0�

yy
c0cgdiscðpÞ �

X
�

D�
xx;yy

�X
t�

�
�;t�
a0a �

�;t�
cc0

�
; (23)

where
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D�
xx;yy ¼ �i�0� i

ðp2 �M2
X;� þ i
Þ

i

ðp2 �M2
Y;� þ i
Þ

� ðp2 �M2
U;�Þðp2 �M2

S;�Þ
ðp2 �M2

	;� þ i
Þðp2 �M2
	0;� þ i
Þ ; (24)

with the hairpin strength �0� given by

�0� ¼

8>>>><
>>>>:

a2�0V; � ¼ V ðtaste vectorÞ;
a2�0A; � ¼ A ðtaste axial vectorÞ;
4m2

0=3; � ¼ I ðtaste singletÞ;
0; � ¼ T; P ðtaste tensor or pseudoscalarÞ:

(25)

X and Y denote valence mesons made from x �x or y �y
quarks, respectively, with MX and MY their masses. For
the sea mesons, the masses MU and MS do not include the
mixing effects of the hairpins. The rediagonalized states
after including the hairpins are	 and	0. For concreteness I
have assumed the 2þ 1 case: mu ¼ md.

The propagators for the heavy-light mesons are

fPðbÞxa P
ðbÞy
yc gðkÞ ¼ i�ac�xy

2ðv � kþ i
Þ ; (26)

fP�ðbÞ�xaP
�ðbÞy
�yc gðkÞ ¼ �i�ac�xyðg�� � v�v�Þ

2ðv � k��� þ i
Þ ; (27)

where �� is the B�-B mass splitting. The �B �B�� vertex
(including the i from exp ðiLÞ) is

g�
f
ðPðbÞyxa P�ðbÞ�yc � P�ðbÞy�xa PðbÞyc Þ@��yx

ca; (28)

where the repeated indices a, x, y, c, and � are summed.
For B mixing, we also need corresponding fields that

destroy and create mesons with �b quarks, i.e., B0-like and
B�0-like mesons. These fields and their interactions can be

obtained from the previous ones using charge conjugation
[34]. The individual meson fields are indicated by, for

example, P�ð
�bÞ

�;q and Pð
�bÞ

q . (Note that the light quark label q
does not distinguish between quarks and antiquarks.) The
combined fields are

Hð
�bÞ

q ¼ ½��
ðMÞP

�ð �bÞ
�;q þ i�ðMÞ5 Pð

�bÞ
q � 1� 6v

2
; (29)

�Hð
�bÞ

q ¼ 1� 6v
2
½��
ðMÞP

�ð �bÞy
�;q þ i�ðMÞ5 Pð

�bÞy
q �: (30)

The propagators for the P�ð
�bÞ

�;q and Pð
�bÞ

q fields are the same as

those for the P�ðbÞ�;q and PðbÞq fields, Eqs. (26) and (27). The
BB�� vertex is

g�
f
ðPð �bÞxa P

�ð �bÞy
�yc � P�ð

�bÞ
�xaP

ð �bÞy
yc Þ@��yx

ca: (31)

III. TRANSLATING FROM NAIVE
TO STAGGERED QUARKS

The naive light quark action may be rewritten as four
copies of the staggered action:

�ðxÞ ¼ �ðxÞ�ðxÞ; �ðxÞ ¼ �
x0
0 �

x1
1 �

x2
2 �

x3
3 ; (32)

where�ðxÞ is the naive quark field and �ðxÞ is a ‘‘copied’’
staggered field, with each Dirac component �

i
separately

having the staggered action. I call ‘‘copy symmetry’’ the
SUð4Þ that acts on the copy index i. Unlike the SUð4Þ
vector taste symmetry, which acts on individual staggered
fields (written in the spin-taste basis) and is exact for an
interacting theory only in the continuum limit, copy sym-
metry is an exact lattice symmetry. Thus the propagator of
a copied staggered field is

h�
i
ðxÞ ��

i0 ðyÞi ¼ �i;i0 h�ðxÞ ��ðyÞi; (33)

where � is the normal (uncopied) staggered field. This
implies

h�ðxÞ ��ðyÞi ¼ �ðxÞ�yðyÞh�ðxÞ ��ðyÞi: (34)

In the simulations using staggered quarks, the naive field is
never constructed per se; instead Eq. (34) is used to trans-
late staggered propagators into naive propagators [8].
An interpolating field H ðxÞ for a Bq meson is

H ðxÞ ¼ �bðxÞ�5�ðxÞ ¼ �bðxÞ�5�ðxÞ�ðxÞ: (35)

I assume that in practical applicationsH ðxÞwill always be
summed over a time slice, either explicitly, or implicitly by
using translation invariance.
To leading order in a, bðxÞ varies smoothly (up to gauge

transformation) between neighboring spatial sites, but �

does not, due to taste doubling. On the other hand, in the
spin-taste basis, which we arrive at by summing the stag-
gered fields over hypercubes, the staggered fields are
smooth on the doubled lattice. We are thus led to focus
on the average of H ðxÞ over a spatial cube. Let x ¼ ðt; xÞ
with x ¼ 2y even, and let 	 ¼ ð	0;�Þ be a 4-vector with
all components 0 or 1. For t even (t ¼ 2�) the averaged
field is

H ðavÞðt; xÞ ¼ 1

8

X
�

�bðt; xþ �Þ�5�ð2�;�Þ�ð2�; 2yþ �Þ

ffi 1

8
�bðt; xÞ�5

X
�

�ð�Þ�ð2�; 2yþ �Þ

ffi 1

16
�bðt; xÞ�5

X
	

½�ð	Þ�ð2�þ 	0; 2yþ �Þ

þ ð�1Þ	0�ð	Þ�ð2�þ 	0; 2yþ �Þ�: (36)

Inserted gauge links for gauge invariance of point-split
quantities are implicit. For t odd (t ¼ 2�þ 1), the result
is the same except the term on the last line of Eq. (36)
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changes sign. Using the fact that ð�1Þ	0�ð	Þ ¼
�5�0�ð	Þ�0�5, it is not hard to see that this second term
just gives the usual staggered oscillating (in time) state
with opposite parity. I have dropped higher order terms in a
coming from the variation of the heavy-quark field over the
cube. For simplicity, we simply assume from now on that
all components of x are even (x� ¼ 2y�), and that the

oscillating state has been removed by the fitting procedure.
We then have

H ðavÞðxÞ ! 1

16
�bðxÞ�5

X
	

�ð	Þ�ð2yþ 	Þ: (37)

We now convert to a spin-taste basis for the staggered
fields. The standard construction for a single staggered
field is [9]

q
aðyÞ ¼ 1

8

X
	

�
að	Þ�ð2yþ 	Þ; (38)

where 
 is a spin index and a is a taste index. As is well
known [35–37], this decomposition is correct only to low-
est order in a and generates a spurious OðaÞ term in the
spin-taste action, but it is good enough for our purposes.
Here we need a copied version:

q
ai ðyÞ ¼
1

8

X
	

�
að	Þ�
i
ð2yþ 	Þ: (39)

With spin indices implicit, Eq. (37) then becomes

H ðavÞðxÞ ! 1

2
�bðxÞ�5q

a
i ðyÞ�a

i ; (40)

where repeated indices are summed. With Eq. (33), this
implies that the contraction of H with H y (i.e., the
heavy-light propagator) is automatically averaged over
tastes:

hH ðxÞH yðx0Þi � 1

4
h �bðxÞ�5q

aðyÞ �qaðy0Þ�5bðx0Þi; (41)

where a sum over a is implicit.
Analysis of the four-quark operator is more complicated

because the two bilinears from which it is constructed are
not separately summed over space; only the four-quark
operator is summed. However, we can write it in terms of
separately summed bilinears by using the identities

1

256

X
K

trð�ð	ÞK�yð	ÞKÞ trð�ð	0ÞK�yð	0ÞKÞ ¼ �	;	0 ;

(42)

1

4
trð�ð	ÞK�yð	ÞKÞ�ð	Þ ¼ K�ð	ÞK: (43)

Here K is any of the 16 independent Hermitian matrices
�� in Eq. (8), which obey K2 ¼ I. We get, for operator
On ¼ �b�n� �b�0n�:

OðavÞn ðxÞ ¼ 1

8

X
�

�bðt; 2yþ 	Þ�n�ðt; 2yþ 	Þ

� �bðt; 2yþ 	Þ�0n�ðt; 2yþ 	Þ
! 1

4

X
K

ð �b�nKq
c
k
�b�0nKqd‘ÞKckKd‘: (44)

Here we have dropped the ‘‘wrong parity’’ part, which does
not contribute if oscillating terms are removed by the
fitting procedure. Note that contributions with K � I
have incorrect spin (�nK 	 �0nK instead of �n 	 �0n), and
coupling of taste ðc; dÞ and copy ðk; ‘Þ indices.
There are OðaÞ and higher corrections to Eqs. (40) and

(44), coming from the variations of the heavy quark field
over the spatial cube and from corrections to the spin-taste
construction in position space. As discussed in Sec. IVC,
however, such terms do not contribute to nonanalytic terms
in chiral perturbation theory until next-to-next-to-leading
order (NNLO).
Using Eqs. (40) and (44), copy symmetry [Eq. (33)]

implies

hH ðavÞyOðavÞn H ðavÞyi / hDcaDdeiKcaKde; (45)

where Dca is the quark propagator (in a given background)
for taste a into taste c. If taste symmetry is exact,
hDcaDdei / �ac�ed, and only the correct spin (K ¼ I)
contributes. Thus the desired matrix element will be ob-
tained in the continuum limit.
At one loop, however, taste violations allow hDacDedi

not to be proportional to �ac�ed, and terms with incorrect
spins can contribute. For example, the taste-violating hair-
pin with vector taste can give a term proportional to
��
ca�

�
de ¼ ��

ac�
�
ed. Then, since trð��KÞ ¼ 4�K;��

, the

spin of the operator is �n�� 	 �0n�� instead of �n 	 �0n.
Equation (44) may be simplified by taking advantage of

the exact SOð4Þ taste symmetry of the staggered chiral
theory at one loop. Within any SOð4Þ multiplet � 2
fP; A; T; V; Igwith dimensionN� > 1 (e.g., the vector-taste
multiplet V with NV ¼ 4), the value of all one-loop dia-
grams would be unchanged if we replaced any multiplet
element in the taste factors KckKd‘ with another element
from the same multiplet.2 We therefore write K ¼ ��;t� ,
where t� labels the element within multiplet �. Replacing
the sum over K in Eq. (44) with a double sum over �, t�,
and using the SOð4Þ symmetry, we then have

OðavÞn ðxÞ ! 1

4

X
�;t0�

ð �b�n�
�;t0�qck

�b�0n��;t0�qd‘Þ
1

N�

X
t�

��;t�
ck ��;t�

d‘ :

(46)

Within a given multiplet, this decouples the sum over spins
from the sum over tastes.

2Although indices k and ‘ are copy, not taste, indices at this
point, they will become taste indices à la Eq. (45) shortly.
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Thus, for a given continuum operator On, the plan is to
calculate the one-loop diagrams for each of the operators

O�
n �

X
t0�

�b�n�
�;t0�qck

�b�0n��;t0�qd‘ (47)

between external (interpolating) fields ðH yÞai and ðH yÞej ,
where, from Eq. (40),

ðH yÞai � �qai �5b: (48)

Each diagram for operator O�
n then gets an additional

factor ~F� coming from Eqs. (46) and (40), where

~F� � 1

16N�

X
t0�

��;t0�
ck ��;t0�

d‘ �ai�ej: (49)

Whether explicitly indicated or not, all repeated indices
will then be summed; this includes taste and copy indices
(a, c, d, e and i, j, k, ‘) as well as the indices with dual,
spin-taste meaning ð�; t�; t0�Þ.

IV. CALCULATION OF ONE-LOOP
DIAGRAMS FOR On

A. Procedure

We now set up one-loop rHMS�PT for the operators
described above. We follow Ref. [11] as much as possible,
but must take into account the complications of copy and
taste indices. It is convenient first to express the operators
O�

n , given in Eq. (47) in terms of the basis of Eq. (1). From
the relations among operators listed for example in
Ref. [13] we find

OP
1 ¼ O1; OA

1 ¼ �8O2 � 8O3; OT
1 ¼ �6O1;

OV
1 ¼ 8O2 þ 8O3; OI

1 ¼ O1; (50)

OP
2 ¼ O2; OA

2 ¼ �O1; OT
2 ¼ �2O2 � 4O3;

OV
2 ¼ O1; OI

2 ¼ O2; (51)

OP
3 ¼ O3; OA

3 ¼ �O1; OT
3 ¼ �4O2 � 2O3;

OV
3 ¼ O1; OI

3 ¼ O3; (52)

OP
4 ¼ �O4; OA

4 ¼ �2O5; OT
4 ¼ 0;

OV
4 ¼ �2O5; OI

4 ¼ O4; (53)

OP
5 ¼ �O5; OA

5 ¼ �2O4; OT
5 ¼ 0;

OV
5 ¼ �2O4; OI

5 ¼ O5: (54)

The chiral representatives of the standard operators on
the right-hand side of Eqs. (50) through (54) are given in
Ref. [11]. There, the only relevant quantum number of
the light quarks is their flavor, and both bilinears have
the same flavor, which is labeled q. Here we also need to
label the taste and, for the moment, the copy index of the

light quarks, and these are not in general the same for
both light quarks in the operator. So we adopt the
notation q! x, c, k, where x labels the quark flavor
only, c (or other letters near the beginning of the alpha-
bet) labels the quark taste, and k (or other letters near the
middle of the alphabet) labels the quark copy. From [11],
we then have

Oxck;xd‘
1 ¼ �1½ð�PðbÞyÞx;c;kð�Pð �bÞÞx;d;‘

þ ð�P�ðbÞy� Þx;c;kð�P�ð �bÞ;�Þx;d;‘�;
Oxck;xd‘

2ð3Þ ¼ �2ð3Þð�PðbÞyÞx;c;kð�Pð �bÞÞx;d;‘
þ �02ð3Þð�P�ðbÞy� Þx;c;kð�P�ð �bÞ;�Þx;d;‘;

Oxck;xd‘
4ð5Þ ¼ �4ð5Þ

2
½ð�PðbÞyÞx;c;kð�yPð �bÞÞx;d;‘

þ ð�yPðbÞyÞx;c;kð�Pð �bÞÞx;d;‘�

þ �04ð5Þ
2
½ð�P�ðbÞy� Þx;c;kð�yP�ð �bÞ;�Þx;d;‘

þ ð�yP�ðbÞy� Þx;c;kð�P�ð �bÞ;�Þx;d;‘�: (55)

The method used to obtain these operators in Ref. [11] is
a standard spurion analysis. The factors of � and �y are
present in order make the light-quark spurions, which
transform by left or right chiral rotations in Eq. (1), into
objects that transform with U [defined in Eq. (12)] and

can combine with the heavy-meson fields �HðbÞq and Hð
�bÞ

q

to make invariants. Although many insertions of Dirac
matrices are possible in forming the invariants, they all
reduce down to the simple forms in Eq. (55) when ex-

pressed in terms of PðbÞy, Pð �bÞ, P�ðbÞy� , and P�ð
�bÞ

� . As
pointed out in Ref. [34], this follows from heavy-quark
spin symmetry, which relates the amplitude for B– �B
mixing to that of B�– �B�.
In Eq. (55), I have used the fact that we are

only interested in the parity-even part of these operators
to set the two coefficients Detmold and Lin call �4ð5Þ and
�̂4ð5Þ simply to �4ð5Þ=2. So where they have �4ð5Þ þ �̂4ð5Þ
we will have simply �4ð5Þ, and similarly for �04ð5Þ and
�̂04ð5Þ. We use the Latin O for the chiral operators to

distinguish them from quark-level operators O. The
external interpolating �B and B fields are taken to be,
respectively,

PðbÞx;a;i and Pð
�bÞy

x;e;j: (56)

Strictly speaking, there should be a second set of terms
on the right-hand sides in Eq. (55) in which the pairs of
indices c, k and d, ‘ are interchanged. These come about
because the light quark field in either of the bilinears of
the operator can be the one that creates the light antiquark
in the �B or annihilates the light quark in the B. However,
since Eq. (49) is symmetric under this interchange, the
extra terms give identical results to the ones we have
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already, and therefore can be dropped at this point. Note
that the �i are low-energy constants with arbitrary
normalization.

We can now use copy symmetry to simplify the
equations, and ultimately eliminate the copy indices
entirely. However, this cannot be done without taking
into account the quark flow through the diagrams: copy
symmetry works at the level of the light quark propa-
gators, and not on meson propagators per se. The point
is that a given light quark in an external meson field can
end up in either a (b)- or ( �b)-labeled meson field in
Eq. (55), and the copy symmetry has a different effect
on the diagram in the two cases. If the light quark in

the external PðbÞx;a;i field contracts with the quark in a

(b)-labeled meson field (which has taste and copy in-
dices c, k), then the combination of copy symmetry
(which gives �ik) and the �ai in Eq. (49) forces k ¼ a.
On the other hand, if the same light quark contracts with
the quark in a ( �b)-labeled meson field (indices d, ‘), then
we have ‘ ¼ a. So ~F� will end up with a different taste
structure in the two cases. For convenience, I prefer to
rename the taste indices (c$ d) in the second case so
that ~F� remains the same. In doing so I adopt the
convention that the taste-a quark in the external (b)-
labeled field always contracts with the taste-c quark in
the operator, but that taste-c quark may be in either the
(b)- or the ( �b)-labeled meson field of the operator.
Similarly, the taste-e quark in the external ( �b) field
always contracts with the taste-d quark in the operator.

Keeping the above points in mind, we now eliminate the
copy indices completely from the calculation. With the
exception of the wave-function renormalization diagrams,
which of course do not involve the four-quark operators at
all, the final procedure is as follows:

(1) For a particular operator On of interest, we first
write the related operators O�

n as linear combina-
tions of the standard operators, following
Eqs. (50) through (54). It will be convenient then

to define �ð�Þn and �0ð�Þn as the � and �0 correspond-
ing to operator O�

n . Table I for �ð�Þn follows imme-
diately from Eqs. (50) through (54).

(2) We then calculate the chiral diagrams, using copy-
free versions of Eq. (55) for the chiral operators,
namely,

Oxc;xd
1 ¼�1½ð�PðbÞyÞx;cð�Pð �bÞÞx;d

þð�P�ðbÞy� Þx;cð�P�ð �bÞ;�Þx;d� ½orc$d�;
Oxc;xd

2ð3Þ ¼�2ð3Þð�PðbÞyÞx;cð�Pð �bÞÞx;d
þ�02ð3Þð�P�ðbÞy� Þx;cð�P�ð �bÞ;�Þx;d ½orc$d�;

Oxc;xd
4ð5Þ ¼

�4ð5Þ
2
½ð�PðbÞyÞx;cð�yPð �bÞÞx;d

þð�yPðbÞyÞx;cð�Pð �bÞÞx;d�

þ�04ð5Þ
2
½ð�P�ðbÞy� Þx;cð�yP�ð �bÞ;�Þx;d

þð�yP�ðbÞy� Þx;cð�P�ð �bÞ;�Þx;d� ½orc$d�:
(57)

The external interpolating fields are

PðbÞx;a and Pð
�bÞy

x;e : (58)

For a diagram with a given quark flow, one should
use either the explicit version of the operators in
Eq. (57) or the alternative c$ d forms to ensure
that the external taste-a light quark contracts with
the taste-c light quark in the operators (which also
guarantees that tastes e and d contract).

(3) Each diagram is then multiplied by the overall factor

F� � 1

16N�

X
t�

��;t�
ca ��;t�

de ; (59)

and the repeated taste ða; c; d; eÞ and spin (�) indices
are summed.

B. Calculation

We are now ready to compute the one-loop diagrams
in rHMS�PT using the Feynman rules given above
in Eqs. (22) through (28) and Eq. (31). Because of
the complications due to taste and copy indices, it is
not possible in general simply to modify the continuum
results of Ref. [11] to insert staggered corrections, as
in Ref. [10]. We must calculate most chiral diagrams
from scratch. The exception is the wave-function
renormalization (parametrized below by the function
W ), which is simple enough that the modification
process (‘‘staggering’’) works. In the wave-function
case, the naive-to-staggered translation gives no compli-
cations because, from Eq. (41), it only requires setting
initial and final tastes equal and averaging over them.
The taste averaging has no effect because discrete taste
symmetry (shift symmetry) implies that a two-point

TABLE I. Values of �ð�Þn . For �0ð�Þn , simply put primes on all
entries in the table, with the understanding that �01 ¼ �1 [see

Eq. (55)].

n
�

P A T V I

1 �1 �8�2 � 8�3 �6�1 8�2 þ 8�3 �1

2 �2 ��1 �2�2 � 4�3 �1 �2

3 �3 ��1 �4�2 � 2�3 �1 �3

4 ��4 �2�5 0 �2�5 �4

5 ��5 �2�4 0 �2�4 �5
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function is in any case proportional to the identity in
taste space.3

In addition to wave-function renormalization, there are
two types of one-loop diagrams: tadpole graphs, Fig. 1, and
sunset diagrams, Fig. 2. These are parametrized by func-
tions T and Q, respectively. Contributions from incorrect
spins can enter in the tadpoles and sunset diagrams; we call

such contributions ~T , and ~Q. The complete matrix ele-
ments are given by

h �B0
xjOx

1jB0
xi

¼�1

�
1þW x �bþW b �x

2
þT ð1Þ

x þ ~T
ð1Þ
x þQð1Þ

x þ ~Qð1Þ
x

�

þanalytic terms (60)

and

h �B0
xjOx

njB0
xi ¼ �n

�
1þW x �b þW b �x

2
þT ðnÞ

x þ ~T
ðnÞ
x

�

þ �0nðQðnÞ
x þ ~QðnÞ

x Þ þ analytic terms; (61)

for n ¼ 2, 3, 4, 5. Nonrelativistic normalization, which is
standard in heavy-light chiral perturbation theory, is
assumed for the states h �B0

xj and jB0
xi in these expressions.

With relativistic normalization, an extra factor of MBx
, the

mass of the Bx meson, would appear on the right-hand
sides.
In the partially quenched 2þ 1 (mu ¼ md � ms) case,

staggering the result for W q �b in Ref. [11] gives

W x �b ¼W b �x ¼
ig2B�B�
f2�

�
1

16

X
S;�

N�H
��þ�Sx
xS;� þ 1

3

�
R½2;2�XI

ðfMð2ÞXI
g; f�IgÞ

@H ��
X;I

@m2
XI

� X
j2fMð2ÞI g

D½2;2�j;XI
ðfMð2ÞXI

g; f�IgÞH ��
j;I

�

þ a2�0V
�
R½3;2�XV

ðfMð3ÞXV
g; f�VgÞ

@H ��
X;V

@m2
XV

� X
j2fMð3ÞV g

D½3;2�j;XV
ðfMð3ÞXV

g; f�VgÞH ��
j;V

�
þ ðV ! AÞ

�
; (62)

where the index � runs over the taste representations (P,A,
T,V,I) with degeneracies N�, and S runs over the sea
mesons u, d, s. The function H is equivalent to the
integral Hðm;�Þ defined in Eqs. (A3) and (A12) of

Ref. [11]. The subscripts on H implicitly give the meson
mass m in Hðm;�Þ by specifying its flavor and taste. The
flavor is indicated either by giving the flavor of the two
quarks in the meson, as in xS in the first term in Eq. (62), or
by giving the name of the meson, as in the remaining terms,
where X refers to the meson made of two light valence
quarks x �x (mX is its mass). The superscript on H is the
second argument of the function Hðm;�Þ. It is the mass
splitting between the heavy-light vector meson in the chiral
loop and the external heavy-light pseudoscalar meson. In
addition to the hyperfine splitting �� ¼ MB� �MB, it in-
cludes a light flavor splitting whenever the light flavor of

BB

π

(a) (b)
B

π

B

FIG. 1. Meson-level tadpole graphs for the B- �B mixing matrix element. In (a), the pion fields that are contracted both come from the
same factor of � in Eq. (57), while in (b) they come from different � factors. For definiteness, we take the right external line in each
diagram to be the incoming Bmeson, and the left external line, the outgoing �B. This means the left line is the contraction with the PðbÞy
field in Eq. (57), while the right line is the contraction with the Pð �bÞ field. Diagram (a) is ‘‘factorizable’’ into a product of the left- and
right-hand parts (the right-hand part is trivial here). Diagram (b) is ‘‘nonfactorizable.’’ There is another diagram equivalent to (a) in
which both pions come from the � associated with the right-hand line.

π

B B* B* B

FIG. 2. The meson-level sunset graph for the B- �B mixing
matrix element. Conventions are as in Fig. 1.

3With the exact momentum space taste construction [35], this
statement is true to all orders in a, as can be seen most easily by
using the formulation of shift symmetry in Ref. [19]. The
construction is built into staggered chiral theory, so the statement
is also true to all orders in rHMS�PT. The fact that we have used
the (approximate) position space taste construction [9] in the
translation from naive to staggered operators is irrelevant, since
for our purposes only the lowest order translation is needed.
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the vector meson in the loop is different from the the
external flavor. For the first term in Eq. (62), the vector
meson has flavor S so the splitting is �Sx � MBS

�MBx
¼

2�1�ðmS �mxÞ, where �1 and � are low-energy
constants. The constant �1 comes from heavy quark effec-
tive theory, and � relates light meson masses to quark
masses, Eq. (21).

For comparison, the function H is the same (up to
constants) as the function J introduced in Ref. [7]
[Eq. (6.17)]. Similarly the function I j;� defined in [11]

and used below is the same up to constants as the function
‘ðm2

j;�Þ used in Refs. [5,10,26]. The relations are

iH �
j;� ¼ �

3

16�2
Jðmj;�;�Þ; (63)

iI j;� ¼ 1

16�2
‘ðm2

j;�Þ ¼
1

16�2
m2

j;� ln ðm2
j;�=	

2
�Þ: (64)

In the limit of no splittings,

iH 0
j;� ¼ �3iI j;� ¼ � 3

16�2
‘ðm2

j;�Þ: (65)

If one wants the B mixing result in the strict 1=mB power
counting in which the splittings are set to zero, one can
simply use Eq. (65) for H everywhere below.

The (Euclidean) residue functions R½n;k�j and D½n;k�j;l in

Eq. (62) are defined by [26]

R½n;k�j ðfmg; f�gÞ �
Q

k
a¼1ð�2

a �m2
j ÞQ

i�jðm2
i �m2

j Þ
;

D½n;k�j;l ðfmg; f�gÞ � �
d

dm2
l

R½n;k�j ðfmg; f�gÞ:
(66)

The mass combinations appearing as arguments of these
functions in the 2þ 1 partially quenched theory are

fMð2ÞX g� fm	;mXg; fMð3ÞX g� fm	;m	0 ;mXg;
f�g� fml;mhg:

(67)

The tastes of these mesons (I, V, or A) are indicated
explicitly in Eq. (62).

The staggered heavy-light wave function renormaliza-
tion is also calculated in Refs. [5,10] for the case where the
heavy-meson splittings are neglected; the result of adding
in those splittings as explained in Ref. [7] agrees with
Eq. (62).

The tadpole and sunset contributions are more compli-
cated, and we must follow the procedure outlined at the end
of Sec. IVA. All four taste indices (two from the interpo-
lating fields and two from the light quarks in the four-quark
operator) enter in a nontrivial way, and shift symmetry
does not require that all be equal. Indeed, taste symmetry
violations arising ultimately from high-momentum gluon
exchange can in general make one pair of tastes indices
different from the other pair. However, if there are parts of

a diagram that give simply a tree-level heavy-light propa-
gator, the average over taste implied by Eq. (41) can
suppress the taste-changing interactions. On the other
hand, in some diagrams for wrong-spin contributions, the
overall factor, Eq. (59), can project onto particular taste-
violating internal pion propagators. The bottom line is
that one must calculate the tadpole and sunset diagrams
from first principles, and not simply try to stagger the
continuum result.4

I start with the tadpoles. I call a diagram ‘‘connected’’ or
‘‘disconnected’’ based on whether the internal pion propa-
gator is connected or disconnected in the quark flow sense
of Eqs. (22) and (23) above. The only connected quark flow
possible for Fig. 1(a) is shown in Fig. 3. This is a diagram
with a sea quark loop; the sea quark has taste f, which is
summed over. Taste conservation for the right-hand heavy-

light propagator (the Pð �bÞPð �bÞy propagator) gives a factor of
�de. When combined with Eq. (59), this implies that
��;t� ¼ I, so this diagram has no wrong-spin contributions.

The taste factor from Eq. (22) is simply �af�fc ¼ �ac,

which combines with the �ca from Eq. (59) (using
��;t� ¼ I) to give a factor of 4. The sum over t� then gives

N�, the degeneracy of representation �. Including the

factor of 2 from the equivalent diagram with the loop on
the right side of Fig. 3, and the factor of 1=4 for the rooted
sea-quark loop, we get

T ðnÞ
x;Fig:3 ¼ �

i

16F2

X
�;S

N�IxS;�; (68)

where S runs over the sea quarks u, d, s. Note that the
result is independent of n. Since wrong-spin contributions

to this diagram are absent, and �ðIÞn ¼ �n for all n, Fig. 3 is
simply proportional to �n, which is factored out of T in
Eqs. (60) and (61). The difference in chiral structure be-
tween the left-right operators O4;5 and the left-left opera-

torsO1;2;3 in Eq. (57) is not relevant because the even terms

in the expansion of � and �y are the same, and both �
fields in Fig. 1(a) come from the same � or �y factor.
There is also a disconnected contribution to Fig. 1(a).

The quark flow diagram is shown in Fig. 4. Again the �de

from the right-hand B propagator means that only the
correct spin contributes. The taste factor from Eq. (23) is
�af�fc ¼ �ac, which gives a factor 4 after using Eq. (59)

and a factor of N� from the sum over t�. In this case only

the I, V, and A channels contribute; see Eq. (25). In the
singlet case, we can use the fact that M2

	0;I 
 m2
0 for large

4The rules from Ref. [10] for staggering a continuum result
would apply unchanged if, for example, we had set the two tastes
in the four-quark operator equal and averaged over them, while
either fixing the external tastes to any one value, or averaging
over them. Such a definition of the operator could be arranged if
we constructed point-split bilinears with the desired tastes within
a hypercube, and then multiplied two of them appropriately. In
that case, there would not be any wrong-spin contributions.
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m0, and take the limitm0 ! 1, resulting in one less pole in
the denominator of Eq. (24) and an overall factor of 4=3. In
the vector and axial channels, we simply get a factor of 4
from N�. This gives the standard ratio 1=3 between the

strength of the singlet and vector or axial hairpins, as seen
in Ref. [10]. One may expect this standard ratio in any
meson diagram, such as Fig. 1(a), that is unaffected by the
complications from wrong spins or the naive-to-staggered
translation. The result is

T ðnÞ
x;Fig:4¼�

i

f2

�
1

3

�
R½2;2�XI

ðfMð2ÞXI
g;f�IgÞ@IX;I

@m2
XI

� X
j2fMð2ÞI g

D½2;2�j;XI
ðfMð2ÞXI

g;f�IgÞI j;I

�

þa2�0V
�
R½3;2�XV

ðfMð3ÞXV
g;f�VgÞ@IX;V

@m2
XV

� X
j2fMð3ÞV g

D½3;2�j;XV
ðfMð3ÞXV

g;f�VgÞI j;V

�
þðV!AÞ

�
:

(69)

Again, since wrong-spin contributions to this diagram are
absent, the result is independent of n.

We now turn to contributions to the nonfactorizable
diagram, Fig. 1(b). The connected contribution is shown
in Fig. 5. This is the first diagram in which the quark flow

connects the taste-a quark in the external PðbÞx;a field with the

light quark in the Pð �bÞ field of the operator. According to
the discussion above, this requires that we use the c$ d
versions of the operators in Eq. (57). The combination of

taste matrices �
�;t�
ad �

�;t�
ec from the connected propagator,

Eq. (22), and ��;t�
ca ��;t�

de from the overall factor, Eq. (59),

appears in several diagrams. It is therefore useful to define

�ð�; �Þ ¼ 1

4N�N�

X
t�;t�

trð��;t���;t���;t���;t�Þ: (70)

The factors of N� and N� have been included in the

denominator for later convenience. Completeness of the
16 matrices ��;t� implies that � satisfies the normalization
condition, X

�

N��ð�; �Þ ¼ 16��;I: (71)

Values of �ð�; �Þ are given in Table II.
In terms of �ð�; �Þ, the correct-spin and wrong-spin

contributions of Fig. 5 are then

T ðnÞ
x;Fig:5 ¼ �

i

16f2
X
�

N�IX;�; (72)

~T ðnÞ
x;Fig:5 ¼ � i

16f2
X
��I

�
�ð�Þn

�n

X
�

N��ð�; �ÞIX;�

�
; (73)

where the upper sign is for n ¼ 1, 2, 3 and the lower sign is
for n ¼ 4, 5. The difference in chiral structure of Eq. (57)
between Ox

4;5 and Ox
1;2;3 in Eq. (57) matters for Fig. 1(b),

because the two pion fields come from different � or �y

factors. The correct-spin contribution T ðnÞ
x;Fig:5 comes from

the � ¼ I term in the sum, while the � � I terms give the

wrong-spin piece ~T
ðnÞ
x;Fig:5. The quantities �

ð�Þ
n are listed in

Table I.
The final tadpole diagram is the disconnected contribu-

tion to Fig. 1(b), shown in Fig. 6. In this case, the taste
structure of the disconnected propagator Eq. (23) is

�
�;t�
ac �

�;t�
ed , which, when combined with the taste matrices

d e

a c

a

ff

c

FIG. 3. Connected quark flow tadpole diagram. This is a con-
tribution to Fig. 1(a). The thin lines denote staggered light
quarks, and the thick, gray lines denote heavy quarks. Indices
shown ða; f; c; d; eÞ are taste indices. The left pair of touching
filled black circles represents the light and heavy quark in the
PðbÞy; the right pair represents the light and heavy quark in the
Pð �bÞ. Taste conservation for the right-hand B propagator forces
d ¼ e.

d e

a c

a

ff

c

FIG. 4. Disconnected quark flow tadpole diagram. This is a
contribution to Fig. 1(a). Taste conservation for the right-hand B
propagator forces d ¼ e.

c

a ecd

a d e

FIG. 5. Connected quark flow tadpole diagram. This is a con-
tribution to Fig. 1(b). Taste violations on the connected pion line
allow for a � c and d � e.

TABLE II. Matrix of �ð�; �Þ values.
P A T V I

P 1 �1 1 �1 1

A �1 �1=2 0 1=2 1

T 1 0 �1=3 0 1

V �1 1=2 0 �1=2 1

I 1 1 1 1 1
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in the overall factor, Eq. (59), gives tr2ð��;t���;t�Þ ¼
16����t�t� . The hairpin propagator is nonzero only in the

I, V, and A channels. So we get a singlet contribution to the
correct-spin operator (� ¼ � ¼ I) and taste-violating con-
tributions for two of the wrong-spin operators (� ¼ � ¼
V, A). The result is

T ðnÞ
x;Fig:6 ¼ �

i

3f2

�
R½2;2�XI

ðfMð2ÞXI
g; f�IgÞ @IX;I

@m2
XI

� X
j2fMð2ÞI g

D½2;2�j;XI
ðfMð2ÞXI

g; f�IgÞI j;I

�
; (74)

~T
ðnÞ
x;Fig:6 ¼ � i

4�nf
2

�
�ðVÞn a2�0V

�
R½3;2�XV

ðfMð3ÞXV
g; f�VgÞ @IX;V

@m2
XV

� X
j2fMð3ÞV g

D½3;2�j;XV
ðfMð3ÞXV

g; f�VgÞI j;V

�

þ �ðAÞn a2�0A
�
R½3;2�XA

ðfMð3ÞXA
g; f�AgÞ@IX;A

@m2
XA

� X
j2fMð3Þ

A
g
D½3;2�j;XA

ðfMð3ÞXA
g; f�AgÞI j;A

��
: (75)

Again the upper sign is for n ¼ 1, 2, 3 and the lower
sign is for n ¼ 4, 5; the reasoning is the same as in
Eqs. (72) and (73).

The sunset diagram, Fig. 2, is very similar to the tadpole
contribution that connects the incoming B and outgoing �B,
Fig. 1(b). Again, there are two quark flows: Fig. 7, a
connected graph similar to Fig. 5, and Fig. 8, a discon-
nected graph similar to Fig. 6. The taste structures of the
sunset graphs are identical to the corresponding tadpole
graphs. As in Fig. 5, the c$ d version of Eq. (57) is used
in Fig. 7. The main difference between the sunset and
tadpole graphs is the actual integral, which here involves

two heavy-light propagators and factors of gB�B�, and so

gives g2B�B�H
�� instead of I . In addition, the � and �y

matrices in Eq. (57) are all set to 1 in the sunset case, so
there is no difference in overall sign between the results for
operators 1, 2, 3 and those for operators 4, 5. Otherwise,
everything is the same as for the tadpole case. I find,
for Fig. 7,

Q ðnÞ
x;Fig:7 ¼ �

ig2B�B�
16f2

X
�

N�H ��
X;�; (76)

~QðnÞ
x;Fig:7 ¼ �

ig2B�B�
16f2

X
��I

�
�0ð�Þn

�0n

X
�

N��ð�; �ÞH ��
X;�

�
: (77)

The disconnected sunset graph, Fig. 8, gives

QðnÞ
x;Fig:8 ¼

�ig2B�B�
3f2

�
R½2;2�XI

ðfMð2ÞXI
g; f�IgÞ

@H ��
X;I

@m2
XI

� X
j2fMð2ÞI g

D½2;2�j;XI
ðfMð2ÞXI

g; f�IgÞH ��
j;I

�
; (78)

~QðnÞ
x;Fig:8 ¼ �

ig2B�B�
4�0nf2

�
�0ðVÞn a2�0V

�
R½3;2�XV

ðfMð3ÞXV
g; f�VgÞ

� @H ��
X;V

@m2
XV

� X
j2fMð3ÞV g

D½3;2�j;XV
ðfMð3ÞXV

g; f�VgÞH ��
j;V

�

þ �0ðAÞn a2�0A
�
R½3;2�XA

ðfMð3ÞXA
g; f�AgÞ

@H ��
X;A

@m2
XA

� X
j2fMð3Þ

A
g
D½3;2�j;XA

ðfMð3ÞXA
g; f�AgÞH ��

j;A

��
: (79)

C. Other possible taste-breaking contributions

Under renormalization, there are continuum-like mix-
ings of the desired four-quark lattice operators [38], but
there may in addition be perturbative mixing with opera-
tors of incorrect spin and taste. Further, there are discreti-
zation corrections to our identification of the spin and taste
of the operators, which can arise from variations in the
heavy-quark field over a spatial cube, as well as higher
order terms in the position-space spin-taste formalism [9].
However, incorrect spin-taste operators generated by any
of these causes cannot contribute to nonanalytic terms in
the matrix element until NNLO.

c

a e

a e

d

d

c

FIG. 6. Disconnected quark flow tadpole diagram. This is a
contribution to Fig. 1(b). Taste-violating hairpins allow a � c
and d � e.

ca e

a d ce

d

FIG. 7. Connected quark flow sunset graph corresponding to
Fig. 2. Taste violations on the connected pion line allow for a �
c and d � e.

e

dca

a dc

e

FIG. 8. Disconnected (hairpin) quark flow sunset graphs cor-
responding to Fig. 2. Taste-violating hairpins allow for a � c
and d � e.

C. BERNARD PHYSICAL REVIEW D 87, 114503 (2013)

114503-12



In order to see this, consider the standard power counting
in (rooted) staggered chiral perturbation theory (rS�PT):

p2 �m� a2: (80)

The B0– �B0 mixing four-fermion operators, when translated
into the chiral effective theory, are of Oð1Þ in the afore-
mentioned power-counting scheme. Thus their LO (tree-
level) contributions to the relevant matrix elements are of
Oð1Þ, and their NLO (one-loop) contributions are ofOðp2Þ.

Perturbative mixing with wrong-taste operators can oc-
cur at one-loop order in 
S. In the chiral effective theory,
these wrong-taste operators would thus enter with coeffi-
cients of Oð
S=4�Þ. As was shown in Ref. [39], which
considered the contribution of wrong-taste operators to
neutral kaon mixing in rS�PT, 
S=4� is numerically of
the same size as the taste-breaking factor a2
2

S on the a 

0:12 fm MILC Asqtad ensembles [23]. Thus the appropri-
ate way to include the strong coupling constant in the
rHMS�PT power counting is

p2 �m� a2 � 
S=4�: (81)

One-loop chiral diagrams involving the wrong-taste opera-
tors from perturbative mixing would therefore contribute to
matrix elements only at NNLO,Oð
S=4�p

2Þ, higher order
than I am considering here.

Wrong-taste operators may also occur because of the
OðaÞ corrections to the taste identification of the operators
and the interpolating fields, Eqs. (40) and (44), coming
either from the variation of the heavy quark field over the

hypercube [see Eq. (36)] or from OðaÞ corrections to spin-
taste identification of Eq. (38). Since the matrix elements
are taste conserving at tree level in rHMS�PT, any such
taste-violating effects must appear twice, inducing Oða2Þ
corrections. These effects can then be absorbed into
a2-dependent analytic terms [see Eq. (95) below].
Nontrivial terms could appear at one loop in chiral pertur-
bation theory, but the extra factor of a2 implies that such
terms are again effectively NNLO.
Consequently, only the LO taste breaking in the four-

quark operators, together with taste-breaking terms in the
LO pion chiral Lagrangian, will modify the one-loop con-
tinuum chiral logarithms, and these modifications are what
have been calculated above. Note however, that in more
highly improved versions of staggered quarks, taste viola-
tions [the a2 terms in Eq. (81)] will be reduced relative to the
Asqtad case, but perturbative mixing may not be similarly
reduced. In such cases, it may bemore reasonable to consider
the Oð
SÞ perturbative corrections to be of LO in the chiral
expansion, and their one-loop chiral corrections to be NLO,
the same order as the corrections computed in Sec. IVB.
I make some more comments on this point in Sec. VI.

V. FINAL RESULTS

We can now combine results from different graphs to get
the complete tadpole and sunset contributions. For the
correct-spin tadpole contribution, adding Eqs. (68), (69),
(72), and (74) gives

T ð1;2;3Þ
x ¼ �i

f2�

�
1

16

X
S;�

N�IxS;� þ 1

16

X
�

N�IX;� þ 2

3

�
R½2;2�XI

ðfMð2ÞXI
g; f�IgÞ @IX;I

@m2
XI

� X
j2fMð2ÞI g

D½2;2�j;XI
ðfMð2ÞXI

g; f�IgÞI j;I

�

þ a2�0V
�
R½3;2�XV

ðfMð3ÞXV
g; f�VgÞ@IX;V

@m2
XV

� X
j2fMð3ÞV g

D½3;2�j;XV
ðfMð3ÞXV

g; f�VgÞI j;V

�
þ ðV ! AÞ

�
; (82)

T ð4;5Þ
x ¼�i

f2�

�
1

16

X
S;�

N�IxS;�� 1

16

X
�

N�IX;�þa2�0V
�
R½3;2�XV

ðfMð3ÞXV
g;f�VgÞ@IX;V

@m2
XV

� X
j2fMð3ÞV g

D½3;2�j;XV
ðfMð3ÞXV

g;f�VgÞI j;V

�
þðV!AÞ

�
:

(83)

The incorrect-spin tadpole contributions come from Eqs. (73) and (75). Adding them, and using the values of �ð�Þn in
Table I and of �ð�; �Þ in Table II, we have

~T
ð1Þ
x ¼ �i

f2�

�
1

16
ð�5IX;P � 4IX;A þ 18IX;T � 4IX;V � 5IX;IÞ

þ 2ð�2 þ �3Þ
�1

�
�IX;V þ IX;A þ a2�0V

�
R½3;2�XV

ðfMð3ÞXV
g; f�VgÞ @IX;V

@m2
XV

� X
j2fMð3ÞV g

D½3;2�j;XV
ðfMð3ÞXV

g; f�VgÞI j;V

�

� a2�0A
�
R½3;2�XA

ðfMð3ÞXA
g; f�AgÞ @IX;A

@m2
XA

� X
j2fMð3Þ

A
g
D½3;2�j;XA

ðfMð3ÞXA
g; f�AgÞI j;A

���
; (84)

NEUTRAL B MIXING IN STAGGERED CHIRAL . . . PHYSICAL REVIEW D 87, 114503 (2013)

114503-13



~T ð2Þ
x ¼ �i

f2�

�
1

16
ð�IX;P � 4IX;A þ 10IX;T � 4IX;V � IX;IÞ þ �3

4�2

ð�IX;P þ 2IX;T � IX;IÞ
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4�2

�
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�
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g; f�VgÞ@IX;V

@m2
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� X
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g; f�AgÞI j;A

���
; (85)

~T ð3Þ
x ¼ �i

f2�

�
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; (86)

~T ð4Þ
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; (87)

~T ð5Þ
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: (88)

In the continuum limit, when all taste propagators become degenerate and a2�0V;A ! 0, the wrong-spin terms clearly
vanish.

For the correct-spin sunset diagrams, adding Eqs. (76) and (78) gives

QðnÞ
x ¼ �ig
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1

16

X
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X;� þ
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��
: (89)

The incorrect-spin sunset contributions come from Eqs. (77) and (79). Again using the values of �ð�; �Þ in Table II and
of �ð�Þn in Table I, we have
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~Qð2Þ
x ¼

�ig2B�B�
f2�

�
1

16
ð�H ��

X;P � 4H ��
X;A þ 10H ��

X;T � 4H ��
X;V �H ��

X;IÞ þ
�03
4�02
ð�H ��

X;P þ 2H ��
X;T �H ��

X;IÞ

þ �1

4�02

�
�H ��

X;V þH ��
X;A þ a2�0V

�
R½3;2�XV

ðfMð3ÞXV
g; f�VgÞ

@H ��
X;V

@m2
XV

� X
j2fMð3ÞV g

D½3;2�j;XV
ðfMð3ÞXV

g; f�VgÞH ��
j;V

�

� a2�0A
�
R½3;2�XA

ðfMð3ÞXA
g; f�AgÞ

@H ��
X;A

@m2
XA

� X
j2fMð3Þ

A
g
D½3;2�j;XA

ðfMð3ÞXA
g; f�AgÞH ��

j;A

���
; (91)

~Qð3Þ
x ¼

�ig2B�B�
f2�

�
1

16
ð�H ��

X;P � 4H ��
X;A þ 10H ��

X;T � 4H ��
X;V �H ��

X;IÞ þ
�02
4�03
ð�H ��

X;P þ 2H ��
X;T �H ��

X;IÞ

þ �1

4�03

�
�H ��

X;V þH ��
X;A þ a2�0V

�
R½3;2�XV

ðfMð3ÞXV
g; f�VgÞ

@H ��
X;V

@m2
XV

� X
j2fMð3ÞV g

D½3;2�j;XV
ðfMð3ÞXV

g; f�VgÞH ��
j;V

�

� a2�0A
�
R½3;2�XA

ðfMð3ÞXA
g; f�AgÞ

@H ��
X;A

@m2
XA

� X
j2fMð3Þ

A
g
D½3;2�j;XA

ðfMð3ÞXA
g; f�AgÞH ��

j;A

���
; (92)

~Qð4Þ
x ¼

�ig2B�B�
f2�

�
1

16
ð�H ��

X;P þ 4H ��
X;A � 6H ��

X;T þ 4H ��
X;V �H ��

X;IÞ

þ �05
4�04

�
H ��

X;P �H ��
X;I � 2a2�0V

�
R½3;2�XV

ðfMð3ÞXV
g; f�VgÞ

@H ��
X;V

@m2
XV

� X
j2fMð3ÞV g

D½3;2�j;XV
ðfMð3ÞXV

g; f�VgÞH ��
j;V

�

� 2a2�0A
�
R½3;2�XA

ðfMð3ÞXA
g; f�AgÞ

@H ��
X;A

@m2
XA

� X
j2fMð3Þ

A
g
D½3;2�j;XA

ðfMð3ÞXA
g; f�AgÞH ��

j;A

���
; (93)

~Qð5Þ
x ¼

�ig2B�B�
f2�

�
1

16
ð�H ��

X;P þ 4H ��
X;A � 6H ��

X;T þ 4H ��
X;V �H ��

X;IÞ

þ �04
4�05

�
H ��

X;P �H ��
X;I � 2a2�0V

�
R½3;2�XV

ðfMð3ÞXV
g; f�VgÞ

@H ��
X;V

@m2
XV

� X
j2fMð3ÞV g

D½3;2�j;XV
ðfMð3ÞXV

g; f�VgÞH ��
j;V

�

� 2a2�0A
�
R½3;2�XA

ðfMð3ÞXA
g; f�AgÞ

@H ��
X;A

@m2
XA

� X
j2fMð3Þ

A
g
D½3;2�j;XA

ðfMð3ÞXA
g; f�AgÞH ��

j;A

���
: (94)

In comparing Eqs. (62), (82), (83), and (89) to the
continuum results of Ref. [11], one needs to be aware of
the many differences in notation. In particular, the particles
called X and � in Ref. [11] are called 	 and X, respec-
tively, here. Taking the notational differences into account,

it is straightforward to check that the continuum limits of
the above equations reproduce the results in Ref. [11].
The analytic terms in Eqs. (60) and (61) are of the form

analytic terms¼LðnÞv mxþLðnÞs ð2mlþmhÞþLðnÞa a2; (95)
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where LðnÞv and LðnÞs are continuum low-energy constants,

and LðnÞa are lattice low-energy constants, summarizing the
effects of taste-violating analytic chiral operators at NLO.
As indicated, these constants depend on n, i.e., on the
operator whose matrix element is being calculated. It is
straightforward to see that these are in fact the analytic
terms that may appear by considering the effects of adding
mass or taste-violating spurions to the chiral operators in

Eq. (57). The parameters LðnÞv , LðnÞs , and LðnÞa , together with

the parameters �̂n and �̂0n in Eqs. (60) and (61) are to be
determined from the fits to lattice data.

VI. CONCLUSIONS AND DISCUSSION

I have calculated neutral B mixing to one-loop in stag-
gered chiral perturbation theory for the complete set of
standard model and beyond-the-standard-model operators,
Eq. (1). My results are given by Eqs. (60) and (61), with
expressions for the various terms listed in Eqs. (62) and
(82) through (95).

The construction of the operators on the lattice as local
products of local heavy-light bilinears, coupled with the
use of staggered light quarks, results in the appearance of
‘‘wrong spin/taste operators’’ that are Oð1Þ in the lattice
spacing. Their contributions to the matrix elements con-
sidered here are suppressed to NLO because violation of
taste symmetry is required. At that order, they induce
mixing of the operators, summarized in the quantities
~TðnÞ, Eqs. (84) through (88), and ~QðnÞ, Eqs. (90) through
(94). However, as long as all five On are analyzed simul-
taneously, there are no new low-energy constants induced
by these effects: the constants �n and �0n are all already
present in the continuum.

Effective operator mixings may come from three addi-
tional sources, weak-coupling perturbative corrections,
corrections to the position-space spin-taste construction,
and corrections to the taste identification of the operators
and interpolating fields. I argue that any nonanalytic terms
that arise from such mixings are effectively NNLO, higher
order than what has been considered here.

Because the light staggered quark is converted to a naive
quark in the lattice representatives of the operators, the
relationship between the staggered and naive quark fields
plays an important role in my analysis. In particular, a
naive quark is equivalent to four copies of staggered
quarks, and the resulting ‘‘copy symmetry’’ can be used
to simplify the calculations. An interesting resulting fea-
ture is that the taste structure of the operators is not the
same for all diagrams, but depends on the quark flow.

Lattice computations in Refs. [1,2] focused on the cal-

culation of the quantity � � ðfBs

ffiffiffiffiffiffiffiffi
B̂Bs

q
Þ=ðfBd

ffiffiffiffiffiffiffiffi
B̂Bd

q
Þ, which

comes from the matrix element of operator O1. The chiral
effects of the wrong spins were not known at the time of the
HPQCD calculation [1] and were therefore omitted from
the analysis and error estimate. In the Fermilab/MILC

calculation [2], the complete rHMS�PT expressions were
available, but the matrix elements of operators other than
O1 were not calculated, preventing a direct inclusion of the
wrong-spin effects. However, it was possible to estimate
the error of omitting these effects by using a small subset of
new data to investigate the other matrix elements. The
result, � ¼ 1:268ð63Þ included a 3.2% error from this
effect, which was the second largest source of error. In
the ongoing second-generation Fermilab/MILC project
[40], matrix elements of all five operators On are being
computed, which means that the complete rHMS�PT ex-
pressions can be used in the analysis, and there will be no
‘‘wrong-spin error.’’ Of course, a chiral/continuum ex-
trapolation error will remain.
For future lattice computations of mixing with ‘‘highly

improved staggered quark’’ ensembles [41], taste viola-
tions are sufficiently reduced that the power counting used
here, Eq. (81), may no longer be appropriate. Depending
on the range of lattice spacings studied and the statistical
errors in the data, taste violations may in fact be so small
that continuum heavy meson �PT might prove adequate
for describing the data. More likely, one will want to use
the rHMS�PT forms calculated here, but it may be neces-
sary in addition to include the NLO chiral effects of the
operators that enter through weak-coupling perturbative
mixing, since such effects may no longer be much smaller
than taste-violating NLO effects. Including such effects in
NLO rHMS�PTwill however be straightforward, since the
chiral logarithms for the complete set of operators, Eq. (1),
have already been calculated above.
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APPENDIX: B PARAMETERS

It is sometimes convenient to express the mixing matrix
elements in terms of B (or ‘‘bag’’) parameters. A fairly
common set of definitions is given for example in
Ref. [11]:

h �B0
xjOx

1jB0
xi ¼ 8

3
M2

Bx
f2Bx

Bð1ÞBx
; (A1)

h �B0
xjOx

njB0
xi ¼ 	nR

2M2
Bx
f2Bx

BðnÞBx
for n ¼ 2; 3; 4; 5;

(A2)

where fBx
is the decay constant of the Bx meson,MBx

is its

mass, R � MBx
=ðmb þmxÞ, and 	2 ¼ �5=3, 	3 ¼ 1=3,
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	4 ¼ 2, and 	5 ¼ 2=3. Relativistic normalization of the
states is assumed in these expressions.

The expression for the decay constant in rHMS�PT,
including heavy-meson hyperfine and flavor splittings, is
given in Eq. (6.20) of Ref. [7]. To convert it to the current
notation, we just must replace the chiral logarithm func-
tions J and ‘ with H and I using Eqs. (63) and (64).
Using quantities defined above in Eqs. (62), (68), and (69),
we may write the result as

fBx

ffiffiffiffiffiffiffiffiffi
MBx

q
¼ �0

�
1þ 1

2
ðW x �b þT ðnÞ

x;Fig:3 þT ðnÞ
x;Fig:4Þ

�
:

(A3)

It is not surprising that W x �b, T
ðnÞ
x;Fig:3, and T ðnÞ

x;Fig:4 appear,

because the wave function and the tadpole contributions of
Figs. 3 and 4 are factorizable: they affect only one meson
and one bilinear of the four-quark operators, so they are
exactly the contributions that appear in the decay constant.

As always, heavy-light chiral perturbation theory is ex-
pressed in terms of the nonrelativistically normalized states
of heavy quark effective theory. Thus the low-energy con-
stant, �0, that describes the decay constant at tree level in

chiral perturbation theory includes a factor of
ffiffiffiffiffiffiffiffiffi
MBx

p
.

Similarly, with the relativistic normalization used
Eqs. (A1) and (A2), one factor ofMBx

needs to be included

in our expressions for these matrix elements in terms of the
parameters �n and �0n. Taking these normalization factors
into account, and using Eqs. (60), (61), and (A3), we have

Bð1ÞBx
¼ �1

ð8=3Þ�2
0

ð1þ Sx þ ~T ð1Þ
x þQð1Þ

x þ ~Qð1Þ
x Þ

þ analytic terms (A4)

BðnÞBx
¼ �n

	nR
2�2

0

ð1� Sx þ ~T ðnÞ
x Þ

þ �0n
	nR

2�2
0

ðQðnÞ
x þ ~QðnÞ

x Þ þ analytic terms; (A5)

where n ¼ 2; . . . ; 5 in the second equation, and the upper
(plus) sign is for n ¼ 2, 3, while the lower (minus) sign is
for n ¼ 4, 5. Here the wave function and tadpole contri-
butions of Figs. 3 and 4 have canceled, and Sx is a new
correct-spin tadpole term that comes only from the non-
factorizable tadpole diagrams, Figs. 5 and 6. Combining
Eqs. (72) and (74) gives

Sx ¼ �i
f2�

�
1

16

X
�

N�IX;� þ 1

3

�
R½2;2�XI

ðfMð2ÞXI
g; f�IgÞ@IX;I

@m2
XI

� X
j2fMð2ÞI g

D½2;2�j;XI
ðfMð2ÞXI

g; f�IgÞI j;I

��
: (A6)

The other chiral logarithm functions in Eqs. (A4) and (A5)
are given in Eqs. (84) through (94). The analytic terms in
Eqs. (A4) and (A5) have the same form as in Eq. (95) (with,
of course, redefined low-energy constants).
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