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The eigenvalue spectra of staggered fermions with an Adams and/or Hoelbling mass term are studied.

The chiralities of the eigenmodes reflect whether the chirality linked to the unflavored approximate

(�5 � 1) or the flavored exact (�5 � �5) staggered symmetry is considered, and which one of the RR, LR,

RL, LL eigenmode definitions is used. In either case a sensitivity to the topological charge of the gauge

background is found. We discuss how to remove the leading cutoff effects of these actions by means of a

properly tuned improvement term and/or the overlap procedure. The combination of Symanzik improve-

ment and link smearing radically improves the properties of the physical branch.
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I. INTRODUCTION

The so-called fermion doubling problem in lattice field
theory has been addressed in many ways; the two most
popular approaches are known as Wilson fermions [1] and
staggered fermions [2], respectively. A problem being
cured in several ways usually indicates that none of the
solutions is completely satisfactory in all respects, and the
lattice is no exception to this rule.

Wilson fermions represent the spinor components as
internal degrees of freedom (i.e., with explicit � matrices),
such that on a lattice with N grid points the Wilson for-
mulation entails a matrix of size 4NcN � 4NcN, where Nc

is the number of colors. Susskind ‘‘staggered’’ fermions
are based on the observation that the eigenvalue spectra of
naive fermions on interacting backgrounds are fourfold
degenerate (i.e., not 16-fold in four space-time dimensions
as one might have naively guessed), and hence a reduction
to 1-component spinors is possible (at the price of distrib-
uting the spinor degrees of freedom over space-time),
such that one ends up with a staggered fermion matrix of
size NcN � NcN that corresponds to four species in the
continuum.

Wilson fermions are convenient for their conceptual
simplicity (there is a one-to-one correspondence between
lattice and continuum flavor). Their main technical disad-
vantage is the breaking of chiral symmetry through the
dimension 5 operator �c ð�4Þc that is added to lift 15 out
of the 16 naive species to a mass of order 1=a, where 4 is
the gauge covariant Laplacian and a is the lattice spacing.
Staggered fermions offer the advantage of a truncated form
of chiral symmetry and of more speedy simulations (the
size of the matrix is smaller). Their main technical dis-
advantage is that the taste symmetry (among the four
species) is not exact and that the reduction to a single
species proceeds in different ways for sea quarks (those
which come from the functional determinant) and valence
quarks (those which stem from interpolating fields). This
renders the rooted staggered formulation (at finite a)

nonlocal and/or nonunitary which, in principle, could
affect the universality class of the theory (though there is
plenty of analytical and numerical evidence that this does
not happen); see e.g., the review [3].
In either approach the main technical disadvantage

can be mitigated. Replacing the gauge links U�ðxÞ of

the covariant derivative ðr��ÞðxÞ ¼ ½U�ðxÞ�ðxþ �̂Þ �
Uy

�ðx� �̂Þ�ðx� �̂Þ�=2 in the operator by smeared links

V�ðxÞ (see below for details) reduces the amount of chiral

symmetry breaking with Wilson fermions (particularly
effectively when combined with a clover term) and of taste
symmetry breaking with staggered fermions (see [3] for a
guide to the literature). In the Wilson case chiral symmetry
breaking can be completely removed through the overlap
procedure [4,5]; unfortunately this increases the computa-
tional requirements by a factor Oð100Þ.
Recently, two modifications of the staggered action

SS ¼ ��½DS þm�� with DS ¼ ��r� and ��ðxÞ given

below were proposed which go by the somewhat confusing
name ‘‘staggered Wilson fermions.’’ In this article we call
them ‘‘taste-split staggered actions.’’ In essence the pro-
posal is to replace or augment the usual staggered mass
term mð1 � 1Þ in SS, where the notation is spinor � taste
[6–8], by taste nonsinglet mass terms / ð1 � �Þ which are
designed to (partly or fully) lift the staggered near degen-
eracy; i.e., some species get masses 2=a or 4=a such that
they decouple in the continuum limit. Such nonstandard
staggered mass terms were first considered in [8] where it
was noticed that they break the remnant chiral symmetry

DSðx; yÞ ! ei�ðxÞ�DSðx; yÞei�ðyÞ� of the massless staggered
action [with �ðxÞ defined below] more severely than the
usual mass term does. The Adams proposal [9]

SA ¼ ��½��r� þ rðMA þ 1Þ�� (1)

builds on a mass term MA ’ 1 � �5, such that in the
naive continuum limit two species stay massless, while
two have mass 2r=a (where 0< r < 2 is akin to the
Wilson parameter); the precise form of MA will be
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given below. Similarly, Hoelbling proposes the two
operators [10]

SHori ¼ ��½��r� þ rðMA þMHori þ 2Þ��; (2)

SHsym ¼ ��½��r� þ rðMHsym þ 2Þ��; (3)

which fully lift the staggered near degeneracy; i.e., one
species stays massless, while two receive a mass 2r=a and
the last one is brought up to 4r=a. The two versions differ
on how they break the rotational symmetry group R�	 of

the massless staggered action; the precise form of MHori

and MHsym will be given below. It is straightforward to

write down the linear combination

SHmix ¼ ��

�
��r� þ r

2
ðMA þMHsym þ 3Þ

�
�

¼ 1

2
½SA þ SHsym�; (4)

which lifts all three noncontinuum species to the same
doubler point 2r=a.

Evidently, the attractive feature of these operators is that
the matrices are just of size NcN � NcN, and still only one
or two species survive in the continuum. The question has
been raised whether the remaining symmetries of (1) or
(2)–(4) are sufficient for taking the continuum limit (at a
fixed pion mass) by tuning only the standard (relevant)
mass term or whether other (relevant, marginal or irrele-
vant) operators need to be tuned simultaneously [11–14].
In this paper we investigate the eigenvalue spectra of these
operators on interacting backgrounds and the chiralities
(with respect to �5 � 1, 1 � �5 and �5 � �5) of their
eigenmodes. The idea behind is that the willingness or
reluctance of the ‘‘bellies’’ to open up (and hence separate
the branches) is indicative of how severe the fermionic
operator mixing is—in the Wilson case both link smearing
and including the clover term tend to clear the first eigen-
value belly, since they suppress mixing between the di-
mension 5 Laplacian and the dimension 3 mass operator.

In the proposals [9,10] (and in [12–17]) a notation is
used which obscures the link to the original work [8]. This
is why Sec. II contains a review of taste nonsinglet mass
terms using standard staggered notation. The core of the
investigation, a look at the staggered eigenvalues and
chiralities, is presented in Sec. III. A brief discussion of
some of the peculiarities of the Symanzik improvement
program, when applied to these partly or fully undoubled
staggered actions, is given in Sec. IV. Results where these
taste-split staggered actions serve as kernel to the overlap
procedure are shown in Sec. V. A comparison to the
eigenvalue spectra of Wilson-type actions is found in
Sec. VI. Comments on the breaking of rotational symmetry
by the Hoelbling operators (2)–(4) are arranged in Sec. VII.
Finally, Sec. VIII contains a summary.

II. REVIEW OF STAGGERED MASS TERMS

Define the Golterman-Smit staggered phase factors [8]

��ðxÞ ¼ ð�1Þ
P

	<�
x	 ; 
�ðxÞ ¼ ð�1Þ

P
�<	

x	 ; (5)

which multiply to give

�5ðxÞ ¼ �1�2�3�4 ¼ ð�1Þx1þx3 ;


5ðxÞ ¼ 
1
2
3
4 ¼ ð�1Þx2þx4 ;
(6)

respectively. The product of the latter two phase factors
reads [throughout the spinor � taste identification holds up
to OðaÞ corrections [6–8]]

�ðxÞ ¼ �5
5 ¼ ð�1Þx1þx2þx3þx4 $ �5 � �5 (7)

and induces the Uð1Þ� symmetry and � Hermiticity

�ðxÞDSðx; yÞ�ðyÞ ¼ Dy
S ðx; yÞ ¼ ½DSðy; xÞ�y of the massless

staggered action. After being lifted to a site-diagonal operator

�ðx; yÞ ¼ �55ðx; yÞ ¼ ð�1Þx1þx2þx3þx4�x;y; (8)

it couples to the �5 � �5 ‘‘Goldstone’’ state when used as an
interpolating field [8].
The (�� � 1) and (�5 � 1) ‘‘taste singlet’’ operators are

defined by

��0ðx; yÞ � ��ðx; yÞ
¼ 1

2��ðxÞ½U�ðxÞ�xþ�̂;y þUy
�ðx� �̂Þ�x��̂;y�;

(9)

�50ðx; yÞ � �5ðx; yÞ ¼ 1

4!

X
perm

�perm�1�2�3�4; (10)

and the (1 � ��) and (1 � �5) ‘‘spinor singlet’’ operators

are defined by

�0�ðx; yÞ � ��ðx; yÞ
¼ 1

2 
�ðxÞ½U�ðxÞ�xþ�̂;y þUy
�ðx� �̂Þ�x��̂;y�;

(11)

�05ðx; yÞ � �5ðx; yÞ ¼ 1

4!

X
perm

�perm�1�2�3�4; (12)

with the consequence that both �50 and �05 are 4-hop
operators. Furthermore, the latter two operators relate to
each other by a simple �55 operation (either from the left or
from the right).
In practice it can be advantageous to introduce the

commutators in spinor and taste space

��	ðx; yÞ � i

2
ð���	 � �	��Þ $ ��	 � 1; (13)

��	ðx; yÞ � i

2
ð���	 ��	��Þ $ 1 � ��	; (14)
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respectively, with ��	 � i
2 ½��; �	� known as ��	 and

��	 � i
2 ½��; �	�. Based on these one finds

�50ðx; yÞ ’ � 1

6
ð�12�34 � �13�24 þ �14�23

þ �23�14 � �24�13 þ �34�12Þ; (15)

�05ðx; yÞ ’ � 1

6
ð�12�34 ��13�24 þ�14�23

þ�23�14 ��24�13 þ�34�12Þ; (16)

where the near equality is exact if no SUð3Þ backprojection
in intermediate steps is applied. The main advantage of the
form (15) and (16) is that one can apply SUð3Þ backpro-
jection twice, in each case the argument being a sum over
products of just two color matrices.

Following Golterman and Smit [8], everything which is
a singlet in spinor space is called a ‘‘mass term.’’ This leads
to the categorization of potential mass terms as

1 � 1 $ 1 ð0-hop; taste-scalarÞ; (17)

1 � �� $ �� ð1-hop; taste-vectorÞ; (18)

1 � ��	 $ ��	 ð2-hop; taste-tensorÞ; (19)

1 � i���5 $ i���5 ð3-hop; taste-pseudovectorÞ;
(20)

1 � �5 $ �5 ð4-hop; taste-pseudoscalarÞ (21)

in terms of Hermitian operators. As was pointed out in
[12], an acceptable mass term is 1 � 1, 1 � ��	, 1 � �5 or a

combination thereof. In this terminology the Adams term
in (1) is the taste-pseudoscalar mass �05 ¼ �5. And the
Hoelbling terms in (2) and (3) represent unsymmetrized
and symmetrized versions of the taste-tensor mass ��	,

respectively, i.e., MHori ¼ �12 [to be used together with

MA; see (2)] and MHsym ¼ ð�12 þ�34 þ�13 ��24 þ
�14 þ�23Þ=

ffiffiffi
3

p
[to be used alone; see (3)]. The operator

(4), finally, involves all three types of valid mass terms.
Note that there is some freedom in the definition of the

operators (1)–(4) and of the taste nonsinglet mass terms.
For instance with the Adams operator as defined in (1) and
the choice MA ¼ �5 � �5 it follows that the physical
branch has �5 ¼ �1. Hence, with this convention the
actions of �5 � 1 and �5 � �5, in the physical branch, on
a topological mode will differ in sign.

III. EIGENVALUES AND CHIRALITIES

The eigenvalue spectrum on a thermalized gauge back-
ground is a key to get an impression of how suitable a given
fermion discretization is in practical terms. An issue with
staggered fermions is their sensitivity to the topological
charge of the gauge configuration [18–21].

The � Hermiticity ensures that the eigenvalues of the
massless operator occur in pairs�i on the imaginary axis.
There are no exact zero modes of DS; instead 4jqj would-
be zero modes show up. Both their separation from the
nontopological modes and their chiralities (see below)
depend on how much the staggered action is ‘‘improved’’
through link smearing.
Figure 1 displays the eigenvalue spectra of the operators

(1)–(4) on a 64 lattice (generated with � ¼ 5:8 Wilson
glue) of unit topological charge, jqj ¼ 1. The fermion
boundary conditions are periodic in all directions; with
antiperiodic boundary conditions in the 4-direction mild
changes would occur in regions of large (positive or nega-
tive) imaginary part. Throughout, we use gauge links V�ðxÞ
which have undergone 0, 1, or 3 levels of HEX smearing
[22]. Backprojection of the mean of the n-hop paths to
SUð3Þ could be applied, but in the present work this is not
done.
Our first observation in these plots is that without link

smearing the ‘‘bellies’’ have a hard time opening up (as
was already observed in [12]), but the situation improves
considerably upon applying one or three steps of smearing.
All operators have a bare (taste-scalar) mass m ¼ 0, but
their physical (leftmost) branches cross the real axis at
distinctively nonzero values. This is a sign of additive
mass renormalization, and the plots show that the smearing
reduces this effect significantly. Last but not least the
physical branches have one [or two for (1), since this
operator is doubled] exactly real modes which tend to get
‘‘soaked into the belly’’ even for the higher smearing
levels. And of course all spectra are symmetric with respect
to the real axis, which implies that the determinant is real
(this is a consequence of the requirement of � Hermiticity
which ruled out two possible mass terms; cf. Sec. II).
The next step is to look at the chiralities of the pertinent

eigenmodes, i.e., the values of the operators �50, �05 and
�55 when sandwiched between the staggered eigenmodes.
The standard operator DS or DS þm is a normal operator,

i.e., ½DS; D
y
S � ¼ 0, and only �50 is sensitive to the topo-

logical charge of the background (see below). The taste-
split staggered operators (1)–(4) are non-normal operators,
i.e., ½D;Dy� � 0. This implies that the left eigenvectors,
which satisfy hLijD ¼ hLiji, are not just the Hermitian
conjugates of the right eigenvectors, which satisfyDjRii ¼
ijRii, though they share the eigenvalue i. The situation is
now analogous to that of the Wilson operator which is also
non-normal [23]. This implies that for a given sandwich
operator � there are four chiralities, hLij�jLii, hLij�jRii,
hRij�jLii, and hRij�jRii, where jLii is the Hermitian con-
jugate of the (normalized) left eigenvector hLij and hRij is
the Hermitian conjugate of the (normalized) right eigen-
vector jRii, with i running over all modes.
Figure 2 displays these four options with the sandwich

operators �50 and �55 for the eigenmodes of the Adams
operator (1). The chiralities are plotted in the z direction

TASTE-SPLIT STAGGERED ACTIONS: EIGENVALUES, . . . PHYSICAL REVIEW D 87, 114501 (2013)

114501-3



above the respective eigenvalue  ¼ xþ iy in the complex
plane. The four options collapse effectively into two, as it
must be, due to the � Hermiticity of the operator. The
hLj�jLi or hRj�jRi option shows two distinctively nonzero
physical modes (on a configuration with jqj ¼ 1), depicted
at the position of the two exactly real eigenvalues, both for
� ¼ �50 and � ¼ �55 (peeking into the þz and �z direc-
tions, respectively). With the hLj�jRi or hRj�jLi option
the chiralities tend to be even more pronounced, and in
either case it holds that the magnitude of h:j�55j:i exceeds
the magnitude of h:j�50j:i. Finally there is an equal number
of chiral modes in the unphysical branch (near x ¼ 2)
with identical orientation for �50 but opposite orientation
for �55 (in accordance with Karsten and Smit [18]). The
most surprising lesson is that both �50 and �55 prove
sensitive to the topology of the gauge background; this
happens in sharp contrast to the standard staggered case
(cf. next paragraph). And the recommendation of [23] that
for any � one should focus on the hLj�jRi option continues
to be valid.

Figure 3 displays—for comparison—the chiralities of
the standard staggered action and of the Wilson action on
the same jqj ¼ 1 gauge background (only half of the
spectrum is shown in the latter case). In the staggered
case there is only one type of eigenmode, due to hVij ¼
jViiy, while in the Wilson case only hLij�5jRii is shown. In
the staggered case hVij�55jVii is absolutely flat (as required
by f�;DSg ¼ 0), while hVij�50jVii (plotted at x ¼ 1) has
four modes which peek upwards, and hVij�05jVii (plotted
at x ¼ 2) is wiggly but not sensitive to topology. The
Wilson operator shows the expected behavior—one chiral
mode in the physical branch, four oppositely orientedmodes
near x¼2, six originally oriented modes near x¼4, four
oppositely oriented modes near x ¼ 6 (not shown) and one
originally oriented mode near x ¼ 8 (not shown).
Figure 4 displays the hLj�55jRi chiralities for the four

operators (1)–(4) above their eigenvalues. The Adams
operator has two chiral modes in the physical branch and
two unphysical modes with opposite orientation. The un-
symmetrized Hoelbling operator has one chiral mode
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FIG. 1 (color online). Eigenvalue spectra of the four unimproved operators (cSW ¼ 0) with r ¼ 1 at m ¼ 0 for up to three levels of
HEX smearing—the smearing seems essential for the bellies to form.
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FIG. 3 (color online). Chiralities of the standard staggered action and of the unimproved Wilson operator. For better visibility the
results for h:j�50j:i and h:j�05j:i are displaced in the real direction.
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FIG. 2 (color online). Needle plots of the four L=R chiralities of the unimproved Adams operator (cSW ¼ 0) with respect to �50

(green circles) or �55 ¼ � (blue stars), with three HEX smearings.
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which is physical, two modes of unequal orientation near
x ¼ 2 and one oppositely oriented mode near x ¼ 4. The
symmetrized version has one chiral mode which is physi-
cal, two oppositely oriented modes near x ¼ 2 and one
mode with original orientation near x ¼ 4. The mixed
operator (4), finally, has one chiral mode which is physical
and three unphysical modes near x ¼ 2 (two of which are
antiparallel, one of which is parallel to the chirality of the
physical mode). In each case it was checked that the choice
�50 (instead of �55) or the naive option hRj:jRi (instead of
hLj:jRi) brings exactly the kind of change that one would
anticipate from Fig. 2.

IV. RESULTS WITH SYMANZIK IMPROVEMENT

So far the investigation of the eigenvalues and eigen-
mode chiralities of the taste-split staggered actions (1)–(4)
leaves us with the impression that they are technically
rather close to the usual Wilson action—with chiral sym-
metry breaking and all the consequences of non-normality,

e.g., hLj and jRi eigenmodes. This raises the question
whether some of the remedies which have proven useful
in taming these effects with the Wilson action might be
taken over and/or adapted to these taste-split staggered
actions. The most successful remedies were link smearing,
clover improvement and the overlap procedure—they all
mitigate (in the last case eliminate) the effects of chiral
symmetry breaking, and they can be used in various
combinations.
That link smearing proves useful for staggered actions

with taste nonsinglet mass terms has already been shown in
the previous section—in Fig. 1 a clear improvement of the
overall properties of the eigenvalue spectra with an in-
creased number of smearing steps is evident (and conse-
quently in Figs. 2–4 only the results for three smearing steps
were displayed).
The next step is Symanzik improvement [24]. In princi-

ple this is a program to be carried out in strict analogy to the
Wilson case—onewrites down a complete list of operators,
ordered by their mass dimensions, and eliminates those
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FIG. 4 (color online). Needle plots of the chiralities with respect to �55 of the unimproved operators (cSW ¼ 0) above their
eigenvalues. The LR definition of h:j�55j:i and three HEX smearings are used.
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which are forbidden by symmetries or redundant by the
equation of motion. In the Wilson case one finds that only
the d ¼ 5 term �c��	F�	c needs to be added to the action

[25], with a tuned coefficient cSW=2 in front to cancel all
OðaÞ cutoff effects (thus eliminating all signs of chiral
symmetry breaking to this order) [26,27].

With staggered fermions the situation is a bit more
delicate, due to the ‘‘staggered’’ representation of the
spinor degrees of freedom. The point is that the operators
�� � ��C� and �� � 
�C� formally leave the mass

dimension d of a fermion bilinear invariant, but they do
involve a fermion hop [made gauge invariant through a link
U�ðxÞ or V�ðxÞ]. In other words, the strict coincidence of

the mass dimension of the operator (as is relevant for the
Symanzik analysis) and the maximum number of hops
(that affects the strength of the mixing or the ‘‘noise’’ of
the operator) is now broken. It seems that this requires a
more in-depth analysis [11]. Here we give an incomplete
and redundant list of staggered bilinears (with ‘‘þH:c:’’
implicit)

d ¼ 3: �c f1;��;��;�
2
�;����;�

2
�; . . .gc ; (22)

d ¼ 4: �c f��D�; 
�D�;��D�;��D�; . . .gc ; (23)

d ¼ 5: �c fD2
�; ��D

2
�; 
�D

2
�;��D

2
�;��D

2
�;

��	F�	;��	F�	; . . .gc (24)

along with a statement that most of them can be eliminated
by means of the arguments mentioned above and the
identification of operators which differ only by a factor
(1 � �5). The reasoning sketched in the Appendix suggests
that only a single operator needs to be included:

� cSW
4

f�12F12 þ �� �þ�34F34 þF12�12 þ �� �þF34�34g

¼ �cSW
4

�X
�<	

��	F�	 þH:c:

�
(25)

to be compared to � cSW
2

P
�<	��	F�	�x;y with Wilson

fermions (in either case factors are chosen such that
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FIG. 5 (color online). Eigenvalue spectra of the four improved operators (cSW ¼ 1) at m ¼ 0 for up to three levels of HEX
smearing—the smearing seems essential for the bellies to form.
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cSW ¼ 1 at tree level). Note that F�	 is site-diagonal, but

not color-diagonal, whereas ��	 is neither site- nor color-

diagonal. The symmetrization in (25) ensures gauge co-
variance (in contradistinction to gauge invariance in the
Wilson case) and Hermiticity.

Figure 5 displays the eigenvalues of the four operators
(1)–(4) with the improvement term (25) on the same gauge
configuration (with jqj ¼ 1) as in Sec. III. Relative to
Fig. 1 one finds a clear amelioration of the behavior of
the physical (leftmost) branch of eigenvalues; it is now
much thinner and the section close to the origin is much
more akin to a shifted Ginsparg-Wilson circle. In particular
the tendency of the exactly real modes to get ‘‘soaked into’’
the belly is almost removed, except for the unsymmetrized
operator (2). Perhaps the most remarkable feature is that
for the unsmeared operators the improvement is hardly
useful. It takes the combination of smearing and improve-
ment to get a profound effect—in strict analogy to what is
observed for the Wilson case [22]. For clarity we add that

the links in the operator, in ��	 and in F�	 have all

undergone the same kind of smearing. Finally, let us add
that it was explicitly checked that the alternative operatorP

�<	��	F�	 þ H:c: does not lead to a similar improve-

ment of the eigenvalues in the physical branch.
Figure 6 displays the same kind of needle plots for the

�50 and �55 chiralities of the eigenmodes of the operators
(1) and (4) that were presented previously without im-
provement. Relative to Fig. 2 the most significant change
is that the difference between hLj:jLi and hLj:jRi in the
physical branch is now less pronounced. This is a hint that
the non-normality of the operator, when restricted to the
physical subspace, is reduced by the improvement term.
Figure 7 displays a feature that was not discussed in the

unimproved case. The overlaps hLj1jLi and hLj1jRi are
shown for the operators (1) and (4)—the former ones
are trivially one, but the latter ones indicate how normal
the operator is, and indeed this figure is close to 1 in the
physical branch. In addition the taste chiralities are

0 0.5 1 1.5 2 2.5 3
−2

0

2
−1

−0.5

0

0.5

1
 

4D: NC=3, β=5.8, L=6, T=6, |q|=1, c_SW=1

 

ad
am

s

<L|G50|L>
<L|G55|L>

0 0.5 1 1.5 2 2.5 3
−2

0

2
−1

−0.5

0

0.5

1
 

4D: NC=3, β=5.8, L=6, T=6, |q|=1, c_SW=1

 

ad
am

s

<L|G50|R>
<L|G55|R>

0 0.5 1 1.5 2 2.5 3
−2

0

2
−1

−0.5

0

0.5

1
 

4D: NC=3, β=5.8, L=6, T=6, |q|=1, c_SW=1

 

hm
ix

<L|G50|L>
<L|G55|L>

0 0.5 1 1.5 2 2.5 3
−2

0

2
−1

−0.5

0

0.5

1
 

4D: NC=3, β=5.8, L=6, T=6, |q|=1, c_SW=1

 

hm
ix

<L|G50|R>
<L|G55|R>

FIG. 6 (color online). Needle plots of the LL (left) and LR (right) chiralities of the Adams operator (1) (top) and of the mixed
operator (4) (bottom), with respect to �50 (green circles) or �55 ¼ � (blue stars), with Symanzik improvement (cSW ¼ 1) and three
HEX smearings.
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displayed; both hLj�05jLi and hLj�05jRi tend to assign
each branch a fixed taste chirality which is not sensitive
to topology of the background (as mentioned earlier, with
our choices the taste chirality in the physical branch is
�5 ¼ �1). The conclusion is that the taste chiralities in the
interacting case look similar to the free-field results pre-
sented in [12].

Figure 8 displays the hLj�55jRi chiralities of all four
operators (1)–(4) with the clover term (25). These chiral-
ities are very well pronounced (i.e., very close to �1) and
linked to the topology of the gauge background; a cut at
�0:5 is well suited to identify the chiral modes.

V. RESULTS WITH OVERLAP PROJECTION

The definition of the massless overlap Dirac operator
takes the form [4,5]

Dov ¼ �

a
ð1þ XðXyXÞ�1=2Þ ¼ �

a
ð1þ ðXXyÞ�1=2XÞ; (26)

where X ¼ aDke � � and the kernel Dke may be any
undoubled fermion action [as is the case with (2)–(4)] or
a doubled one where the tastes in the physical branch share
one chirality [as is the case with (1)]. Evidently, the overlap
inherits the multiplicity of the kernel operator, e.g., twofold
with (1) as kernel. The canonical value of the shift parame-
ter 0<�< 2 is � ¼ 1, a choice which we shall adopt in
the following. Because the eigenvalue spectra are some-
what boring (the spectra lie on the shifted unit circle), we
proceed directly to the chiralities.
Figure 9 displays the h:j�55j:i chiralities of the overlap

action built from the kernels (1)–(4). These operators are
normal; i.e., the left eigenvectors are daggered copies of
the right eigenvectors, viz. hLij ¼ jRiiy, and the distinction
between the four L=R versions of h:j�55j:i is now obsolete.
The overlap procedure being a projection, together with the
�55 Hermiticity of the kernel, ensures that the resulting
h:j�55j:i chiralities are exactly �1 (topological modes) or
exactly 0 (nontopological modes). As a side effect in the
conglomerate of unphysical branches (near x ¼ 2) only
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FIG. 7 (color online). Needle plots of the LL (left) and LR (right) overlaps h:j�00j:i (yellow circles) and taste chiralities h:j�05j:i (red
stars) for the Adams operator (1) (top) and the mixed operator (4) (bottom), with Symanzik improvement (cSW ¼ 1) and three HEX
smearings.
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one type of �55 chirality survives [contrary to what a naive
shift of the corresponding modes of the kernel operator in
Fig. 8 would suggest]. Thus the needle at z ¼ ðx; yÞ ¼
ð2; 0Þ is twofold populated with the Adams kernel, but
onefold in all other cases.

Figure 10 compares the h:j�55j:i chiralities of the overlap
operators with taste-split staggered kernel to the h:j�50j:i
chiralities (still on the same jqj ¼ 1 configuration). While
the former are exactly �1 (for the topological modes) the
latter are not, in spite of the overlap projection. As dis-
cussed before this is a consequence of the kernels being �55

Hermitian but not �50 Hermitian.
As a practical point let us remark that the versions with

unimproved kernels (cSW ¼ 0) look superficially identical
to the versions with clover improved kernels (cSW ¼ 1)
that were presented in the last two figures. Given that the
combination of clover improvement and link smearing
facilitated the separation between the physical branch
and the unphysical branch(es), it is hardly surprising that
the condition number in the overlap construction is

significantly smaller in the latter case (which reduces the
order of the polynomial or rational approximation to the
sign function and thus the computational requirements).
In short, it is strongly recommended to equip the kernel
operator with a clover term and overall link smearing.
Figure 11 contains two addenda to the overlap theme. In

the left panel the h:j�5j:i chiralities of the overlap operator
with Wilson kernel are shown, and the analogy to Fig. 10 is
evident. In the right panel the taste chiralities h:j�05j:i of
the overlap operator with Adams kernel are shown, and the
smooth pattern that would show up in the kernel only in the
hLj:jLi version (cf. Fig. 7) is now generic (as the L=R
distinction is gone).

VI. EIGENVALUE COMPARISON
TOWILSON-TYPE ACTIONS

Since the taste-split staggered operators (1)–(4) were
found to behave, on many practical issues, like Wilson
fermions, it seems instructive to compare their eigenvalue

0 1 2 3 4
−2

0

2
−1

−0.5

0

0.5

1

4D: NC=3, β=5.8, L=6, T=6, |q|=1, c_SW=1

 

ad
am

s

<L|G55|R>
spec

0 1 2 3 4
−2

0

2
−1

−0.5

0

0.5

1

4D: NC=3, β=5.8, L=6, T=6, |q|=1, c_SW=1

 

ho
ri

<L|G55|R>
spec

0 1 2 3 4
−2

0

2
−1

−0.5

0

0.5

1

4D: NC=3, β=5.8, L=6, T=6, |q|=1, c_SW=1

 

hs
ym

<L|G55|R>
spec

0 1 2 3 4
−2

0

2
−1

−0.5

0

0.5

1
 

4D: NC=3, β=5.8, L=6, T=6, |q|=1, c_SW=1

 

hm
ix

<L|G55|R>
spec

FIG. 8 (color online). Needle plots of the chiralities with respect to �55 of the improved operators (cSW ¼ 1) above their eigenvalues.
The LR definition of h:j�55j:i and three HEX smearings are used.
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FIG. 10 (color online). Needle plots of the chiralities of the overlap actions based on the Adams kernel (1) (left) or the mixed kernel
(4) (right), with respect to �50 (green circles) or �55 ¼ � (blue stars). Either kernel uses Symanzik improvement (cSW ¼ 1) and three
HEX smearings.
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FIG. 11 (color online). Needle plot of the h:j�5j:i chiralities of the eigenmodes of the overlap action with clover improved (cSW ¼ 1)
Wilson kernel (left) and hLj�05jRi taste chiralities of the overlap action with clover improved (cSW ¼ 1) Adams kernel (right).
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spectra (still on the same jqj ¼ 1 configuration) to those of
the Wilson [1] and Brillouin [28] action.

Figure 12 gives such a comparison, without improve-
ment (left) and with tree-level clover improvement (right).
Throughout gauge links V�ðxÞ are used which have under-
gone one or three steps of HEX smearing [22]. The striking
feature with cSW ¼ 0 is that the lowest nontopological
modes of all operators sit essentially in the same place
(with two nearly degenerate copies in case of the Adams
operator), but the tendency of the topological modes to get
soaked into the belly is different (the Adams operator fares
best; the Wilson operator fares worst on this point).
With cSW ¼ 1 the situation is just opposite; the ‘‘soak
in’’ phenomenon seems cured with all operators, but now
the position of the physical branch varies, and this time the
Brillouin operator performs best. A peculiar issue with the
latter action is the ‘‘thorn’’ of eigenvalues that grows from
the doubler point 2 into the belly, once the clover term
starts spreading the 15 unphysical modes. It is not clear
whether this is an advantage (it might facilitate topology
changes) or a disadvantage (topology might be less clearly
defined) of this action—in the latter case it might be cured
by multiplying its clover term with a factor ð1þ4Bri=4Þ,
with symmetrization, where4Bri is defined in [28]. In short
these spectra underline the value of the improvement term
(25) and suggest that—at least for some applications—the
actions (1) and (4) might fare well. The conceptual issue
related to the rotational symmetry breaking of (4) is dis-
cussed in Sec. VII.

The reader might wonder whether further elements of the
set of recently tried modifications to the Wilson action
(other smearings, twisted-mass term, etc.) may prove useful
in the context of taste-split staggered actions. Regarding the
link smearing it is clear that the fermion action is fairly
insensitive to the details of this procedure. In view of
dynamical fermion simulations the stout, n-HYP and
HEX recipes are most interesting, since they can be com-
bined with the (R)HMC algorithm, but the reader is free to
select a different procedure. A twisted-mass term i�ð� �
�3Þ [based on the exact � ¼ �5 � �5 symmetry] would
bring a lower bound on the determinant, but it requires pairs
of Hoelbling fermions. This would be interesting if it allows
one to cure the problem of rotational symmetry breaking
discussed in Sec. VII. A relevant issue is how the cutoff-
induced isospin breaking of such a formulation compares to
the one in the Adams formulation (1). Clearly, such ques-
tions are well beyond the scope of this article.

VII. SIGNS OF ROTATIONAL
SYMMETRY BREAKING

As mentioned in the introduction the taste-tensor mass
term in the Hoelbling operators (2)–(4) breaks the rota-
tional [hypercubic] symmetry group R�	 of the staggered

action, leading to undesirable operators generated through
quantum effects [11–14]. In consequence in a dynamical

simulation with such an action one would expect to see
signs of anisotropy, for instance unequal expectation values
hWr�ti of planar Wilson loops oriented in the six ð�;	Þ
planes [11].
Figure 13 displays (half of) the eigenvalue spectra of the

four operators (1)–(4) on a single 44 configuration before
and after rotating the gauge background in the (1, 2) plane.
The eigenvalue spectrum of the Adams operator (1) is
unaffected, as it must be, since R�	 is a symmetry. Also

the eigenvalue spectrum of the original Hoelbling operator
(2) with MHori ¼ �12 is unaffected, but it is worth noting
that the same statement does not hold true for other rota-
tions [e.g., in the (2, 3) plane]. The eigenvalue spectrum of
the symmetrized operator (3) is affected by the rotation in
the (1, 2) plane, but interestingly the change is predomi-
nantly due to the modes in the first doubler branch near
ReðzÞ ¼ 2; the physical low-energy modes get barely
changed. The same statement is found to hold true for
the mixed operator (4). In either case it was checked that
the determinant does not show an accidental symmetry;
i.e., it changes too.
In short we arrive at the tantalizing situation where

the symmetrized Hoelbling operator (3) shows ‘‘less sym-
metries’’ than the original variety (2). The breaking is
predominantly due to the UVmodes (which are susceptible
to other changes, too, e.g., a switching between periodic
and antiperiodic boundary conditions in one direction) and
barely affects the IR properties of the operator. This raises
a number of questions. Could it be that the breaking dis-
appears in the limit of infinite statistics? If not, could it be
that the breaking disappears on the way to the continuum?
Likely the proper tool to answer such questions is an
operator analysis in the Symanzik effective theory [11]
and/or a perturbative analysis as pursued for minimally
doubled actions [29], but a careful study is well beyond the
scope of this article.

VIII. SUMMARY

The main findings of this paper may be summarized as
follows:
(1) The discretizations (1) and (3), as proposed by

Adams [9] and Hoelbling [10], respectively, and
the new linear combination (4) yield staggered
fermions with nonstandard (i.e., taste nonsinglet)
mass terms (cf. Sec. II). They are ‘‘hybrids’’ in the
sense that they distribute the spinor degrees of free-
dom over space-time in the manner of staggered
fermions, while technically being close to Wilson
fermions, with additive mass renormalization and
the same consequences of non-normality (hLj and
jRi eigenmodes).

(2) The main technical challenge of staggered
fermions—the noncoincidence of the exact (taste-
ful) � � �55 and the nonexact (taste-singlet) �50

chiral symmetries—persists. What changes is the
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details of how the operator is sensitive to the topo-
logical charge q of the gauge background. With just
a scalar mass term, hVj�55jVi is zero between all
eigenmodes of the operator and only hVj�50jVi is
sensitive to topology. With a sufficiently large
taste-tensor or taste-pseudoscalar mass term, as is
the case in (1)–(4) with r ¼ 1, the matrix element
hLj�50jRi continues to be sensitive to topology
(with equal sign in the physical and the unphysical
branches), while hLj�55jRi acquires an even better
sensitivity to topology (with net zero sign across all
branches).

(3) The physical branches of the operators (1)–(4) show
a cancellation-free sensitivity to topology with 2jqj
or jqj exactly real modes. But they also suffer from
the same symptoms of chiral symmetry breaking
with induced OðaÞ cutoff effects as Wilson fermi-
ons, and it seems thus natural to try similar rem-
edies. In this article it is conjectured that the leading
Symanzik improvement term to these actions takes
the form (25), and the connection to the overlap

procedure suggests that the tree-level improvement
coefficient is again cSW ¼ 1. The combination of
Symanzik improvement and link smearing is found
to have a pronounced (and beneficial) effect on the
formation of a ‘‘belly’’ between the physical and the
unphysical branches in the eigenvalue plot (which,
in turn, is seen as a sign that the mixing with other
operators is suppressed). By explicitly rotating the
gauge background it is confirmed that the taste-
tensor mass term in (2)–(4) breaks the rotational
symmetry group, but this seems to be linked to
UV modes which barely affect IR physics.

(4) The kernel operators (1) and (4), once equipped with
link smearing and a clover term, bear the promise of
a cheap overlap construction (in contrast to the mild
savings that were found without these ingredients
[12]) due to a moderate spectral range over which
the sign function is to be constructed. Accordingly, a
combination of these two overlap operators might
be an attractive option for simulating QCD with
2þ 1þ 1 active flavors.
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FIG. 13 (color online). Eigenvalue spectra of the operators (1) and (2) (top) and (3) and (4) (bottom) with cSW ¼ 1, before and after
rotating the gauge background in the (1, 2) plane.
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APPENDIX: LEADING TERMS GENERATED
BY THE OVERLAP PROCEDURE

To facilitate the analysis of the necessary counterterms
for OðaÞ improvement of the taste-split staggered actions
(1)–(4) let us begin with a reflection on the situation with
Wilson fermions. The idea that for Wilson fermions the
overlap procedure of [4,5] would automatically generate
the necessary improvement term is mentioned in the re-
view by Niedermayer [30]. Unfortunately, this account is
not very verbose, and this is why we attempt a short
summary.

One essential ingredient in what follows is the contin-
uum relation

6D2 ¼ D���D	�	 ¼
�
1

2
f��; �	g þ 1

2
½��; �	�

�
D�D	

¼ D2 þ X
�<	

��	F�	 (A1)

with ��	 ¼ i
2 ½��; �	� which is also dubbed ��	 in Sec. II.

The other ingredient is the definition (26) of the overlap
procedure with X ¼ aDke � �. This definition does not
rely on any special property of the kernel operator Dke.
With an argument which is �5 or � Hermitian the proce-
dure can be recast in a form which involves the sign
function; this will be relevant for numerical applications
with (1)–(4) as a kernel but not for the analytical consid-
erations below.

With the Wilson operator as kernel one starts from the
transcription (here we follow [31])

DW ¼ X
�

�
��r� � a

2
4�

�
� 6D� a

2
D2 þOða2Þ (A2)

in terms of continuum operators. Here r� and 4� denote

the gauge covariant first and second discrete derivative,
respectively, the latter one to be distinguished from the

continuum D2
�. This implies X ¼ ��þ a 6D� a2

2 D
2 þ

Oða3Þ and Xy ¼ ��� a 6D� a2

2 D
2 þOða3Þ and thus

XyX ¼ �2 � ð1� �Þa2D2 � a2
X
�<	

��	F�	 þOða3Þ

(A3)

in the physical branch. Next we use the expansion

ð1þ zÞ�1=2 ¼ 1� 1
2 zþOðz2Þ to arrive at

ðXyXÞ�1=2 ¼ 1

�

�
1þ 1� �

2�2
a2D2

þ a2

2�2

X
�<	

��	F�	 þOða3Þ
�
; (A4)

and upon multiplying this with X we find

XðXyXÞ�1=2 ¼ �1þ a

�
6D� a2

2�2
D2

� a2

2�2

X
�<	

��	F�	 þOða3Þ (A5)

with the consequence that the overlap operator relates to
the continuum Dirac operator like

Dov ¼ 6D� a

2�
D2 � a

2�

X
�<	

��	F�	 þOða2Þ: (A6)

The second term may be removed by a field rotation, but
the third term indicates thatOðaÞ improvement ofDW calls
for a term � cSW

2

P
�<	��	F�	 with cSW ¼ 1 at tree level.

The task is now to pipe the taste-split staggered opera-
tors (1)–(4) through the overlap procedure and to see which
counterterms are generated. First we need to transcribe the
staggered operator in terms of continuum operators on the
blocked lattice (b ¼ 2a). For (1) we find

DA ¼ X
�

�
ð�� � 1Þr� � b

2
ð�5 � �	

��5Þ4�

�
þ rð1 � �5Þ

þ rð1 � 1Þ � 6D� b

2
�5D

2 þOðb2Þ; (A7)

where in the second line [which is supposed to capture the
effect on the physical branch in terms of continuum op-
erators] we use that the violation of Lorentz symmetry
takes place exclusively in the taste space. Hence, the
only relevant difference to (A2) is an additional factor of

�5. This implies Y ¼ ��þ b 6D� b2

2 �5D
2 þOðb3Þ and

Yy ¼ ��� b 6D� b2

2 �5D
2 þOðb3Þ and thus

YyY ¼ �2 � ð1� ��5Þb2D2 � b2
X
�<	

��	F�	 þOðb3Þ

(A8)

in the physical branch. With the same expansion as before
we obtain

ðYyYÞ�1=2 ¼ 1

�

�
1þ 1� ��5

2�2
b2D2

þ b2

2�2

X
�<	

��	F�	 þOðb3Þ
�
; (A9)

and upon multiplying this with Y we find
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YðYyYÞ�1=2 ¼ �1þ b

�
6D� b2

2�2
D2

� b2

2�2

X
�<	

��	F�	 þOðb3Þ; (A10)

which agrees with the expression (A5) which we found in
the Wilson case. The bottom line is that in order to cancel
the OðbÞ effects we need to add a term which acts on the
physical branch like � cSW

2

P
�<	��	F�	, with cSW ¼ 1 at

tree level. To improve the actual action (1) the obvious

replacement is ��	 ! ��	. Finally, to ensure gauge

covariance and Hermiticity this expression needs to be
symmetrized in the manner of (25).
None of the manipulations listed above did refer to the

details of the taste lifting term / r in (1)–(4); in fact an

essential ingredient was that this term is effectively 0 in the

physical branch. It follows that the operator (25) removes

the leading cutoff effects in all taste-split staggered actions,

with cSW ¼ 1 at tree level, regardless of the multiplicity of

the physical branch.
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