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We study an approximate version of the Schwinger-Dyson equation that controls the nonperturbative

behavior of the ghost-gluon vertex in the Landau gauge. In particular, we focus on the form factor that

enters in the dynamical equation for the ghost dressing function, in the same gauge, and derive its integral

equation, in the ‘‘one-loop dressed’’ approximation. We consider two special kinematic configurations,

which simplify the momentum dependence of the unknown quantity; in particular, we study the soft gluon

case and the well-known Taylor limit. When coupled with the Schwinger-Dyson equation of the ghost

dressing function, the contribution of this form factor provides considerable support to the relevant

integral kernel. As a consequence, the solution of this coupled system of integral equations furnishes a

ghost dressing function that reproduces the standard lattice results rather accurately, without the need to

artificially increase the value of the gauge coupling.
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I. INTRODUCTION

One of the few nonperturbative frameworks available for
the study of the infrared sector of QCD in the continuum
are the Schwinger-Dyson equations (SDEs), which govern
the dynamics of the basic Green’s functions of the theory
[1–4]. Despite the well-known limitations intrinsic to this
formalism, a variety of theoretical and technical advances
has provided new valuable insights on some of the most
fundamental nonperturbative phenomena of QCD, such as
quark confinement, dynamical mass generation, and chiral
symmetry breaking [3,5–8]. Particularly important in this
ongoing effort is the systematic confrontation of the SDE
predictions with the results of large-volume lattice simu-
lations [9–14], leading not only to quantitative refinements
but, in some cases, to critical revisions of the underlying
physical concepts [7,15–17].

The quantitative understanding of the ghost sector of
QCD constitutes a long-standing challenge for the SDE
practitioners. Without a doubt, the most fundamental quan-
tity in this context is the ghost propagator, Dðp2Þ and the
corresponding dressing function, Fðp2Þ ¼ p2Dðp2Þ; in
fact, the infrared behavior of the latter, in the Landau gauge
(LG), has been traditionally associated with a particular
realization of color confinement [18–21].

In recent years, various lattice studies, both in SUð2Þ and
SUð3Þ, together with numerous analytic approaches, find a
massless ghost propagator with an infrared finite dressing
function [7,9,11,17,22]. In addition, in the same gauge, the
gluon propagator obtained on the lattice is finite in the deep
infrared, supporting the notion of an effectively massive
gluon [23–25]. In fact, the dynamical gluon mass genera-
tion, first proposed in Ref. [26] and further developed in a
number of recent works, provides a unified explanation for
the observed finiteness of both aforementioned quantities
[7,27–30]. Specifically, an infrared finite Fðp2Þ emerges as

a direct consequence of the massiveness of the gluon
propagator; such a gluon propagator, when inserted in the
SDE of the ghost propagator, saturates the logarithms
associated with the Fðp2Þ, thus making it finite at the
origin.
However, what has been more difficult to obtain from a

self-consistent SDE analysis is the entire shape and size of
Fðp2Þ provided by the lattice [7,31,32]. In fact, even when
one substitutes into the ghost SDE the gluon propagator
furnished by the lattice, but keeping the ghost-gluon vertex
at its tree-level value, the resulting Fðp2Þ is significantly
suppressed compared to that of the lattice [7]; to reproduce
the lattice result, one has to artificially increase the value
of the gauge coupling from the correct value �s ¼ 0:22
to �s ¼ 0:29 [33].
It would seem, therefore, that the main reason for the

observed discrepancy ought to be traced back to the way in
which the fully dressed ghost-gluon vertex, ��, appearing
in the ghost SDE, is approximated. Even though prelimi-
nary lattice studies indicate that the deviations of �� from
its tree-level value are relatively moderate [34–38], the
highly nonlinear nature of the ghost SDE may lead to
considerable enhancements. In fact, a modest increase of
the relevant vertex form factor in the region of momenta
that provides the largest support to the ghost SDE may
account for the bulk of the required effect.
The purpose of this article is to obtain the nonperturba-

tive behavior of this important missing ingredient, using as
a starting point the integral equation that controls its
momentum evolution. Specifically, we will determine the
relevant vertex form factor from an approximate version of
the SDE satisfied by the vertex �� itself, in the LG. To be
sure, the vertex SDE has a complicated skeleton expansion,
involving various unknown (or only partially known) quan-
tities, such as multiparticle kernels. The basic approxima-
tions we employ at the level of the vertex SDE are the
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following. (i) We consider only the first two diagrams in
this expansion; this corresponds to the ‘‘one-loop dressed’’
truncation [39]. (ii) Inside these diagrams, we replace full
vertices by their tree-level values but keep fully dressed
ghost and gluon propagators. (iii) For the numerical analy-
sis of the resulting integrals, we use as input for the full
gluon propagators the lattice data of Refs. [11,12].

From the conceptual point of view, the general proce-
dure outlined above relies crucially on the constructive
interplay between the SDEs and lattice, which has been
rather fruitful in recent years [40]. Specifically, it is clear
that, whereas in their original form the SDEs are obtained
directly from the path integral of the theory (and are, in that
sense, exact), the practical need to carry out simplifications
and truncations converts this approach into an approximate
method. Part of the inherent difficulty in dealing with these
coupled nonlinear equations may be reduced by employing
lattice results for some of the Green’s functions appearing
inside them. A particular example where this strategy
turned out to be rather effective has been the study of chiral
symmetry breaking [8]. In particular, whereas the pure
SDE treatment (after unavoidable approximations) fails
to furnish to the kernel of the quark gap equation the
support necessary for triggering the aforementioned
phenomenon, replacing the SDE gluon propagator by its
lattice counterpart provides a considerable enhancement.
The synergy is completed by noting that the final portion
of missing strength is furnished by the SDEs themselves,
namely, the one-loop dressed approximation of the quark-
gluon vertex, through a treatment not too dissimilar to the
one followed here.

After these general comments, let us return to the task at
hand. The tensorial decomposition of �� consists of two
form factors [see Eq. (2.2)]; however, given that this vertex
will be inserted in the ghost SDE, written in the LG, only
the cofactor Að�k;�p; rÞ of the ghost momentum p�

survives. In the present study, we determine Að�k;�p; rÞ
for two particular kinematic configurations, soft gluon
(k ! 0) and soft ghost (p ! 0), thus converting it, in
both cases, to a function of a single momentum only,
Að0;�p; pÞ and Að�k; 0; kÞ, respectively. In fact, as we
will explain in detail in Sec. III, the case where p ! 0 is
equivalent to the standard Taylor limit [41,42].

Our main results may be summarized as follows.
(i) In the soft gluon limit, the result obtained for

Að0;�p; pÞ displays a moderate peak around
1 GeV, corresponding to a 20% increase with respect
to the tree-level value; this result compares rather
well with the existing lattice data [36,37]. As we will
explain in detail in Sec. IVA, this particular kine-
matic configuration is not relevant for the ghost
SDE; however, it serves as a preliminary test of the
overall faithfulness of the approximations employed.

(ii) The numerical solutions for the coupled system
of integral equations determining Fðp2Þ and

Að�k; 0; kÞ give rise to a ghost dressing function
that is in excellent agreement with the lattice data
[11,12]. The corresponding solution for Að�k; 0; kÞ
is characterized by a rather pronounced maximum,
centered again around 1 GeV, reaching a value of
about 1.5. In this analysis we use �s ¼ 0:22, which
corresponds to the momentum-subtraction (MOM)
value for the point � ¼ 4:3 GeV [43], used to
renormalize the gluon propagator obtained from
the lattice.

The article is organized as follows. In Sec. II we intro-
duce the necessary notation and set up the SDE for the
ghost dressing function, paying particular attention to the
way that the fully dressed ghost-gluon vertex enters in it.
In Sec. III we carry out the analysis at the level of the SDE
of the ghost-gluon vertex and derive the corresponding
closed expressions in the two kinematic limits of interest.
In Sec. IV we present the numerical treatment of the
equations derived in the previous sections. In particular,
we first compute the case of the soft gluon, and then we
proceed to the solution of the coupled system. Finally, our
conclusions and discussion are presented in Sec. V.

II. GHOST DRESSING FUNCTION AND
THE GHOST-GLUON VERTEX

In this section we introduce the SDE for the ghost
propagator in the LG and discuss some of its basic prop-
erties and features. Of particular interest is the dependence
of this equation on the surviving component of the ghost-
gluon vertex and the numerical implications of approxi-
mating it by its tree-level value. Let us warn the reader at
this point that, whereas the analysis of the present section
will be carried out in Minkowski space, in subsequent
sections the Euclidean version of the corresponding equa-
tions will be also employed; the rules for implementing this
conversion are given in Eq. (3.10).
Our starting point is the full ghost-gluon vertex, shown

in Fig. 1 and denoted by

�nbc
� ð�k;�p;rÞ¼gfnbc��ð�k;�p;rÞ; r¼kþp; (2.1)

with k representing the momentum of the gluon and p of
the antighost. The most general tensorial structure of this
vertex is given by

FIG. 1. The fully dressed ghost-gluon vertex.
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��ð�k;�p;rÞ¼Að�k;�p;rÞp�þBð�k;�p;rÞk�; (2.2)

at tree-level, the two form factors assume the values

A½0�ð�k;�p; rÞ ¼ 1 and B½0�ð�k;�p; rÞ ¼ 0, giving rise

to the bare ghost-gluon vertex �½0�
� ¼ p�.

The form factors A and Bmay be formally projected out
by contracting �� with the vectors

"A�ðk;pÞ¼ k2p��ðk �pÞk�
k2p2�ðk �pÞ2 ; "B� ðk;pÞ¼p2k��ðk �pÞp�

k2p2�ðk �pÞ2 ;

(2.3)

namely,

Að�k;�p; rÞ ¼ "A�ðk; pÞ��ð�k;�p; rÞ;
Bð�k;�p; rÞ ¼ "B� ðk; pÞ��ð�k;�p; rÞ:

(2.4)

Of particular importance for the analysis that follows is
the so-called ‘‘Taylor limit’’ of the ghost-gluon vertex,
corresponding to the case of vanishing ghost momentum,
r ¼ 0, p ¼ �k. In this special kinematic configuration, the
��ð�k;�p; rÞ of Eq. (2.2) becomes

��ð�k; k; 0Þ ¼ �½Að�k; k; 0Þ � Bð�k; k; 0Þ�k�: (2.5)

Closely related to this limit is the well-known Taylor
theorem, which states that, to all orders in perturbation
theory,

Að�k; k; 0Þ � Bð�k; k; 0Þ ¼ 1; (2.6)

as a result, the fully-dressed vertex assumes the tree-level
value corresponding to this particular kinematic configu-
ration, i.e., ��ð�k; k; 0Þ ¼ �k�.

After these introductory comments, let us turn to the
SDE for the ghost propagator and examine in some detail
how the ghost-gluon vertex affects its structure. The rele-
vant SDE is diagrammatically represented in the Fig. 2.
Using the momenta flow and Lorentz indices as indicated
in Fig. 2, the ghost SDE can be written as

iD�1ðp2Þ ¼ ip2 � g2CA

Z
k
�½0�
� ðk;�k� p; pÞ���ðkÞ

� ��ð�k;�p; kþ pÞDðkþ pÞ; (2.7)

where CA denotes the Casimir eigenvalue of the adjoint
representation [N for SUðNÞ], d ¼ 4� � is the space-time
dimension, and we have introduced the integral measure

Z
k
� ��

ð2�Þd
Z

ddk; (2.8)

with � the ’t Hooft mass. In the LG, the gluon propagator
���ðqÞ has the transverse form

���ðqÞ ¼ �iP��ðqÞ�ðq2Þ; (2.9)

with

P��ðqÞ ¼ g�� �
q�q�

q2
; (2.10)

the usual projection operator.
Clearly, due to the full transversality of ���ðkÞ, any

reference to the form factor B disappears from the ghost
SDE of Eq. (2.7). Specifically, substituting Eq. (2.2) into
Eq. (2.7), we obtain

F�1ðp2Þ ¼ 1þ ig2CA

Z
k

�
1� ðk � pÞ2

k2p2

�
Að�k;�p; kþ pÞ

� �ðkÞDðkþ pÞ; (2.11)

where we have introduced the ghost dressing function,
Fðq2Þ, defined as

Dðq2Þ ¼ Fðq2Þ
q2

: (2.12)

The renormalization of Eq. (2.11) proceeds through the
replacements

�Rðq2Þ ¼ Z�1
A �ðq2Þ; FRðq2Þ ¼ Z�1

c Fðq2Þ;
��
Rðq;p; rÞ ¼ Z1�

�ðq;p; rÞ; gR ¼ Z�1
g g¼ Z�1

1 Z1=2
A Zcg;

(2.13)

where ZA, Zc, Z1, and Zg are the corresponding renormal-

ization constants; the dependence of the above quantities
on the renormalization point � is suppressed. In the MOM
scheme, usually employed in the SDE analysis, the renor-
malization conditions imposed are that, at �, the corre-
sponding Green’s functions assume their tree-level values,

−1
=

p

−1
+

p pp k + p

Γν(−k,−p, k + p)

νµ

k

FIG. 2. The SDE for the ghost propagator given by Eq. (2.7). The white blobs represent the fully dressed gluon and ghost
propagators, while the black blob denotes the dressed ghost-gluon vertex.
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e.g., ��1
R ðq2 ¼ �2Þ ¼ �2, and FRðq2 ¼ �2Þ ¼ 1 [42].

Note also that, in the LG, the form factor A is ultraviolet
finite at one loop, and, therefore, no infinite renormaliza-
tion constant needs to be introduced at that order for ��. In
fact, one usually invokes Taylor’s theorem [see Eq. (2.6)]
in order to finally set Z1 ¼ 1 to all orders (see the discus-
sion in Sec. III).

Then, the SDE becomes

F�1ðp2Þ ¼ Zc þ ig2CA

Z
k

�
1� ðk �pÞ2

k2p2

�
Að�k;�p;kþpÞ

��ðkÞDðkþpÞ; (2.14)

where we have suppressed the subscript ‘‘R’’ to avoid
notation clutter. The actual closed expression of Zc is
obtained from Eq. (2.14) itself, by imposing the aforemen-
tioned MOM renormalization condition on F�1ðp2Þ.

Evidently, the explicit dependence of Eq. (2.14) on
Að�k;�p; kþ pÞ requires the use of the corresponding
vertex SDE, thus converting the problem of determining
Fðp2Þ into a coupled SDE system. The usual way to
circumvent this technical complication has been to simply
approximate Að�k;�p; kþ pÞ by its tree-level value,
setting into Eq. (2.14) Að�k;�p; kþ pÞ ¼ 1.

Then, after proper renormalization along the lines dis-
cussed above and passing to the Euclidean space following
the standard rules, one solves Eq. (2.14) numerically, using
the lattice data of Refs. [11,12] as input for the gluon
propagator. Note that this latter propagator is renormalized
within the MOM scheme by imposing the standard condi-
tion ��1ð�2Þ ¼ �2 at � ¼ 4:3 GeV, namely, the deepest
available point in this set of lattice data; then, the corre-
sponding value for �s ¼ g2=4� that one should use is
�sð4:3 GeVÞ ¼ 0:22. However, for this particular value
of �s, the solution obtained from Eq. (2.14) lies consid-
erably below the lattice data for Fðp2Þ, as can be clearly
seen from the (blue) dotted curve of Fig. 3. In order to
obtain a close coincidence with the lattice, one must
increase the value of �sð4:3 GeVÞ to 0.29, thus obtaining
the (red) continuous curve in Fig. 3.

It is, of course, natural to attribute the observed discrep-
ancy to the aforementioned simple approximation
employed for the ghost-gluon vertex. Therefore, to ameli-
orate the situation, we will determine this form factor from
its corresponding SDE, in a certain kinematic limit that is
relevant for the situation at hand. Specifically, given that
Að�k;�p; kþ pÞ is a function of three variables, p2, k2,
and the angle between the two (appearing in the inner
product p � k), a full SDE treatment is rather cumbersome
and lies beyond our present technical powers. Instead, we
will consider the behavior of Að�k;�p; kþ pÞ for vanish-
ing p; to that end, we start out with the Taylor expansion of
Að�k;�p; kþ pÞ around p ¼ 0, and we only keep the
first term, Að�k; 0; kÞ, thus converting A into a function of
a single variable.

We emphasize that the limit p ! 0 is taken only inside
the argument of the form factor A but not in the rest of the
terms appearing in the SDE of Eq. (2.14). Specifically,
following the procedure explained in detail in the next
section, one isolates from the ghost-gluon SDE the
contribution proportional to p�, taking the limit p ! 0
in the accompanying scalar cofactor, thus arriving at a
form ��ð�k;�p; kþ pÞ ¼ p�Að�k; 0; kÞ. Equivalently,
in terms of the projectors introduced in Eqs. (2.3) and
(2.4), one has

Að�k; 0; kÞ ¼ lim
p!0

f"A�ðk; pÞ��ð�k;�p; kþ pÞg: (2.15)

Thus, the approximate version of the SDE in Eq. (2.14)
reads

F�1ðp2Þ ¼ Zc þ ig2CA

Z
k

�
1� ðk � pÞ2

k2p2

�
Að�k; 0; kÞ

� �ðkÞDðkþ pÞ: (2.16)

III. GHOST-GLUON VERTEX

In this section we derive in detail the nonperturbative
expression for the form factor A in two special kinematic
configurations: (i) the soft gluon limit, in which the
momentum carried by the gluon leg is zero (k ¼ 0) and
(ii) the soft ghost limit, where the momentum of the anti-
ghost leg vanishes (p ¼ 0).

A. General considerations

The starting point of our analysis is the SDE satisfied by
the ghost-gluon vertex, whose diagrammatic representa-
tion is shown in Fig. 4(a). One observes that the relevant

1×10-3

FIG. 3 (color online). Comparison of the ghost dressing func-
tion, Fðp2Þ, obtained as a solution of the ghost SDE when the
ghost-gluon vertex is approximate by its bare value, with the
lattice data of Refs. [11,12]. The (red) continuous curve repre-
sents the case when �sð4:3 GeVÞ ¼ 0:29, whereas the (blue)
dashed curve is obtained when �sð4:3 GeVÞ ¼ 0:22.
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quantity, which controls the dynamics of this SDE, is the
four-point ghost-gluon kernel.

For the ensuing analysis, we will carry out the following
main simplifications:

(i) The ghost-gluon kernel will be replaced by its
one-loop dressed approximation; specifically, in the
corresponding skeleton expansion, we will only
include the diagrams appearing in Fig. 4(b). Thus,
the approximate version of the SDE that we employ
may be cast in the form

��ð�k;�p; kþ pÞ ¼ p� � i

2
g2CA½ðd1Þ� � ðd2Þ��;

(3.1)

where the diagrams ðdiÞ are given by

ðd1Þ� ¼
Z
l
�½0�
� ���ðlÞ��Dðlþ kþ pÞ��Dðlþ pÞ;

ðd2Þ� ¼
Z
l
�½0�
� ���ðlÞ�����

��ðl� kÞ��Dðlþ pÞ:
(3.2)

For notational simplicity, we have suppressed the
arguments of the momenta in all vertices; the latter
may be easily recovered from the figures and the
conventions established in Sec. II. Note also that, in
the LG that we use, the gluon propagators appearing
in the above expressions assume the completely
transverse form of Eq. (2.9).

(ii) The (multiplicative) renormalization of Eq. (3.1)
proceeds in the standard way. Specifically, in addi-
tion to the renormalization constants and relations

given in Eq. (2.13), one must introduce the vertex
renormalization for the three-gluon vertex, to be
denoted by Z3, namely, ����

R ¼ Z3�
���, together

with the corresponding relation for the coupling

renormalization, namely, gR ¼ Z�1
3 Z3=2

A g. From

this relation, and the last of Eq. (2.13), one has
that Z�1

3 ZA ¼ Z�1
1 Zc. Then, it is straightforward

to show that the contributions of g2ðd1Þ� and
g2ðd1Þ� maintain the same form after renormaliza-
tion; in fact, this property may be easily established
by grouping the integrands in terms of the standard
renormalization-group invariant quantities formed

by ðg���
1=2DÞ and ðg�����3=2Þ [44]. Thus, the

renormalized version of Eq. (3.1) reads

��
Rð�k;�p; kþ pÞ
¼ Z1

�
p� � i

2
g2RCA½ðd1Þ�R � ðd2Þ�R�

�
; (3.3)

where the Z1 comes from the renormalization of the
��ð�k;�p; kþ pÞ on the lhs.
In what follows we will set Z1 ¼ 1. In the case of
the soft ghost configuration, p ¼ 0, (which, as
we will see, is equivalent to the Taylor kinematics),
this choice is imposed by Taylor’s theorem; see
Eq. (2.6). On the other hand, in the case of the soft
gluon configuration, k ¼ 0, this choice constitutes
an approximation, in the sense that it is motivated by
the one-loop finiteness of the (LG) ��, but is not
enforced by an analogous all-order relation.

(iii) In the two aforementioned diagrams, ðd1Þ and ðd2Þ,
we will keep fully dressed propagators but will

(a)

(b)

FIG. 4. (a) The complete SDE of the ghost-gluon vertex. Notice that we have set it up with respect to the antighost leg. (b) Diagrams
included in the skeleton expansion of the ghost-gluon kernel that we will consider in our analysis.
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replace the fully dressed three-gluon vertex appear-
ing in graph ðd2Þ by the corresponding tree-level
expression, namely,

����ðq;r;pÞ!�½0�
���ðq;r;pÞ

¼ðr�pÞ�g��þðp�qÞ�g��
þðq�rÞ�g��: (3.4)

Furthermore, as will be explained in the corre-
sponding subsections, additional approximations
will be imposed on the fully dressed ghost-gluon
vertices, depending on the specific details of each
kinematic case considered.

B. Soft gluon configuration

We begin with the analysis of the soft gluon configura-
tion, k ¼ 0. Evidently, in this case, the ghost-gluon vertex
becomes a function of only one momentum, p, and may be
described in terms of a single form factor, namely,

��ð0;�p; pÞ ¼ AðpÞp�; AðpÞ � Að0;�p; pÞ: (3.5)

Therefore, setting k ¼ 0 in Eq. (3.1), one is able to isolate
the form factor A by means of the projection

AðpÞ ¼ 1� i

2
g2CA½ðd1Þ � ðd2Þ�;

ðdiÞ � p�

p2
ðdiÞ�; i ¼ 1; 2;

(3.6)

where the diagrams ðdiÞ are obtained from those of
Eq. (3.2) in the limit k ! 0.

The particular kinematic configuration considered here
allows one to derive a linear integral equation for the
unknown quantity AðpÞ. This becomes possible because,
in the limit k ¼ 0, the vertex �� entering in graph ðd1Þ
becomes ��ð0;�l� p; lþ pÞ. Thus, the integral ðd1Þ con-
tains Að0;�l� p; lþ pÞ, giving rise to an integral equa-
tion for Að0;�p; pÞ. Unfortunately, this favorable set of
circumstances does not apply to the remaining ghost-gluon
vertices, namely, �� and �� in graphs ðd1Þ and ðd2Þ,
respectively; their arguments depend on all possible kine-
matic variables, and the inclusion of the full A would give
rise to a (nonlinear) integral equation, too complicated to
solve. We therefore approximate all remaining ghost-gluon
vertices by their tree-level expressions.

After these comments, and the use of the notation
introduced in Eq. (3.6), the diagram ðd1Þ reads

ðd1Þ ¼
Z
l

ðl � pÞ
ðlþ pÞ2p2

½ðl � pÞ2 � l2p2�D2ðlÞ�ðlþ pÞAðlÞ:

(3.7)

To evaluate the contribution of diagram ðd2Þ notice that,
with the gluon propagators in the LG and the bare three-
gluon vertex of Eq. (3.4), we have that

P��ðlÞP��ðlÞ�½0�
���ð0; l;�lÞ ¼ 2l�P

��ðlÞ: (3.8)

Applying this result we get

ðd2Þ ¼ 2
Z
l

ðl � pÞ
l2p2

½l2p2 � ðl � pÞ2��2ðlÞDðlþ pÞ: (3.9)

The final answer is obtained by substituting Eqs. (3.7)
and (3.9) in Eq. (3.6); it will be written directly in
Euclidean space, using the standard transformation rules,

�q2 ¼ q2E; �Eðq2EÞ ¼ ��ð�q2EÞ;
DEðq2EÞ ¼ �Dð�q2EÞ;

Z
k
¼ i

Z
kE

;
(3.10)

and setting

l2 ¼ t; p2 ¼ x; ðlþpÞ2 ¼ z; ðl �pÞ ¼ ffiffiffiffiffi
xt

p
cos	;

Z
lE

¼
Z d4l

ð2�Þ4 ¼
1

ð2�Þ3
Z 1

0
dtt

Z �

0
d	sin2	: (3.11)

Specifically (we suppress the subscript ‘‘E’’),

AðxÞ ¼ 1��sCA

4�2

Z 1

0
dt

ffiffiffiffiffi
xt

p
F2ðtÞ

�AðtÞ
Z �

0
d	sin 4	cos	

�
�ðzÞ
z

�

��sCA

2�2

Z 1

0
dt

ffiffiffiffiffi
xt

p
t�2ðtÞ

Z �

0
d	sin 4	cos	

�
FðzÞ
z

�
;

(3.12)

where we have used g2 ¼ 4��s and Eq. (2.12) in order to
express the ghost propagators in terms of their dressing
functions.
Notice that, in the limit x ¼ 0, namely, when the

momentum of the ghost leg is also zero, we recover from
Eq. (3.12) the tree-level value of the form factor,
i.e., Að0Þ ¼ 1.

C. Soft ghost configuration (Taylor kinematics)

We next turn to the case that, according to the discussion
presented in Sec. II, is expected to improve the treatment of
the ghost SDE. Specifically, in this subsection we will
derive an approximate version for A in the soft ghost
configuration, to be denoted by

lim
p!0

Að�k;�p; kþ pÞ ¼ Að�k; 0; kÞ � AðkÞ: (3.13)

However, before proceeding to this derivation, we will
demonstrate that the form factor Að�k; 0; kÞ obtained in the
soft ghost configuration is none other than the form factor
Að�k; k; 0Þ, appearing in the constraint imposed by
Taylor’s theorem, given by Eq. (2.6). To prove that, let
us rewrite the SDE of the ghost propagator, Eq. (2.7),
dressing this time the left ghost-gluon vertex instead of
the right, i.e.,
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iD�1ðp2Þ ¼ ip2 � g2CA

Z
k
��ðk;�k� p; pÞ���ðkÞ

� �½0�
� ð�k;�p; kþ pÞDðkþ pÞ; (3.14)

where we have maintained the same momenta flow and
Lorentz indices as in Fig. 2. Therefore, using Eq. (2.2) for
the �� in Eq. (3.14), we get (in the LG)

F�1ðp2Þ ¼ 1þ ig2CA

Z
k

�
1� ðk � pÞ2

k2p2

�
Aðk;�k� p; pÞ

��ðkÞDðkþ pÞ: (3.15)

Evidently, Eqs. (2.11) and (3.15) must furnish an identical
result for Fðp2Þ, since the answer cannot depend on which
of the two vertices one chooses to dress. Thus, the form
factor A is forced to satisfy the equality

Að�k;�p; kþ pÞ ¼ Aðk;�k� p; pÞ: (3.16)

Given that, due to Lorentz invariance, the dependence on
the momenta is quadratic, i.e., Aðk2; p2; k2 þ p2 þ 2k � pÞ,
we have immediately that

Aðk;�k� p; pÞ ¼ Að�k; kþ p;�pÞ: (3.17)

So, combining Eqs. (3.16) and (3.17), we arrive at the
relation

Að�k;�p; kþ pÞ ¼ Að�k; kþ p;�pÞ; (3.18)

which states that, in the LG, the form factor A of the gluon-
ghost vertex is invariant under the exchange of the
momenta of the ghost and anti-ghost legs. Notice that
this invariance is known to be a consequence of a global
SLð2; RÞ symmetry between the ghost and antighost fields
[2], which implies that the LG is a ghost-antighost sym-
metric gauge fixing choice. Finally, setting p ¼ 0 in
Eq. (3.18), one obtains the announced result; that is, the
A obtained in the soft ghost limit coincides with that of the
Taylor kinematics.

As mentioned above, the fact that the kinematic situation
considered here is equivalent to the Taylor limit imposes,
in a natural way, the value Z1 ¼ 1 for the renormalization
constant appearing in Eq. (3.3).

Once the above connection has been established, we
return to the derivation of the explicit expression for the
form factor A in the soft ghost limit. To that end, we will
consider again the diagrams shown in Fig. 4(b), with
dressed gluon and ghost propagators, and tree-level values
for all the interaction vertices. In this configuration, the
expressions given in Eq. (3.2) reduce to

ðd1Þ� ¼ p�ðkþ pÞ�
Z
l
ðlþ pÞ�Dðlþ pÞDðlþ kþ pÞ

��ðlÞP��ðlÞ;
ðd2Þ� ¼ p�ðkþ pÞ�

Z
l
Dðlþ pÞ�ðlÞ�ðl� kÞP�

� ðlÞ

� P�
�ðl� kÞ�½0�

���: (3.19)

We next outline the general procedure for isolating the
Að�k; 0; kÞ defined in Eq. (3.13). First, we observe that the
most general Lorentz decomposition of the diagrams given
in Eq. (3.19) is

ðdiÞ� ¼ p�ðkþ pÞ�½f1g��k� þ f2g��k� þ f3g��k�

þ f4g��p� þ f5g��p� þ f6g��p� þ f7p�p�p�

þ f8p�p�k� þ f9p�k�p� þ f10p�k�k�

þ f11k�k�k� þ f12k�k�p� þ f13k�p�k�

þ f14k�p�p��; (3.20)

where the corresponding form factors fi � fiðk; pÞ are
assumed to be finite in the infrared limit p ! 0.
A detailed look at this expansion reveals that only the

tensorial structure g��k�, accompanying the form factor

f1, can saturate the prefactor p
�ðkþ pÞ� and survive when

the limit p ! 0 is taken. Specifically, we may rewrite
Eq. (3.20) as follows:

ðdiÞ� ¼ p�k�f1ðk; pÞg��k� þOðpÞðkþ pÞ�
¼ k2f1ðk; pÞp� þOðpÞðkþ pÞ�; (3.21)

where the symbol OðpÞðkþ pÞ� is used to indicate terms
that saturate with p� or k�, but whose form factors are of
order OðpÞ or higher and will not contribute in the soft
ghost configuration. Furthermore, one can perform the
Taylor expansion of f1ðk; pÞ around p ¼ 0, namely,

f1ðk; pÞ ¼ f1ðk; 0Þ þ 2ðk � pÞf01ðkÞ þOðp2Þ;
f01ðkÞ �

@

@p2
f1ðk; pÞjp¼0:

(3.22)

Thus, only the zero-order term of this expansion is relevant
for our kinematic configuration, and we obtain finally from
Eq. (3.21) the following result:

ðdiÞ� ¼ k2f1ðk; 0Þp� þOðpÞðkþ pÞ�; (3.23)

where the quantity k2f1ðk; 0Þ should be identified as the
contribution of the corresponding diagram to AðkÞ, while
terms containing the derivatives of f1 are naturally reas-
signed to OðpÞðkþ pÞ�.
After these observations, it is relatively easy to establish

that this generic procedure can be systematically imple-
mented by performing the following steps. (i) Set p ¼ 0
from the beginning inside the integrals of Eq. (3.19).
(ii) Discard all the terms that give rise to structures of the
type OðpÞðkþ pÞ�. (iii) Determine the contribution of the

GHOST PROPAGATOR AND GHOST-GLUON VERTEX FROM . . . PHYSICAL REVIEW D 87, 114020 (2013)

114020-7



diagram that saturates the index of the momentum p� with
the metric tensor g��.

To illustrate in some detail the above procedure, let
us focus our attention on the contribution of diagram
ðd1Þ, appearing in the first line of Eq. (3.19). Applying
step (i), we obtain

ðd1Þ� ¼ p�ðkþ pÞ�
�Z

l
l�DðlÞDðlþ kÞ�ðlÞP��ðlÞ

þ p�

Z
l
DðlÞDðlþ kÞ�ðlÞP��ðlÞ

�
: (3.24)

Now, using criterion (ii), it is easy to recognize that the part
of Eq. (3.24) to be retained is given by

ðd1Þ� ¼ �p�I��ðkÞ; (3.25)

where we have defined the integral

I��ðkÞ ¼
Z
l

ðl � kÞ
l2

DðlÞDðlþ kÞ�ðlÞl�l�; (3.26)

which may be further decomposed as

I��ðkÞ ¼ I1ðk2Þg�� þ I2ðk2Þk�k�; (3.27)

with

I1ðk2Þ ¼ 1

d� 1
P��ðkÞI��ðkÞ;

I2ðk2Þ ¼ 1

k4ðd� 1Þ ðdk
�k� � k2g��ÞI��ðkÞ:

(3.28)

Thus, using Eqs. (3.27) and (3.28), we obtain from
Eq. (3.25) the following result:

ðd1Þ� ¼ � 1

d� 1
p�

Z
l

ðl � kÞ
l2k2

½l2k2 � ðl � kÞ2�DðlÞ
�Dðlþ kÞ�ðlÞ; (3.29)

where, according to (iii), we have only written explicitly
the contribution that saturates the momentum p� with the
metric tensor g��.

Consider finally the contribution of diagram ðd2Þ. After
the shift l � �l, and setting p ¼ 0 inside the integral, it
becomes

ðd2Þ� ¼ p�ðkþ pÞ�
Z
l
DðlÞ�ðlÞ�ðlþ kÞP�

� ðlÞ

� P�
�ðlþ kÞ�½0�

���: (3.30)

It is then elementary to show that

p�ðkþ pÞ�P�
� ðlÞP�

�ðlþ kÞ�½0�
���

¼ 2p�
l�l�

l2ðlþ kÞ2 ½l
2k2 � ðl � kÞ2 þ ðlþ kÞ2ðl � kÞ�

þ 2p�

½ðl � kÞ2 � l2k2�
ðlþ kÞ2 þOðpÞðkþ pÞ�; (3.31)

and, therefore, the part of diagram ðd2Þ to be saved is

ðd2Þ� ¼ 2p�

Z
l

½ðl � kÞ2 � l2k2�
ðlþ kÞ2 DðlÞ�ðlÞ�ðlþ kÞ

þ 2p�Q��ðkÞ; (3.32)

where we have defined the integral

Q��ðkÞ ¼
Z
l

l�l�

l2ðlþ kÞ2 ½l
2k2 � ðl � kÞ2 þ ðlþ kÞ2ðl � kÞ�

�DðlÞ�ðlÞ�ðlþ kÞ: (3.33)

One observes at this point that the first term in Eq. (3.32)
is already saturated by p� and may be assigned to the form
factor AðkÞ without further considerations. On the other
hand, decomposing the integral Eq. (3.33) in the second
term as

Q��ðkÞ ¼ Q1ðk2Þg�� þQ2ðk2Þk�k�; (3.34)

with

Q1ðk2Þ ¼ 1

d� 1
P��ðkÞQ��ðkÞ;

Q2ðk2Þ ¼ 1

k4ðd� 1Þ ðdk
�k� � k2g��ÞQ��ðkÞ;

(3.35)

we obtain from Eq. (3.32) the result

ðd2Þ� ¼ 2

d� 1
p�

Z
l

½l2k2 � ðl � kÞ2�
l2k2ðlþ kÞ2 ½ðlþ kÞ2ðl � kÞ � ðl � kÞ2

� ðd� 2Þl2k2�DðlÞ�ðlÞ�ðlþ kÞ; (3.36)

where, as before, we have omitted terms of the type
OðpÞðkþ pÞ�.
Once Eqs. (3.29) and (3.36) have been derived, we will

use Eq. (3.6) for projecting out the form factor AðkÞ, as well
as Eqs. (3.10) and (3.11), in order to pass to Euclidean
space, and subsequently cast the answer in spherical coor-
dinates. Thus, we arrive at the final result:

AðyÞ ¼ 1� �sCA

12�2

Z 1

0
dt

ffiffiffiffiffi
yt

p
FðtÞ�ðtÞ

�
Z �

0
d	0sin 4	0 cos 	0

�
FðuÞ
u

�

þ �sCA

6�2

Z 1

0
dtFðtÞ�ðtÞ

Z �

0
d	0sin 4	0

�
�ðuÞ
u

�

� ½ytð1þ sin 2	0Þ � ðyþ tÞ ffiffiffiffiffi
yt

p
cos	0�: (3.37)

Notice that, in this case, y ¼ k2, u ¼ ðlþ kÞ2, and 	0 is the
angle between k and l.

IV. NUMERICAL RESULTS

In this section we will carry out a detailed numerical
analysis of the equations obtained in the previous
sections. Specifically, in the first subsection, we determine
Að0;�p; pÞ by solving the integral equation Eq. (3.12),
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using the lattice data of Refs. [11,12] as input for the gluon
propagator �ðqÞ and the ghost dressing function FðqÞ
appearing in it. The solution obtained is then compared
with the lattice data of Refs. [36,37]. In the second sub-
section, we solve numerically the coupled system formed
by the integral equations of the ghost dressing function
(2.16) and of the ghost-gluon vertex in the soft ghost
configuration, given by Eq. (3.37). The unique external
ingredients used when solving this system are the lattice
data for the gluon propagator �ðqÞ. The solution obtained
for FðqÞ compares very favorably with the lattice data of
Refs. [11,12].

A. Solution for the soft gluon configuration

The integral equation (3.12) is solved through an
iterative process, using as input for the gluon propagator
and the ghost dressing function the data obtained from
the SUð3Þ quenched simulations of Refs. [11,12],
shown in Fig. 5. Note that the lattice data shown have
been renormalized at � ¼ 4:3 GeV, within the MOM
scheme. The value of �s that corresponds to this value of
� may be obtained from the higher-order calculation
presented in Ref. [43]; specifically, we have that
�sð�Þ ¼ 0:22.

The (violet) dashed line on the left panel of Fig. 6
represents the corresponding solution for Að0;�p; pÞ.
We clearly see that Að0;�p; pÞ develops a sizable peak
around the momentum region of 830 MeV. In addition, as
had been anticipated in Sec. III B, we confirm numerically
that A indeed assumes its tree-level value when p ! 0, i.e.,
A ¼ 1. It is also interesting to notice that, in the ultraviolet
limit, the form factor gradually approaches its tree-level
value.

On the same panel of Fig. 6, we compare our numerical
results with the corresponding lattice data obtained in

Refs. [36,37] for this particular kinematic configuration.
Although the error bars are rather sizable, we clearly see
that our solution follows the general structure of the data.
In particular, notice that both peaks occur in the same
intermediate region of momenta. Evidently, Að0;�p; pÞ
receives a significant nonperturbative correction, deviating
considerably from its tree-level value.
In addition, the blue dotted curve, on the left panel of

Fig. 6, represents the results for Að0;�p; pÞ obtained from
the approach developed in Ref. [32], based on the infrared
completion of expressions derived using operator product
expansion (OPE) techniques (see Eq. (19) of Ref. [32],
where the result for arbitrary momenta and angles is
given). As we can see, both curves display a similar overall
behavior, with the peak of the OPE-derived result slightly
shifted toward the ultraviolet region.
Turning to the possible relevance of this result for the

ghost SDE, let us observe that the gluon momentum k,
which has been taken to vanish in this approximation,
corresponds precisely to the momentum of integration
appearing inside the ghost equation; see Fig. 2. Therefore,
strictly speaking, the use of Að0;�p; pÞ is only justified for
a rather limited region of integration, since, for every
given value of p, we must have k � p or else the approxi-
mation breaks down. It is therefore unlikely that the
modified kernel will receive appreciable contributions
compared to the case where Aðk;�k� p; pÞ ¼ 1. This
general expectation is fully supported by the detailed
numerical analysis presented below. In fact, the result
shown in Fig. 6 corresponds to the most ‘‘favorable’’ of
situations, where the form of Að0;�p; pÞ is used regardless
of the value of k, i.e., with no restrictions on the range
of the d4k integration.
On the right panel of Fig. 6, we compare the lattice result

for FðpÞ obtained in Refs. [11,12] with the numerical

1×10-3 1×10-3

FIG. 5 (color online). Lattice results for the gluon propagator, �ðqÞ, (left panel) and ghost dressing, FðqÞ, (right panel) obtained in
Refs. [11,12] and renormalized at � ¼ 4:3 GeV. The (red) continuous curves represent the corresponding fits for the lattice data.

GHOST PROPAGATOR AND GHOST-GLUON VERTEX FROM . . . PHYSICAL REVIEW D 87, 114020 (2013)

114020-9



results obtained with the renormalized ghost SDE of
Eq. (2.16) for three different cases. In the first (red con-
tinuous curve) and in the second ones (blue dotted curve),
we approximate the ghost-gluon form factor by its bare
value, i.e., Aðk;�k� p; pÞ ¼ 1, and we solve the integral
equation iteratively for �sð�Þ ¼ 0:29 and �sð�Þ ¼ 0:22,
respectively. The third case, represented by the (violet)
dashed line, is obtained when we replace Aðk;�k�p;pÞ!
Að0;�p;pÞ into Eq. (2.16) and solve it for �sð�Þ ¼ 0:22.
As mentioned above, Að0;�p; pÞ is allowed to maintain its
deviation from unity throughout the full range of the d4k
integration, and therefore it can be factored outside the
integral. The resulting effect is quite unremarkable (less
than 5% increase): Fð0Þ increases from Fð0Þ ¼ 1:67 (bare
vertex) to Fð0Þ ¼ 1:75 (soft gluon vertex) when we use the
same value of �sð�Þ.

B. Coupled system: Ghost SDE and ghost-gluon vertex

In this subsection we present the central result of the
present article, namely, the modifications induced to the
SUð2Þ and SUð3Þ ghost dressing function by the inclusion
of a nontrivial structure for the corresponding ghost-gluon
vertex.

To that end, after passing to the Euclidean space
and introducing spherical coordinates, using Eqs. (3.10)
and (3.11), we obtain from Eqs. (2.16) and (3.37) the
expressions

F�1ðxÞ ¼ 1� �sCA

2�2

Z 1

0
dyy�ðyÞAðyÞ

�
Z �

0
d	sin 4	

�
FðzÞ
z

� Fðz0Þ
z0

�
(4.1)

and

AðyÞ ¼ 1� �sCA

12�2

Z 1

0
dt

ffiffiffiffiffi
yt

p
FðtÞ�ðtÞ

�
Z �

0
d	0sin 4	0 cos 	0

�
FðuÞ
u

�

þ �sCA

6�2

Z 1

0
dtFðtÞ�ðtÞ

Z �

0
d	0sin 4	0

�
�ðuÞ
u

�

� ½ytð1þ sin 2	0Þ � ðyþ tÞ ffiffiffiffiffi
yt

p
cos	0�; (4.2)

where now z ¼ ðkþ pÞ2, z0 ¼ ðkþ�Þ2, and � is the
renormalization point introduced within theMOM scheme,
i.e., by requiring that F�1ð�2Þ ¼ 1. It is worth mentioning
that the ghost SDE of Eq. (4.1) was explored using differ-
ent truncation schemes in a series of articles [3,15,45–47].

1. SUð3Þ case
We next solve the above system iteratively, using again

the SUð3Þ lattice data for �ðqÞ and �sð�Þ ¼ 0:22 as input.
The results for FðpÞ and Að�k; 0; kÞ are shown in Fig. 7.
On the left panel of Fig. 7, the curve in circles represents

the result for Að�k; 0; kÞ. Evidently, A develops a peak in
the intermediate region of momenta, in a way similar to the
case discussed in the previous subsection. In this case the
maximum of the peak occurs around 1 GeV, and, once
more, in the infrared and ultraviolet limits, Að�k; 0; kÞ
assumes its tree-level value. To the best of our knowledge,
there are no available SUð3Þ lattice data for this particular
configuration; therefore, the comparison between the
Að�k; 0; kÞ obtained with our method and the lattice will
be carried out in the next subsection for the case of SUð2Þ.

1×10-3

FIG. 6 (color online). Left panel: Numerical result for Að0;�p; pÞ, obtained from Eq. (3.12) when �sð�Þ ¼ 0:22 (violet dashed
line). The (blue) dotted curve represents the prediction of Ref. [32] for the same quantity. Right panel: The numerical solution of FðpÞ
compared with the lattice data of Refs. [11,12]. The (red) continuous and the (blue) dotted curves are obtained when the ghost-gluon
vertex is approximated by its bare value for �sð�Þ ¼ 0:29 and �sð�Þ ¼ 0:22, respectively. The (violet) dashed result is obtained using
Að0;�p; pÞ for the ghost-gluon vertex in the ghost SDE with �sð�Þ ¼ 0:22.
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On the same panel, we show a fit for Að�k; 0; kÞ, repre-
sented by the (red) continuous curve, whose functional
form is given by

Að�k; 0; kÞ ¼ 1þ ak2

½ðk2 þ bÞ2 þ c� ln ðdþ k2=k20Þ; (4.3)

with the following values for the fitting parameters:
a¼0:68GeV2, b¼0:72GeV2, c ¼ 0:29 GeV4, d ¼ 9:62,
and k20 ¼ 1 GeV2.

For completeness, on the left panel of Fig. 7, we also
compare our results for Að�k; 0; kÞ with those obtained
using two different OPE models, presented in Ref. [31].
The first model is practically that of Ref. [32], but with a
new set of parameters, whose values are quoted in Table 3
of Ref. [31]; it is represented by the (black) dotted curve
and labeled as model 1 in our legend. Model 2 (blue dashed
curve) is a variation of model 1, which, in the deep infra-
red, adjusts the resulting form factor to its tree-level value.
We observe that the three curves have maxima of practi-
cally the same height and that all of them are located in the
region of 1–1.4 GeV. On the other hand, one notices a
slight discrepancy in the UV tails, which ought to be traced
back to the different assumptions regarding the finite vertex
renormalization that were employed in each case.

On the right panel of Fig. 7, we compare our numerical
result for FðpÞ (red continuous curve) with the correspond-
ing lattice data of Refs. [11,12], observing a rather notable
agreement. We emphasize that, contrary to what happens
when the bare vertex is used (see Fig. 3), the accuracy
achieved here does not rely on the artificial enhancement of
the value of the coupling; the latter, as mentioned above,
was kept at its standard value predicted from general
MOM considerations.

It is important to realize that, although A does not
provide a sizable support for ghost SDE in the deep
infrared, the contribution that it furnishes in the region of
intermediate momenta is sufficient for increasing the satu-
ration point from Fð0Þ ¼ 1:67 to Fð0Þ ¼ 2:95 (Figs. 3 and
7, respectively). This observation suggests that the ghost
SDE is particularly sensitive to the values of its ingredients
at momenta around two to three times the QCDmass scale.

2. SUð2Þ case
We now repeat the analysis of the previous subsection

for the SUð2Þ gauge group. In this case, two separate
comparisons may be carried out: Að�k; 0; kÞ with the
lattice data of Ref. [38] and FðpÞ with those of Ref. [9].

1×10-3

FIG. 7 (color online). Left panel: The form factor Að�k; 0; kÞ (circles) and the fit given by Eq. (4.3) (red continuous line). The (black)
dotted and (blue) dashed curves represent the OPE models of Ref. [31]. Right panel: The numerical solution of FðpÞ (red continuous
line) compared with the lattice data of Refs. [11,12]. Note that the value of �s used when solving the system is �sð�Þ ¼ 0:22.

1×10-3

FIG. 8 (color online). The SUð2Þ lattice data for the gluon
propagator, �ðqÞ, obtained in Ref. [9] and renormalized at
� ¼ 2:2 GeV. The (red) continuous curve represents the
corresponding fit for the lattice data.
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Specifically, we start by setting CA ¼ 2 in Eqs. (4.1) and
(4.2); then we solve the system numerically, using as input
the SUð2Þ data for �ðqÞ, presented in Fig. 8 (renormalized
at � ¼ 2:2 GeV), and the value �sð�Þ ¼ 0:81.

On the left panel of Fig. 9, we compare our numerical
results for Að�k; 0; kÞ with the corresponding lattice data
obtained in Ref. [38]. Evidently, the solution displays the
same qualitative behavior found in the SUð3Þ analysis,
shown in Fig. 7. In particular, for the SUð2Þ case, the
peak is slightly shifted toward the ultraviolet, occurring
at around 1.2 GeV. Notice also that our solution follows
quite well the general trend of the lattice data but is clearly
not on top of them. This deviation, in turn, suggests that the
terms discarded from the SDE of the ghost-gluon vertex are
indeed small, but not totally negligible.

In addition, on the left panel of Fig. 9, we compare our
results for Að�k; 0; kÞ with those obtained using the afore-
mentioned OPE model of Ref. [32] (blue dotted curve). As
we can see, both curves display a similar behavior, with
their maximum points located in the region of 1–1.2 GeV.
Note that the slight discrepancy at the origin (tree-level
result) is due to the finite vertex renormalization employed
in Ref. [32]; specifically, Z1 ¼ 1:04, instead of Z1 ¼ 1 that
we use here.

Finally, as can be appreciated from the right panel of
Fig. 9, our numerical results for FðpÞ (red continuous
curve) are in excellent agreement with the corresponding
lattice data of Ref. [9]. As happened in the SUð3Þ case, the
introduction of the nonperturbative correction to the ghost-
gluon vertex reduces considerably the value of the gauge
coupling needed to reproduce the lattice data. Specifically,
when we employ the bare vertex, the lattice result is
reproduced for �sð�Þ ¼ 0:99, whereas the value of the
coupling used when solving the system of FðpÞ and
Að�k; 0; kÞ is �sð�Þ ¼ 0:81.

V. CONCLUSIONS

In the present work, we have considered the one-loop
dressed approximation of the SDE that governs the evolu-
tion of the ghost-gluon vertex. In particular, we have
focused on the dynamics of the form factor denoted by
A, which is the one that survives in the SDE for ghost
dressing function, in the LG. The vertex SDE has been
evaluated for two special kinematic configurations, one of
them corresponding to the well-known Taylor limit. When
coupled to the SDE of the ghost, the contribution of this
particular form factor accounts for the missing strength of
the associated kernel, allowing one to reproduce the lattice
results rather accurately, using the standard value of the
gauge coupling constant.
The fact that, despite the truncation implemented on the

vertex SDE, we finally obtained a rather good agreement
with the lattice, hints to the possibility that the omitted
terms are numerically subleading, at least in the case of the
special kinematic configurations considered. It might be
interesting to pursue this point further. Specifically, in the
present analysis, the terms proportional to the second form
factor, denoted by B, have been automatically discarded,
precisely because they do not contribute to the ghost SDE.
However, given that both form factors participate in the
fundamental relation of Eq. (2.6), one might consider the
possibility of keeping these terms throughout the calcula-
tion and then checking explicitly to what extent Eq. (2.6) is
satisfied in the present approximation.
Recently, the study of the effects that the dynamical

quarks induce on some of the fundamental Green’s func-
tions of QCD has received particular attention, both from
the point of view of unquenched lattice simulations [48] as
well as by means of an SDE-based approach [49]. In
particular, lattice simulations reveal that the inclusion of

1×10-3

FIG. 9 (color online). Left panel: The SUð2Þ lattice results for Að�k; 0; kÞ of Ref. [38] (square and circles) and the numerical result
for Að�k; 0; kÞ, obtained from the system of Eqs. (4.1) and (4.2) when �sð�Þ ¼ 0:81 (red continuous line). The (blue) dotted line
represents the OPE model of Ref. [32]. Right panel: Comparison of FðpÞ (red continuous line), obtained from the system of Eqs. (4.1)
and (4.2) with the SUð2Þ lattice data of Ref. [9].
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light active quarks results in a considerable suppression in
the deep infrared and intermediate momentum region of
the gluon propagator. This characteristic feature has been
firmly established also within the SDE framework of
Ref. [49]. On the other hand, the unquenched ghost dress-
ing function simulated on the lattice suffers minimal
changes from the inclusion of quarks [48]; this property
has also been anticipated within the aforementioned SDE
analysis [49] as a direct consequence of the fact that, in the
case of F, the quark loops enter as ‘‘higher-order’’ effects.
In addition, it is well-known that the value of the MOM
coupling, �ð�Þ, increases in the presence of quark loops.

It would be, therefore, interesting, to study the combi-
nation of these competing effects systematically, including
the vertex equation for A, derived here. In particular, the
nonlinear nature of the corresponding integral equations
converts this combined analysis into a rather challenging

problem. Specifically, the changes induced to the integral
equation for A, due to the aforementioned suppression of
the gluon propagators entering in it, must be compensated,
to a considerable level of accuracy, by the corresponding
increase in the coupling constant in order to finally obtain
the rather minor change observed in F. We hope to be able
to carry out such a study in the near future.
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