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The model of elastic scattering amplitudes dominated by the triple (at t ¼ 0) Pomeron pole suggested

earlier is modified to confront to existing experimental data on pp and �pp total and differential cross

sections at
ffiffiffi
s

p � 19 GeV and jtj � 14:2 GeV2 including the newest TOTEM data. Predictions for the

future TOTEM measurements at 13 and 14 TeV are given.
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I. INTRODUCTION

The TOTEM experiment at LHC provides, in fact,
the first measurements of soft Pomeron contribution
(more exactly of Pomeron and Odderon) because the con-
tributions of secondary or subasymptotic Reggeons are
very small at such high energies. It means that the precise
measurement of pp total and differential cross sections
[1–3] gives a possibility to discriminate the various
Pomeron models by comparing their predictions with
new data. Generally speaking, the TOTEM results are
going to be a strong restriction for various phenomenologi-
cal Pomeron models [1]. Many of them being directly
extrapolated to 7 TeV could not describe the recent
TOTEM data though they are in a good agreement with
data at

ffiffiffi
s

p � 1:96 TeV. Moreover, even basing on the total
cross section measurement at 7 and 8 TeV only, one can
conclude that �pp

tot rises with energy faster than ln s.
Therefore some of the models have to be rejected despite
its excellent agreement with the data available before LHC
epoch. For example, the dipole Pomeron model with tra-
jectory intercept �ð0Þ ¼ 1 (see [4] and references therein)
is unable to give �pp

tot > 94 mb at
ffiffiffi
s

p ¼ 7 TeV.
The current state of the elastic scattering model market

is given in [5] and in the comprehensive review [6].
Obviously, all the models must be verified for a consistency
with new data. Many of them, if not all, require some
modification to be successfully extrapolated to new data.

In [7] such a procedure was performed for the eikonal
[8,9] and U-matrix [10] models. It was shown that adding
the second Odderon term solves the problem only partially,
a further modification of the model is necessary. Eikonal
and U-matrix models are treated as infinite series of
multiple input Reggeon exchanges. However, another
approach to constructing the model is also possible. One
can just take into account unitarity and analyticity require-
ments from the beginning as well as experimental infor-
mation on the cross sections (e.g., increase of total cross
sections) to determine the form of amplitude.

Following this idea in [4] we have suggested the tripole
Pomeron-Odderon model of elastic pp and �pp scattering
amplitudes and compared it with data. Amplitudes in the
model at very high energies are dominated by Pomeron
contribution which corresponds to a pair of the branch
points colliding at t ¼ 0 and at the angular momentum
j ¼ 1 to generate a triple pole. Besides the set of the
preasymptotic terms, even and odd, have been incorporated
in the model. The structure of leading singularities
is different from those of the well-known maximal
Pomeron and Odderon model [11–13]. It was shown that
the model [13] is in a good agreement with the data in a
wide interval of energy and momenta transferred, but now
we have found that those models without changes fail to
describe the recent TOTEM d�=dt data.
In the present paper we are focused on our parametriza-

tion of the tripole Pomeron-Odderon model [4] exploring
its simplified form (neglecting the cut contributions
unimportant at high energies). This model in Ref. [4] was
applied at jtj � 6 GeV2. We add two additional terms
decreasing at high jtj as 1=jtj4 in order to extend the model
for larger jtj. Such terms allow us (as it was shown in [13])
to describe the d�=dt data at jtj * 6 GeV2.
We remind of the important properties of the tripole

Pomeron-Odderon model, argue its modification for high
jtj, then we present the results of the fit and give predictions
for the TOTEM measurements at higher energies and jtj.

II. TRIPOLE POMERON MODEL

A. The leading high energy terms of the amplitude

As it was stressed in [4], the contribution to the partial
amplitude of a triple pole with linear trajectory

�ðj; tÞ ¼ �ðj; tÞ
½j� 1� �0t�3 (1)

violates the unitarity inequality �elðsÞ � �totðsÞ. The cor-
rect Pomeron singularity dominating the partial wave is the
following:

’1P ðj; tÞ ¼ �ðjÞ �1ðj; tÞ
½ðj� 1Þ2 � kt�3=2 : (2)
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The black disk model holds the same singularity of the
partial amplitude. The imaginary part of black disk
amplitude in the impact parameter representation has a
steplike form with the height 1=2 and the width equal
to R2ðsÞ / ln 2s. It leads to �totðsÞ / �elðsÞ / ln 2ðs=s0Þ,
s0 ¼ 1 GeV2.

It seems to be natural to keep the same structure of
singularity for subleading terms changing only their multi-
plicity. Our choice of subleading terms is the following:

’2P ðj; tÞ ¼ �ðjÞ �2ðj; tÞ
½ðj� 1Þ2 � kt� ; (3)

’3P ðj; tÞ ¼ �ðjÞ �3ðj; tÞ
½ðj� 1Þ2 � kt�1=2 ;

�ðjÞ ¼ 1þ e�i�j

� sin�j
:

(4)

Thus the leading Pomeron contribution to partial amplitude
has a form

’P ðj; tÞ ¼ ’1P ðj; tÞ þ ’2P ðj; tÞ þ ’3P ðj; tÞ: (5)

Taking into account that

1

ð!2 þ!2
0Þ3=2

¼ 1

2!0

Z 1

0
dxxe�x!J1ð!0xÞ; (6)

1

!2 þ!2
0

¼ 1

!0

Z 1

0
dxe�x! sin ð!0xÞ; (7)

1

ð!2 þ!2
0Þ1=2

¼
Z 1

0
dxe�x!J0ð!0xÞ; (8)

where J0;1ð!0xÞ are the Bessel functions, one can write the
main Pomeron part of amplitude in the ðs; tÞ representation
P ðs; tÞ ¼ izfP 1ðs; tÞ þ P 2ðs; tÞ þ P 3ðs; tÞg;

P 1ðs; tÞ ¼ gP1 v
P
1 ðtÞ�

2J1ð��þÞ
�þ

;

P 2ðs; tÞ ¼ gP2 v
P
2 ðtÞ

sin ð��þÞ
�þ

;

P 3ðs; tÞ ¼ gP3 v
P
3 ðtÞJ0ð��þÞ;

(9)

where gPi v
P
i ðtÞ are the vertex functions with viP ð0Þ ¼ 1,

� ¼ ln ð�iz=z0Þ, z is defined below by Eq. (11), and �þ ¼
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi�t=t0
p

, t0 ¼ 1 GeV2, gPi , rþ, and z0 are constants.
Strictly speaking the amplitudes in Regge models

depend on s through the cos 	t, cosine of the scattering
angle in the t channel, which for pp scattering in the center
mass system has the form

cos	t ¼ 1þ 2s=ðt� 4m2
pÞ

¼ ðtþ 2s� 4m2
pÞ=ðt� 4m2

pÞ: (10)

In the considered kinematical region the t in the numerator
of Eq. (10) can be neglected. However we keep 4m2

p

because for t ¼ 0 we take into account the data on cross
sections at low energies,

ffiffiffi
s

p
* 5 GeV. Absorbing factor

1=ðt� 4m2
pÞ into the vertex functions we define the energy

variable as the following:

z ¼ 2s� 4m2
p: (11)

We propose to keep the same singularity structure for the
leading terms of the crossing-odd part of amplitude.
However, taking into account the fact that there is no
visible Odderon contribution at t ¼ 0 we multiply each
Odderon term by factor t:

Oðs; tÞ ¼ ztfO1ðs; tÞ þO2ðs; tÞ þO3ðs; tÞg;

O1ðs; tÞ ¼ gO1 v
O
1 ðtÞ�

2J1ð���Þ
��

;

O2ðs; tÞ ¼ gO2 v
O
2 ðtÞ

sin ð���Þ
��

;

O3ðs; tÞ ¼ gO3 v
O
3 ðtÞJ0ð���Þ;

(12)

where vO
i ð0Þ ¼ 1, �� ¼ r�

ffiffiffiffiffiffiffiffiffiffiffiffiffi�t=t0
p

and gOi are the
constants.
We would like to emphasize that similar (but not the

same) models for P and O were considered in [11–13].
These models have the same dominating even term P 1ðs; tÞ
but the different subasymptotic terms P 2ðs; tÞ P 3ðs; tÞ. The
Odderon terms included in those amplitudes do not vanish
at t ¼ 0. The properties of the models [11,12] and their
defects have been discussed in detail in [4]. They were
modified in [13], defects were eliminated and a good
description of data at energies up to 1.8 TeV has been
obtained. However, as was noticed in [14] such a maximal
Odderon term [O1ðs; tÞ=t in our notations] gives rise to the
contradiction with unitarity in the models where
�elðsÞ=�totðsÞ ! const � 1 at s ! 1. In spite of this
fact, we refit the model [13] (without the cuts important
only at low energies) at the energies

ffiffiffi
s

p
> 19 GeV, includ-

ing TOTEM data, but we fail to describe the data
qualitatively.

B. The subleading Reggeons and powerlike
behaved terms of amplitudes

In [4] the described model was applied to analysis of the
d�=dt data at

ffiffiffi
s

p
> 6 GeV, where not only contributions

of the Pomeron and secondary Reggeons but also their
rescatterings (or cuts) are very important. Besides, the
considered momenta transfer were restricted by jtjmax ¼
6 GeV2. Here we would like to check a principal possibil-
ity of the model to describe an interpolation between GeV
and TeV energy region. We investigate as well which
amplitude terms are important for that and which form of
vertex functions gvðtÞ is more suitable for d�=dt at jtj *
5 GeV2. Thus, we consider high energy pp and �pp elastic
scattering, starting from FNAL energy 19 GeV.We do hope
that in this energy interval we can neglect at least all cuts
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reducing the number of adjustable parameters. These terms
are important at lower energies but their parametrization
should be chosen being consistent with a good description
of high energy data.

We keep in amplitudes also the standard ‘‘soft’’
Pomeron and Odderon, simple j poles with linear trajecto-
ries �ðtÞ ¼ 1þ �0t:

Pðs;tÞ¼�gPvPðtÞð�iz=z1Þ1þ�0
Pt; z1¼1GeV2; (13)

Oðs; tÞ ¼ itgOvOðtÞð�iz=z1Þ1þ�0
O
t: (14)

To describe the behavior of the �totðsÞ; 
ÞðsÞ, d�=dtðs; tÞ at
low energy and low jtj the usual secondary crossing-even
and odd Reggeons (f; a2; !; 
; . . . Reggeons with inter-
cepts �ð0Þ � 0:4–0:7) have to be included in the ampli-
tudes. However, analyzing pp and �pp amplitudes only it is
sufficient to consider at

ffiffiffi
s

p
> 5 GeV one effective even

Reggeon and one effective odd Reggeon:

R�ðs; tÞ ¼
�1

i

 !
g�v�ðtÞð�iz=z1Þ��ð0Þþ�0

�t: (15)

A preliminary analysis of the data was performed to
understand how a behavior of d�=dt (at jtj * 5 GeV2)
can be described. We found that a correct description of
these data is provided by the terms behaving as 1=ð�tÞ4 at
large jtj (which are almost independent on s). Therefore we
add to the amplitudes crossing even and odd terms Evðs; tÞ
andOdðs; tÞwith arbitrary phases. To decrease an influence
of these terms on the amplitudes at small jtj we introduce
the factor (� t). It would be reasonable to construct them in
a more customary (Regge-like) form at small t and power-
like behaving at large t . But as we noticed above our aim
is, first of all, to check some principal possibilities of the
tripole Pomeron and Odderon models. Therefore to avoid
an extra number of parameters we choose these terms in a
simplified form:

Evðs; tÞ ¼ ið�tÞz grþ þ igiþ
ð1� t=tEvÞ5

; (16)

Odðs; tÞ ¼ ð�tÞz gr� þ igi�
ð1� t=tOdÞ5

: (17)

Thus, the pp and �pp amplitudes in a general case are
defined as follows:

A �pp
ppðs; tÞ ¼ P ðs; tÞ þ Pðs; tÞ þ Rþðs; tÞ þ Evðs; tÞ

� ðOðs; tÞ þOðs; tÞ þ R�ðs; tÞ þ Odðs; tÞÞ;
(18)

where P , O, P, O, R�, Ev, Od are given by Eqs. (9) and
(12)–(17), correspondingly.

C. Choice of the vertex functions vðtÞ
We have considered two options for the vertex functions

vðtÞ in the Pomeron [P ðs; tÞ, Pðs; tÞ] and Odderon [Oðs; tÞ,
Oðs; tÞ] terms.
Model I.—Exponential form:

vP
i ðtÞ ¼ exp ð2bPi tÞ; vO

i ðtÞ ¼ exp ð2bOi tÞ;
vPðtÞ ¼ exp ð2bPtÞ; vOðtÞ ¼ exp ð2bOtÞ:

(19)

Model II.—Power form:

vP
i ðtÞ ¼ ð1� bPi tÞ�4; vO

i ðtÞ ¼ ð1� bOi tÞ�5;

vPðtÞ ¼ ð1� bPi tÞ�4; vOðtÞ ¼ ð1� bOi tÞ�5:
(20)

The behavior with �5 for Odderon vertices is taken be-
cause Odderon terms of amplitudes [Eqs. (12) and (14)]
have been multiplied by the factor t.
In both models the vertices for secondary Reggeons

R�ðs; tÞ are chosen in an exponential form:

v�ðtÞ ¼ exp ð2b�tÞ: (21)

R�ðs; tÞ are negligible at high jtj because of large slopes of
their trajectories. However, these terms of amplitude be-
come important at small jtj where exponential vertices are
reasonable.
The following normalization of pð �pÞp ! pð �pÞp

amplitude is used:

�t ¼ k

F0

=mAðs; 0Þ; d�

dt
¼ k

F
jAðs; tÞj2; (22)

where

F0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 2m2

pÞ2 � 4m4
p

q
¼ 2plab

p

ffiffiffi
s

p
; F ¼ 16�F2

0;

k ¼ 0:3893797 mb � GeV�2 (23)

and plab
p is the momentum of initial proton (antiproton) in

the laboratory system of another proton. The amplitudes
and couplings g are dimensionless with this normalization.

III. CONFRONTING THE MODELS TO THE DATA

A. The data

The constructed models were compared with the pp and
�pp data on �totðsÞ; 
ðsÞ and d�ðs; tÞ=dt in the following
region of s and t:

for �totðsÞ; 
ðsÞ at 5 GeV � ffiffiffi
s

p � 8 TeV;

for d�ðs; tÞ=dt at 19 GeV<
ffiffiffi
s

p � 7 TeV

and 0:01 GeV2 � jtj � 14:2 GeV2: (24)

The cosmic ray data on the pp total cross sections were not
included in the fit procedure.
The data set we used for adjusting the model parameters

has been proposed in [15], where a coherent set of all
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existing data for 4 � ffiffiffi
s

p � 1800 GeV and 0 � jtj �
14:2 GeV2 has been built. A detailed study of the system-
atic errors of the data from more than 260 subsets of the
data from more than 80 experimental papers have per-
formed (original data and the corresponding references
can be found in the HEP DATA system [16,17]). The
corrected data are collected and written in a common
format. We suggest to use this data set as a standard data
set. The latest (with some corrections) updated version of it
including TOTEM [1–3] and D0 [18] data is available
online [19].

The set used for the given analysis contains 2384 points
in the region described above (numbers of points for
measured quantities are given in the Table I). 31 points
from the 3 groups, 8 points at

ffiffiffi
s

p ¼ 26:946 GeV, 11 points
at 30.7 GeVand 12 points at 53.018 GeVonly for d�pp=dt

were excluded from all the data presented in [17] because
these groups are strongly deviated from the rest data points
and can slightly distort the fit.

B. Results of the fit

At the first step we have considered Models I and II
without contribution of Pðs; tÞ and Oðs; tÞ in order to see
how these terms are important. We found out that such
simple models quite well describe the data. The values of
�2=dof (dof ¼ Nexp :points � Nparameters) for all the consid-

ered parametrizations are given in Table II. The different
numbers of parameters in Models I and II for the case
Pðs; tÞ, Oðs; tÞ � 0 are obtained because some of the pa-
rameters b are fixed at the low limit b ¼ 0. The full sets of
parameters and corresponding errors for these cases are
presented in Table III.

As one can see from Figs. 1–5 and from Table II, all
models, even the simplest one with Pðs; tÞ ¼ Oðs; tÞ ¼ 0,
describe quite well the experimental data. The theoretical
curves in the models differ in some details but nevertheless
they are globally in agreement with experimental data.
Moreover, one can obtain a very similar description of
the data with the following vertices:

vðtÞ ¼
�
exp ð2m� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
� � t

p Þ for even terms;

exp ð3m� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9m2

� � t
p Þ for odd terms:

(25)

This first analysis gives a ground for three important
inferences.

TABLE I. Number of experimental points used for the fitting.

�tot 
 d�=dt

pp 107 64 1633

�pp 59 11 510

TABLE II. The values of �2 and number of parameters in the
considered models.

�2=dof (Nparameters)

Model I, exponential

vertices

Model II, power

vertices

Pðs; tÞ ¼ Oðs; tÞ ¼ 0 1.779 (26) 1.636 (26)

Pðs; tÞ; Oðs; tÞ � 0 1.402 (31) 1.371 (32)

TABLE III. Parameters of Models I and II obtained by fitting
to the data. Parameters �0 and b are given in GeV�2, z0 is given
in GeV2, other parameters are dimensionless. Errors are taken
from the MINUIT output.

Model I

exponential vertices

Model Il

power vertices

Parameter Value Error Value Error

z0 48.438 4.127 25.438 0.644

gP1 0.314 0.006 0.358 0.002

gP2 1.398 0.059 �0:007 0.001

gP3 21.215 1.164 1.843 0.22

gO1 �1:018 0.062 �0:174 0.004

gO2 0.656 0.104 1.643 0.020

gO3 �11302:3 6404.7 �491:034 3.079

rþ 0.281 0.003 0.372 0.001

r� 0.682 0.009 0.201 0.001

bP1 3.705 0.054 0.687 0.004

bP2 1.387 0.015 4.580 0.265

bP3 3.035 0.064 0.180 0.022

bO1 2.471 0.044 1.163 0.008

bO2 1.569 0.054 1.151 0.005

bO3 151.69 28.98 0.419 0.001

�þð0Þ 0.670 0.011 0.585 0.004

��ð0Þ 0.467 0.012 0.461 0.007

�0þ 0.84 Fixed 0.84 Fixed

�0� 0.93 Fixed 0.93 Fixed

gþ 74.218 2.506 74.889 1.164

g� 58.270 3.682 60.033 2.247

bþ 0.0 Fixed 7.478 0.536

b� 3.834 1.058 99.607 30.374

�0
P 0.414 0.010 0.368 0.002

�0
O 0.158 0.003 0.149 0.001

gP 16.772 0.923 41.892 0.192

bP 0.455 0.037 1.444 0.012

gO �0:063 0.005 226.083 1.753

bO 0.0 Fixed 0.706 0.002

grþ �39:575 1.481 �6:578 0.078

giþ �10:945 0.477 0.132 0.072

tEv 0.503 0.006 1.013 0.005

gr� 76.320 5.872 �0:007 0.002

gi� 0.4083 0.541 �0:058 0.004

tOd 0.083 0.010 4.205 0.116
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(i) There are not any unusual or unexpected phenomena
in new TOTEM data. They correspond to the stan-
dard Regge-like behavior at low and intermediate jtj.

(ii) The data at relatively low energies but at highest
measured jtj require in amplitude the terms decreas-
ing like 1=ð�tÞ4. It can be an indication of a hard
scattering. However, taking into account that slow
decreasing with t is obtained in the eikonal and
U-matrix models [7], one can think that a powerlike

behavior may be imitated by series of rescatterings
or multi-Reggeon exchanges.

(iii) We believe that a successful description of the data
in the considered models results from the well
tuned structure of Pomeron and Odderon singular-
ities [Eqs. (9) and (12)] rather than from a choice of
vertex functions.

FIG. 1 (color online). pp and �pp total cross sections. FIG. 3 (color online). Total, elastic, and inelastic pp cross
sections.

FIG. 2 (color online). Real to imaginary ratios of the forward
scattering pp and �pp amplitudes.

FIG. 4 (color online). Differential cross sections of pp elastic
scattering.
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The theoretical curves for �totðsÞ, 
ðsÞ and integrated
elastic cross sections, �elðsÞ, as well as for inelastic cross
section, �inelðsÞ, are shown in Figs. 1–3. The values of the
total cross sections obtained at 7 and 8 TeV are a little bit
less than the TOTEM data but they are within the measured
errors. Both model predictions for higher LHC energies are
given in Tables IV and V.

Description of the differential cross section in the
models is demonstrated in Figs. 4 and 5. For the simplest

model, i.e., at Pðs; tÞ ¼ Oðs; tÞ ¼ 0, we have shown curves
only for a model with exponential vertices in order to
avoid a meshing figure. From Table II, one can see
that quality of description in both models is almost the
same. The TOTEM d�=dt data are described with

�2=Np ¼ 0:47 and �2=Np ¼ 0:46 in Models I and II

[with Pðs; tÞ; Oðs; tÞ � 0], correspondingly.
We would like to stress that in spite of a widespread

opinion that at high energy and high momentum transfers
an Odderon contribution is dominating we found that in the
considered models it is not the case. One can see in Figs. 6
and 7 that the dominating partial even and odd components
at large jtj have comparable values (at least for jtj<
15 GeV2). However, Fig. 7 shows that cumulative even
contribution to ds=dt at jtj outside of the dip positions
(see below) is larger of the odd one. The cumulative even
contribution in this region at 7 TeV is a few times larger
than the cumulative odd one. At the same time a role of odd
contributions is important at low and intermediate t values
and, especially, in the regions of dips.
In Fig. 8 we give the predictions of the considered

models for the TOTEM experiment at higher transferred
momenta and higher LHC energies. The most interest-
ing point is an existing/absence of the second dip in
d�=dt. The model with exponential form factors leads

FIG. 5 (color online). Differential cross sections of �pp elastic
scattering.

TABLE IV. Cross sections and ratio of real to imaginary parts
of the forward scattering pp amplitude in Model I [with Pðs; tÞ,
Oðs; tÞ � 0 and exponential vertices].ffiffiffi
s

p
(TeV) �tot (mb) �el (mb) �inel (mb) 


7 96.46 24.87 71.59 0.132

8 98.65 25.72 72.93 0.132

13 106.93 29.04 77.89 0.129

14 108.23 29.57 78.67 0.128

TABLE V. Cross sections and ratio of real to imaginary parts
of the forward scattering pp amplitude in Model II [with
Pðs; tÞ; Oðs; tÞ � 0 and power vertices].ffiffiffi
s

p
(TeV) �tot (mb) �el (mb) �inel (mb) 


7 97.48 24.97 72.51 0.136

8 99.76 25.77 73.98 0.135

13 108.37 28.85 79.52 0.132

14 109.73 29.33 80.39 0.132

FIG. 6 (color online). Even and odd components of pp elastic
scattering amplitudes at 53 GeVand 7 TeV (calculated in Model
II). Factor F is defined in Eq. (23).
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to smooth behavior with no dips, whereas, models with
power vertices predict a dip structure in d�=dt. If
Pðs; tÞ ¼ Oðs; tÞ ¼ 0 then the shoulder at jtj � 4 GeV2

and
ffiffiffi
s

p ¼ 7 TeV is transformed into a dip moving to

jtj � 3 GeV2 at 14 TeV. Moreover, in this model the third
dip is visible at the energy 14 TeV near jtj � 10 GeV2. If
Pðs; tÞ; Oðs; tÞ � 0 then well pronounced dip develops at
jtj � 8 GeV2 moving to jtj � 6 GeV2 when energy is
increasing from 7 to 14 GeV. Accurate measurements at
such jtj would be the excellent test for the considered
models.

IV. CONCLUSION

The analysis performed above demonstrated a high
credibility of the tripole Pomeron-Odderon model devel-
oped in [4]. We have made its minor improvement only by
adding two terms, crossing even [Eðs; tÞ] and odd
[Odðs; tÞ], in order to apply the model to high t. We have
considered two choices of t dependence in vertex functions
and found in all the cases a good description of the data in a
wide region of s and t even in the simplified versions of the
model without the standard simple pole Pomeron and
Odderon contributions. Thus, it allows us to conclude
that the model is quite stable under variations of the
preasymptotic components and the form of vertex func-
tions. Apparently such the model stability is stipulated by
the well tuned structure of the leading Pomeron P and
Odderon O singularities.
The whole bulk of high energy data are described in a

framework of the traditional Regge approach. In our opin-
ion the new data in the TeVenergy region do not show any
indication of new unusual phenomena.
We have predicted the values of the total, elastic, and

inelastic cross sections, as well as the ratio 
ðsÞ and
differential cross sections at higher LHC energies. The
amazing prediction is made for the large jtj region at the
LHC energies. The model with an exponential t depen-
dence of vertices leads to a smooth behavior of differential
pp cross sections while in the model with power vertices a
dip structure moving with energy is generated at large jtj.
We hope that future measurements of the TOTEM collabo-
ration will allow us to discriminate within possibilities for
the developed model.
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FIG. 8 (color online). Predictions of the models for pp differ-
ential cross sections at the LHC energies.

FIG. 7 (color online). Even and odd cumulative contributions
to d�=dt at 53 GeVand 7 TeV (calculated in Model II). Factor F
is defined in Eq. (23).
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