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We examine the feasibility of gauge invariant descriptions of the gluon polarization following

the proposal that a gauge field can be decomposed into its physical part and its pure gauge part. We

show that gauge invariant angular momentum currents can be constructed from summations of gauge

variant Noether currents. We present novel expressions of the pure gauge field, which are used to

formulate gauge invariant descriptions of the gluon spin and the photon spin. We show that the gauge

invariant extension of the Chern-Simons current can describe the spins of the Laguerre-Gauss laser modes.

We also discuss the relation of gauge invariant operators and the parton distributions constructed from

Dirac variables.
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I. INTRODUCTION

The electromagnetic and strong interactions are well
recognized as gauge theories. Nevertheless, compared to
their elegant mathematical formulation, gauge symmetries
play a perplexing role when we try to understand the
angular momentum structure of the photon field and gluon
field. On one hand, the spin and orbital angular momentum
of light modes have been measured experimentally [1–3],
and the gluon spin contributions to the nucleon spin are
also believed to be measurable [4–6]. On the other hand, it
is believed that a gauge invariant operator decomposition
of the gluon spin and orbital angular momentum is not
feasible, compared to a well established gauge invariant
decomposition of the quark spin and orbital angular
momentum [7].

Recently, Chen et al. [8] proposed that the gluon
spin and orbital angular momentum can be identified
gauge-independently by decomposing the gauge field
into its physical part A

�
phys and its pure gauge part A

�
pure.

The decomposition of Chen et al. shows the appealing
feature that the gauge covariant derivative operator in their
construction appears to depend solely on the pure gauge
field, so it can be regarded as the closest akin to the
interaction-free canonical ones. Moreover, Chen et al.
argue that the Coulomb gauge construction plays an espe-
cially superior role, mainly because the Abelian gauge field
can be uniquely decomposed into its transverse part and
longitudinal one. The proposal of Chen et al. has inspired
lots of considerations on the feasibility of gauge invariant
operator descriptions of the gluon spin [9–13]. However,
there are also some concerns about the decomposition of
Chen et al., such as the frame-dependence problem in the
Coulomb gauge case and the light cone gauge case [14],
the uniqueness problem of identifications of the gluon spin

operator [15,16], whether the requirement of gauge invari-
ant operators is necessary [17], and whether the decom-
position of Chen et al. can provide new understandings on
the decomposition of the nucleon spin beyond the frame-
work of gauge invariant extensions [14]. In this paper, we
discuss the feasibility of gauge invariant descriptions of the
gluon spin and attempt to shed light on these concerns from
several different aspects.
Firstly, we propose that gauge invariant expressions

of angular momentum current can be constructed from
summations of two kinds of Noether currents: one kind
of current is induced by the Lorentz transformation and the
other one is induced by the gauge transformation. These
results are presented in Sec. II. Secondly, in Sec. III we
propose novel expressions for the pure gauge field A

�
pure,

using operators similar to the operators of specified twist in
the operator product expansions. These expressions are
apparently frame independent. Based on these expressions,
we suggest gauge invariant decompositions of the nucleon
spin in Sec. IVA. We then pay special attention to the
photon spin operator in Sec. IVB. When restricted on the
Abelian case, we show that our proposed photon spin
operator can describe the spin of light modes with a fixed
frequency, such as the Laguerre-Gaussian laser modes. We
further discuss the parton distribution functions con-
structed from Dirac variables [18–21] and their relations
to the gauge invariant quark momentums in Sec. IVC.
Finally, we give conclusions in Sec. V. We also have three
appendixes to give more details of the body of our paper.

II. GAUGE INVARIANT ANGULAR MOMENTUM
CURRENTS AS SUMMATIONS

For gauge theories, the conserved currents constructed
from the Noether theorem are generally not gauge invari-
ant. However, we show in this section that gauge invariant
currents can be constructed from the summations of gauge
variant currents. We consider the Lagrangian
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L ¼ � 1

4
Fa
��F

a�� þ i

2
½ �c��ð@� � igA�Þc

� ð@� �c þ ig �cA�Þ��c �: (1)

For the Lorentz invariance of this Lagrangian, the corre-
sponding Noether current can be written as

J �
LT ¼ �x�Lþ @L

@ð@�A�Þ�LTA� þ @L
@ð@�c Þ�LTc

þ �LT
�c

@L
@ð@� �c Þ ; (2)

with field variations up to first order of the parameters
!�� as

�LTA�ðxÞ ¼ �y�@�A�ðxÞ þ!��A
�ðxÞ;

y� ¼ �x� ¼ !��x
�;

(3)

�LTc ðxÞ ¼ � i

2
!��S��c ðxÞ � y�@�c ðxÞ; (4)

�LT
�c ðxÞ ¼ i

2
�c ðxÞ!��S�� � y�@� �c ðxÞ: (5)

When Eq. (2) is written in a manifest way, it gives the
canonical angular momentum current as proposed by Jaffe
and Manohar [22]. The Lagrangian (1) is also invariant
under gauge transformations. For gauge transformations,
the corresponding Noether current is given by

J �
GT¼

@L
@ð@�A�Þ�GTA�þ @L

@ð@�c Þ�GTc þ�GT
�c

@L
@ð@� �c Þ ;

(6)

with field variations up to first order of the gauge parameter
� as

�GTA�ðxÞ ¼ D��ðxÞ ¼ @��ðxÞ � ig½A�; �ðxÞ�; (7)

�GTc ðxÞ¼ ig�ðxÞc ðxÞ; �GT
�c ðxÞ¼�ig �c ðxÞ�ðxÞ: (8)

Written manifestly, the current in Eq. (6) is

J �
GT ¼ �2TrðF��D��Þ � g �c���c ; (9)

¼ 2TrðD�F
���Þ � g �c���c � 2@� TrðF���Þ: (10)

Here and hereafter we use the normalization TrðTaTbÞ ¼
1
2�

ab. The first two terms of Eq. (10) give zero by the

equations of motion. The third term satisfies
@�@� TrðF���Þ ¼ 0. So the current J �

GT is conserved for

any values of the field �ðxÞ. We can suppose a para-
metrization of the field �ðxÞ as

�ðxÞ ¼ �!��x
�N�ðxÞ: (11)

Then the current J �
GT can be summed with J �

LT to for-

mulate a new current

J � ¼ J �
LT þ J �

GT ¼ 1

2
!��M

���; (12)

M��� ¼ M
���
qs þM

���
qo þM

���
gs þM

���
go ; (13)

with identifications of quark parts as

M���
qs ¼ 1

2
����	 �c�	�5c ; (14)

M
���
qo ¼ i

2
½ �c��x�ð@�� igN�Þc �ð�$�Þ�þH:c:

þð
��x��
��x�ÞLquark; (15)

and identifications of gluon parts as

M���
gs ¼�2Tr½F��ðA��N�Þ�F��ðA��N�Þ�; (16)

M
���
go ¼ 2Tr½F�

�ðF��x� � F��x�Þ�
þ 2Tr½x�F�

�D
�ðA� � N�Þ � ð� $ �Þ�

þ ð
��x� � 
��x�ÞLgluon: (17)

Here Lquark and Lgluon are respectively the corresponding

gauge invariant fermion part and gluon part of the
Lagrangian (1), and D� ¼ @� � ig½A�; ��. The above re-

sults are identical with our previous ones obtained by using
a generalized Lorentz transformation [23]. The cause of
their consistency is simply that the Lie algebra of the
generalized Lorentz transformation used in [23] is the
direct sum of the algebra of the Lorentz transformation
and that of the gauge transformation. For N� ¼ A�, we
obtain the gauge invariant decompositions of Ji [7]. For

N� ¼ A�
pure, we obtain the gauge invariant decompositions

of Chen et al. [8]. The feasibility of derivation of gauge
invariant currents by the Noether procedure is also dis-
cussed in [21,24] through different methods. Their results
correspond to special cases of our above discussions when

N� ¼ A�
pure. Harindranath and Kundu [25], Shore and

White [26] showed that the difference between the decom-
position of Ji and that of Jaffe and Manohar is just a total
divergence by imposing equations of motion. Our above
results are also consistent with their analysis in the case
N� ¼ A�.

III. NOVEL EXPRESSIONS FOR THE
PURE GAUGE FIELD

A. Abelian case

A key step of the proposal of Chen et al. is to express the
pure gauge field A�

pure in terms of A� in order that no extra

freedoms are introduced. For several expressions of the
pure gauge field, see [10–13]. In this section, we attempt to
derive expressions for A

�
pure through a method introduced

by Delbourgo and Thompson [27]. For an Abelian gauge
field, we consider the pure gauge field determined by
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@�½A�ðxÞ � @�’ðxÞ� ¼ 0; (18)

which can be rewritten as

@�@�’ðxÞ ¼ F ðxÞ; F ðxÞ ¼ @�A�ðxÞ: (19)

A series solution based on the inverse derivative operator
has been given in [23,27,28]. We try to find another kind of
solution of Eq. (19); we make the ansatz

’ðxÞ ¼ X1
s¼0

X½s2�
n¼0

as;nðx	x	Þnþ1x�1 � � � x�s�2n@�1
� � � @�s�2n

� ð@�@�ÞnF ðxÞ; (20)

where the notation ½s2� stands for the largest integer which is
smaller than s

2 , and as;n are some unknown constants to be

determined later on. In the ansatz (20), sþ 1 counts the
number of the derivatives appearing in the expansions. The
terms in the ansatz (20) look very similar to the operators
of specified twist appearing in the conventional operator
product expansions. The ansatz (20) has the simple prop-
erty, that is, after being acted on by the derivative operator
twice, it is transformed to be

@�@�’ðxÞ ¼
X1
s¼0

X½s2�
n¼0

cs;nðx	x	Þnx�1 � � � x�s�2n@�1
� � � @�s�2n

� ð@�@�ÞnF ðxÞ: (21)

It remains a similar structure to Eq. (20), but its coefficients
are modified to be

cs;n ¼ ðnþ 1Þð2dþ 4s� 4nÞas;n þ ðs� 2nþ 2Þ
� ðs� 2nþ 1Þas;n�1 þ 4ðnþ 1Þas�1;n

þ 2ðs� 2nþ 1Þas�1;n�1 þ as�2;n�1; (22)

with the constraints that as;n ¼ 0 for n � ½s2� þ 1 or s �
�1 or n � �1, which are apparently absent from Eq. (20).
In the above, d is the dimension of the space-time, and
hereafter we shall work with d ¼ 4. Therefore, a consistent
solution of Eq. (19) exists if

c0;0 ¼ 1 ðs ¼ 0Þ; (23)

cs;n ¼ 0 ðs � 1Þ: (24)

Equation (24) should be satisfied for s � 1. It is a recursive
identity, by which as;n with larger s and n can be deter-

mined by as;n with smaller s and n. By this recursive

identity, the first four equations for as;n are

8a0;0 ¼ 1; ðs ¼ 0; n ¼ 0Þ (25)

12a1;0 þ 4a0;0 ¼ 0; ðs ¼ 1; n ¼ 0Þ (26)

16a2;0 þ 4a1;0 ¼ 0; ðs ¼ 2; n ¼ 0Þ (27)

24a2;1þ2a2;0þ2a1;0þa0;0¼0: ðs¼2;n¼1Þ: (28)

Here we have used the relations that as;n ¼ 0 for n � ½s2� þ
1 or s � �1 or n � �1. For the equations derived from
the recursive identity (24), the unknown variables match
the number of equations. So the solution of Eq. (18)
can be determined by the recursive equations such as
Eqs. (25)–(28). The pure gauge field is hence obtained as

A
�
pureðxÞ ¼ @�’ðxÞ: (29)

From Eq. (20), we see that A
�
pureðxÞ ¼ 0 for the Lorentz

gauge @�A�ðxÞ ¼ 0. However, the pure gauge field deter-

mined by Eqs. (20) and (29) has a complicated formula-
tion, and its transformation under gauge transformations
is not transparent. In Appendix A, we give arguments that
it has the transformations as A� as we required. In
Appendix B 2, we present another solution of Eq. (18)
through a slightly different method, that is,

Â�
pureðxÞ¼A�ðxÞ�1

2
x�F

��ðxÞþ1

6
x�1

x�2
@�1F�2�ðxÞ

þ1

8
x�x�1

@�2
F�1�2ðxÞþ 1

16
x	x	@�F

��ðxÞþ��� :
(30)

By this formulation, Â
�
pureðxÞ apparently transforms as

A�ðxÞ under gauge transformations. Equation (30) is ex-
pected to be equivalent with Eq. (29) by similar arguments
in Appendix A, albeit a straightforward proof of their
equivalence, which means that we attempt to derive
Eq. (30) from Eq. (29) by the method of simple decom-
positions and combinations, is not easy to implement.

B. Non-Abelian case

For non-Abelian cases, we need to solve the equation

D�

�
A�� i

g
V�1@�V

�
¼0; VðxÞ¼ exp�ig�ðxÞ; (31)

where �ðxÞ ¼ �aðxÞTa taking values in the Lie algebra of
SUðNÞ and D� ¼ @� � ig½A�; �� stands for a covariant

derivative. Expanded as a series, the pure gauge field is

A�
pure¼ i

g
V�1@�V

¼@��� i

2
g½@��;���1

6
g2½½@��;��;��þ��� :

(32)

Because of its nonlinearity, Eq. (31) is not easy to solve.
We attempt to solve it by perturbative methods. We sup-
pose Eq. (31) has a series expansion as

� ¼ �ð0Þ þ g�ð1Þ þ g2�ð2Þ þ � � � : (33)

Then Eq. (31) can be solved by setting terms of the same
power of the coupling g to be zero. For the term indepen-
dent of g, we obtain
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@�@��
ð0ÞðxÞ ¼ F ð0Þ; F ð0Þ ¼ @�A�ðxÞ: (34)

This equation has the same structure with Eq. (19). So we
can solve it by the ansatz (20). The solution is

�ð0ÞðxÞ ¼ X1
s¼0

X½s2�
n¼0

as;nðx	x	Þnþ1x�1 � � � x�s�2n@�1
� � �@�s�2n

� ð@�@�ÞnF ð0Þ; (35)

with �ð0Þ and A�ðxÞ taking values in the Lie algebra of
SUðNÞ, and the coefficients as;n solved by Eqs. (23) and

(24). For the term of g of power one in Eq. (31), we obtain

@�@��
ð1Þ ¼ F ð1Þ; (36)

i

2
½@��ð0Þ; �ð0Þ� � i½A�; @��

ð0Þ� ¼ F ð1Þ: (37)

In Eq. (37), F ð1Þ is known because �ð0Þ has been given by
Eq. (35). This equation also has the same structure with
Eq. (19). We can solve it by the ansatz (20) with F
replaced by F ð1Þ. The solution is

�ð1ÞðxÞ ¼ X1
s¼0

X½s2�
n¼0

as;nðx	x	Þnþ1x�1 � � � x�s�2n@�1
� � �@�s�2n

� ð@�@�ÞnF ð1Þ: (38)

For the coefficient of g2 in Eq. (31), we obtain

F ð2Þ ¼ @�@��
ð2Þ; (39)

F ð2Þ ¼ i

2
½@��ð0Þ; �ð1Þ� þ i

2
½@��ð1Þ; �ð0Þ�

þ 1

6
½½@��ð0Þ; �ð0Þ�; �ð0Þ�

� i

�
A�; @��

ð1Þ � i

2
½@��ð0Þ; �ð0Þ�

�
: (40)

This equation can be solved as above. The solution is

�ð2ÞðxÞ ¼ X1
s¼0

X½s2�
n¼0

as;nðx	x	Þnþ1x�1 � � � x�s�2n@�1
� � �@�s�2n

� ð@�@�ÞnF ð2Þ: (41)

By the foregoing recursive procedures, a solution of
Eq. (31) can be derived for the non-Abelian case. The
pure gauge field A

�
pure hence can be obtained for the non-

Abelian case. It is apparent that A�
pureðxÞ ¼ 0 in the Lorentz

gauge @�A�ðxÞ ¼ 0 by the foregoing constructions.

Another solution of Eq. (31) can be derived by following
the procedure in Appendix C, which is expected to be a
generalization of Eq. (30)

Â�
pureðxÞ ¼ A�ðxÞ � 1

2
x�F

��ðxÞ þ 1

6
x�1

x�2
D�1F�2�ðxÞ

þ 1

8
x�x�1

D�2
F�1�2ðxÞ þ 1

16
x	x	D�F

��ðxÞ
þ � � � ; (42)

which is also expected to be equivalent with the solution
(32) obtained above, albeit a formal proof is not easy to
implement.
So far, we have derived expressions for the pure

gauge field in the Abelian case and the non-Abelian case.
These expressions shall be used in the next section to
construct gauge invariant operators of the gluon spin and
the photon spin.

IV. GAUGE INVARIANT DECOMPOSITIONS
OF THE NUCLEON SPIN

A. Generation of gluon spin angular
momentum from surface currents

In Sec. II, we interpreted the gauge invariant current of
angular momentum as summations of gauge variant ones.
We saw that the gauge invariant decomposition of Ji and
that of Chen et al. can be accommodated into this frame-
work. In the decomposition of Chen et al. [8], there is
gauge invariant description of gluon spin. However, in the
decomposition of Ji [7], there is no gauge invariant de-
scription of gluon spin, while only the total gluon angular
momentum current is gauge invariant. In this section, we
attempt to propose another decomposition of the nucleon
spin. We begin with Ji’s decomposition; that is, the quark
parts are

M���
qs ¼ 1

2
����	 �c�	�5c ; (43)

M���
qo ¼ i

2
½ �c��x�ð@�� igA�Þc �ð�$�Þ�þH:c:

þð
��x��
��x�ÞLquark; (44)

and the gluon part is

M
���
g ¼ 2Tr½F�

�ðF��x� � F��x�Þ�
þ ð
��x� � 
��x�ÞLgluon: (45)

Apparently there is no natural candidate of the gluon spin
operator in the above decomposition. In order to introduce
descriptions of the gluon spin, following the similar pro-
posal of Belinfante for the energy-momentum tensor [29],
we construct a gauge invariant surface current

M���
g ¼ 1

2
@	ðx�M�	�

g;I � x�M�	�
g;I Þ; (46)

M���
g;I ¼ �2TrðF��A�

phys þ F��A�
phys þ F��A�

physÞ:
(47)
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Here the physical field A
�
phys ¼ A� � A

�
pure has been

defined in Sec. III. Apparently M���
g is also a conserved

current; that is,

@�M
���
g ¼ 0; (48)

because M�	�
g is antisymmetrical about its indices � and

	. Adding this current to M���, we can obtain a new
conserved current

~M��� ¼ M���
g þM���: (49)

The gluon parts of this new current are

~M
���
gs ¼�2TrðF��A�

physþF��A�
physþF��A

�
physÞ; (50)

~M���
go ¼ 2Tr½F�

�ðF��x� � F��x�Þ�
þ Tr½x�F�	D	A

�
phys � x�F�	D	A

�
phys�

þ Tr½x�D	F
�	A�

phys � x�D	F
�	A�

phys�
þ Tr½x�A	

physD	F
�� � x�A	

physD	F
���

þ ð
��x� � 
��x�ÞLgluon: (51)

Here D� ¼ @� � ig½A�; �� and we have used the relation

D	A
	
phys ¼ 0 as it is the definition of A

	
phys in Sec. III B. The

quark parts of this new current remain the same as
Eqs. (43) and (44). The above gluon spin operator (50)
has been discussed in [12] in the light cone gauge. The
second line of Eq. (51) is reminiscent of the potential
angular momentum in [9]. Of course, the surface current
(46) is not the unique current which can be used to con-
struct descriptions of the gluon spin. For the other choice,
we can consider the current

M���
g;II ¼ �2TrðF��A�

phys þ F��A�
phys þ F��A

�
physÞ

� 2igTrðA�
phys½A�

phys; A
�
phys�Þ: (52)

This choice induces the gauge invariant Chern-Simons
current as descriptions of the gluon spin. We shall present
more discussions of appropriate descriptions of the gluon
spin in the subsequent two subsections.

B. Analysis on Laguerre-Gauss laser modes

In this subsection, when restricted on the Abelian case,
we discuss how the operator (50) can be an appropriate
description of the photon spin with a fixed frequency, such
as the Laguerre-Gauss laser modes. As shown by Allen
et al. [30,31], the Laguerre-Gaussian laser modes have a
well-defined angular momentum, and the angular momen-
tum can be well described by classical analysis without the
need for quantum field theories. The Laguerre-Gaussian
laser modes are optical modes with a fixed frequency, and
they conform to the source-free Maxwell equations

r� ~E ¼ �@ ~B

@t
; r� ~B ¼ @ ~E

@t
: (53)

For ~E and ~B with the time dependence e�i!t, the above
equations can be rewritten as

~B ¼ � i

!
r� ~E; ~E ¼ i

!
r� ~B: (54)

In the above descriptions, only gauge invariant field
strengths are needed. Of course, we can also describe the
Laguerre-Gaussian modes by using the gauge potential

A� ¼ ðA0; ~AÞ. Then the field strengths ~E and ~B can be
expressed by

~E ¼ �rA0 � @ ~A

@t
; ~B ¼ r� ~A: (55)

To solve the Maxwell equations, we have the freedom to
choose a convenient gauge. We consider the Lorentz gauge

@�A� ¼ @A0

@t
þr � ~A ¼ 0: (56)

In the Lorentz gauge, for optical modes with a fixed

frequency, A0 and ~A can both have the time dependence
e�i!t, which are consistent with the Lorentz gauge condi-
tion (56). So Eq. (55) can be rewritten as

~E ¼ �rA0 þ i! ~A; ~B ¼ r� ~A: (57)

Now we begin to consider the descriptions of the photon
spin. In the Lorentz gauge @�A� ¼ 0, we know that

A
�
pure ¼ 0 from the discussions in Sec. III A. So the photon

spin operator (50) in the Lorentz gauge is simplified to be

~M
���
gs ¼ �ðF��A� þ F��A� þ F��A�Þ: (58)

We define the photon spin vector as

Si ¼ 1

2
�ijk

Z
d3x ~M0jk

gs ; (59)

when written manifestly, which is,

~S ¼
Z

d3xð ~E� ~Aþ ~BA0Þ: (60)

Because ~E, ~B, A0 and ~A all have the time dependence e�i!t,
as known in electrodynamics, the average of the photon
spin vector over a time period 2�

! can be given by

h ~Si ¼ 1

4

Z
d3xð ~E� � ~Aþ ~E� ~A� þ ~B�A0 þ ~BA0�Þ: (61)

Here Z� means the complex conjugate of Z. Using the

relation of ~E and ~B in Eq. (54), we obtain

h ~Si ¼ 1

4

Z
d3x

�
~E� � ~Aþ ~E� ~A� þ i

!
r� ~E�A0

� i

!
r� ~EA0�

�
: (62)
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After integrating by parts and supposing the surface terms
to be zero, we obtain

h ~Si¼1

4

Z
d3x

�
~E��

�
~Aþ i

!
rA0

�
þ ~E�

�
~A�� i

!
rA0�

��
:

(63)

Then using the definition of ~E in Eq. (57), finally we obtain

h ~Si ¼ � i

2!

Z
d3xð ~E� � ~EÞ: (64)

This is consistent with the results in [14,31,32].
We give some comments here. For an Abelian gauge

theory, the conventional Chern-Simons current (58) ap-
pears to be the reduced version of the extended Chern-
Simons current (52) after the Lorentz gauge fixing
@�A�ðxÞ ¼ 0. We just show that the Chern-Simons current

works well as descriptions of the spin of optical modes
with a fixed frequency. From the above discussions, we
may get the impression that the conventional Chern-
Simons current (58) is sufficient for descriptions of the
photon spin. However, this impression is not right.
Although the Chern-Simons current (58) works well in
classical descriptions as above, it does not work as descrip-
tions in quantum theories. As shown byManohar in the two
dimensional Schwinger model [33], a forward matrix ele-
ment of the Chern-Simons current is not gauge invariant.
However, a gauge invariant extension of the Chern-Simons
current (52) can yield gauge invariant results as shown in
[23]. Therefore, it is the gauge invariant extension of the
Chern-Simons current (52) that works well both in classi-
cal and quantum theories.

Besides, the foregoing analysis apparently only applies
to Abelian gauge theories. Because of the nonlinearity of
non-Abelian theories, we do not have an appropriate defi-
nition of gluon modes with a fixed frequency. Therefore,
for non-Abelian theories, we still cannot determine
whether it is the operator (50) or the operator (52) that
can be considered as appropriate descriptions of the gluon
spin by the above analysis, because they degenerate into
the same formulation when applied to an Abelian theory.

C. Relations to parton distribution functions

As shown in [7], the quark orbital angular momentum
(OAM) can be connected to the generalized parton distri-
butions. In this subsection, we discuss the relations be-
tween the operators constructed in Sec. IVA and the parton
distribution functions. We consider the parton distribution
function

fqðÞ ¼ 1

2Pþ
Z d�

2�
ei�hPSj �c ð0Þ�þU½0;�n�c ð�nÞjPSi:

(65)

Here n� ¼ 1ffiffi
2

p ð1; 0; 0; 1Þ is a lightlike vector, andU½0;�n�
is a path-ordered gauge link

U ½0;�n� ¼ P exp

�
ig

Z �

0
n�N

�ðunÞdu
�
; (66)

which makes fqðÞ gauge invariant. The quark momentum

can be connected to the second moment of fqðÞ
Z
dfqðÞ
¼n�1

n�2
hPSj �c ð0Þ��1 ið@�2 � igN�2Þc ð0ÞjPSi: (67)

For N� ¼ A�, we obtain the gauge invariant quark mo-
mentum of Ji [7]. For N� ¼ A�

pure, we obtain the quark

momentum considered by Chen et al. [34]. There is a
special case we should mention. If the pure gauge field is
constructed in the light cone gauge case, then n�A

� ¼ 0

and n�A
�
pure ¼ 0 can both be satisfied. So in this special

case, the gauge invariant quark momentum of Ji and that of
Chen et al. both degenerate into the conventional canonical
one. The above definition of parton distributions includes
the gauge link U½0;�n�, which depends on the choice of
path (for a discussion, see [16]). However, we can use the
Dirac variables [18,19,21] to formulate another definition
of parton distributions, which are free of the path depen-
dence. In Sec. III, in order to derive expressions of A

�
pure,

we have derived manifest expressions of the unitary matrix
VðxÞ, which can be used to formulate the Dirac variable

c DðxÞ ¼ VðxÞc ðxÞ: (68)

By the definition of VðxÞ in Sec. III, c DðxÞ is apparently
gauge invariant. The parton distributions can be con-
structed from Dirac variables as

fDq ðÞ ¼ 1

2Pþ
Z d�

2�
ei�hPSj �c ð0ÞV�1ð0Þ

� �þVð�nÞc ð�nÞjPSi; (69)

which has the bilocal formulation �c Dð0Þc DðxÞ, and
each term of this bilocal expression is separately gauge
invariant. Its second moment gives

Z
dfDq ðÞ ¼ n�1

n�2
hPSj �c ð0Þ

� ��1i

�
@�2 � ig � i

g
V�1@�2V

�
c ð0ÞjPSi:

(70)

It shows that the pure field A�
pure ¼ i

g V
�1@�V appears in

the covariant derivative. So the gauge invariant extension
of the canonical quark momentum based on the pure gauge
field is closely connected to the parton distribution based
on Dirac variables. This relation between the gauge invari-
ant extension of the canonical quark momentum and the
parton distribution based on Dirac variables has also been
discussed by Lorcé [21]. From the definition of A

�
pure in

Sec. III, we saw that the quark momentum of Chen et al.
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can be obtained by subtracting a series operator contribu-
tion from that definition of Ji.

When the above is applied to the gluon distributions, we
have the gluon distributions based on Dirac variables

fDg ðÞ ¼ i

2Pþ
Z d�

2�
ei�hPSjVð0ÞFþ�ð0ÞV�1ð0Þ

� Vð�nÞ ~F�
þð�nÞV�1ð�nÞjPSi: (71)

Here the Dirac variable VðxÞF��ðxÞV�1ðxÞ is gauge invari-
ant by the definition of VðxÞ in Sec. III. The first moment
of fDg ðÞ is

�G ¼ 1

Pþ
Z

dfDg ðÞ ¼ 1

Pþ hPSjKþjPSi: (72)

Here K� is the Chern-Simons current which satisfies
@�K

� ¼ 1
2F

a
��

~F
��
a [35]. Because fDg ðÞ is gauge invariant,

we can regard K� as the gauge invariant extension of the
Chern-Simons current. As shown in [23], the gauge invari-
ant extension of the Chern-Simons current also satisfies
@�K

� ¼ 1
2F

a
��

~F
��
a . This extended Chern-Simons current

includes the physical field A�
phys defined in Sec. III, which

consists of a sum of infinite operators. So it does not look as
simple as in the light cone gauge case [35]. From this
regard, it appears that the gauge invariant extension of
the Chern-Simons current works as an appropriate descrip-
tion of the gluon spin.

We give some additional comments here. The unitary
matrix VðxÞ defined in Sec. III has the significant feature
that it can be used to construct the gauge invariant Dirac
variable c DðxÞ ¼ VðxÞc ðxÞ. However, we should mention
that we can construct infinite numbers of unitary matrices
to formulate Dirac variables by slightly modifying the
methods in Sec. III, as can be seen from the Abelian case
below. We consider the ’ðxÞ given by Eq. (20); then

VðxÞ ¼ exp�i’ðxÞ can be used to construct the gauge in-
variant Dirac variable c DðxÞ ¼ VðxÞc ðxÞ. Here we have

supposed that c ðxÞ transforms as c ðxÞ ! exp i�ðxÞc ðxÞ
under gauge transformations without the loss of generality.
However, if we add a gauge invariant dimensionless func-
tion �ðxÞ ¼ ðx	x	Þ2F��F�� to ’ðxÞ, then we have

’� ðxÞ ¼ ’ðxÞ þ �ðxÞ, and ’� ðxÞ satisfies the equation
@�½A�ðxÞ þ @��ðxÞ � @�’� ðxÞ� ¼ 0: (73)

Apparently, because �ðxÞ is gauge invariant, ’� ðxÞ
transforms as the same as ’ðxÞ under gauge transforma-

tions. So V� ðxÞ ¼ exp�i’� ðxÞ can also be used to construct

the gauge invariant Dirac variable V� ðxÞc ðxÞ. The fore-

going situations are reminiscent of the uniqueness problem
induced by the Stueckelberg symmetry as discussed in
[13,15,21]. Another point we should mention is that the
unitary matrices VðxÞ in Sec. III are constructed from the
gauge invariant Lorentz constraints. Of course, they can
also be constructed from the gauge invariant Coulomb

constraints and light cone constraints, as have been dis-
cussed in [20,21].

V. CONCLUSIONS

We have discussed the feasibility of gauge invariant
decompositions of the angular momentum of the gauge
field. We examined the structure of the angular momentum
current through the Noether theorem. The gauge invariant
angular momentum currents are shown to be summations
of gauge variant currents, which are conserved Noether
currents induced separately by the Lorentz transformation
and the gauge transformation. This summation formulation
suggests that a gauge invariant measurement should in-
clude not only the conventional canonical current but also
the gauge current. We construct novel expressions of the
pure gauge field by using a tower of operators similar to
twist operators in the operator product expansions. These
expressions show that the pure gauge field includes con-
tributions from an infinite operator series. It does not seem
easy to sum this tower of operators when performing
phenomenological calculations. We also discussed the ap-
propriate operator description of light modes with a fixed
frequency. The gauge invariant extension of the Chern-
Simons current is shown to yield results consistent with
other classical analysis. Regarding its frame independence
and its gauge independence, the gauge invariant Chern-
Simons current could be a proper candidate for descrip-
tions of the gluon spin, albeit its physical meaning is not
transparent because of its manifest nonlocal formulation.
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APPENDIX A: TRANSFORMATION
OF THE PURE GAUGE FIELD

In this appendix, we give arguments that the pure gauge
field A�

pure derived in Sec. III A transforms as A� under

gauge transformations. For a gauge transformation, A�

transforms as

�A�ðxÞ ¼ @��ðxÞ: (A1)

Then by Eq. (20), ’ transforms as

�’ðxÞ ¼ X1
s¼0

X½s2�
n¼0

as;nðx	x	Þnþ1x�1 � � � x�s�2n@�1
� � � @�s�2n

� ð@�@�Þn�F ðxÞ; (A2)

�F ¼ @��A
� ¼ @�@

��ðxÞ: (A3)

From the discussions in Sec. III A, it is easy to understand
that �’ in Eq. (A2) satisfies the equation
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@�@
��’ðxÞ ¼ @�@

��ðxÞ: (A4)

So �’ can be solved as

�’ðxÞ ¼ hðxÞ þ�ðxÞ; @�@
�hðxÞ ¼ 0: (A5)

Here hðxÞ is independent of �ðxÞ. So �’ðxÞ is equal to
�ðxÞ up to a harmonic function. Moreover, from Eq. (A2),
we know that

�ðxÞ ¼ 0 ) �’ðxÞ ¼ 0; (A6)

which means that hðxÞ should be zero and actually
�’ðxÞ ¼ �ðxÞ. So the pure gauge field A�

pure ¼ @�’ðxÞ
transforms as A�.

APPENDIX B: ANOTHER EXPRESSION OF THE
PURE GAUGE FIELD: ABELIAN CASE

In this appendix, we are going to derive another expres-
sion for the pure gauge field, which satisfies Eq. (18). This
expression looks different from Eq. (20), but is expected to
be equivalent to Eq. (20). In order to implement this goal,
we first solve the pure gauge field through the Fock-
Schwinger gauge condition, which then can be used to
find another solution of Eq. (18).

1. Fock-Schwinger gauge in Abelian case

For an Abelian gauge field, we consider a pure gauge
field determined by the Fock-Schwinger gauge condition

x�½A�ðxÞ � @�’FSðxÞ� ¼ 0: (B1)

To solve Eq. (B1), we make the ansatz

’FSðxÞ¼b1x
�A�ðxÞþ

X1
n¼2

bnx
�1 ���x�n@�1

���@�n�1
A�n

ðxÞ:

(B2)

This expansion is similar to but different from that in
Sec. III A. A consistent solution of Eq. (B1) exists if

b1¼1; b2¼�1

2
; bn¼�1

n
bn�1; n¼3;4;5...: (B3)

The solution Eq. (B2) is not very concise at first sight.
However, compared to those expressions in Sec. III A,
Eq. (B2) has the nice property that, through some simple
combinations, the pure gauge field that is determined by it
can be concisely expressed as

A �
pure ¼ @�’FSðxÞ

¼ A�ðxÞ � 1

2
x�F

��ðxÞ

þ X1
n¼2

ð�1Þn
ðnþ 1Þ! x�1

� � � x�n
@�1 � � �@�n�1F�n�ðxÞ;

(B4)

where F��ðxÞ ¼ @�A�ðxÞ � @�A�ðxÞ is the Abelian field
strength, and then the corresponding physical field can be
given as

A�
phys ¼ A� �A�

pure

¼ 1

2
x�F

��ðxÞ

þ X1
n¼2

ð�1Þnþ1

ðnþ 1Þ! x�1
� � � x�n

@�1 � � � @�n�1F�n�ðxÞ;

(B5)

which satisfies the Fock-Schwinger gauge condition

x�A
�
phys ¼ 0: (B6)

Similar but slightly different expressions of the physical
field have been given in [36,37] through different methods.
From the above, we saw that the pure gauge field (B4) that
is determined by the Fock-Schwinger gauge condition has
a very concise expression and its transformation under
gauge transformations is also transparent. These concise
expressions can be used in the next subsection to obtain
concise expressions of the pure gauge field determined by
the Lorentz gauge condition.

2. Expression of the pure gauge field in Abelian case

Now we try to solve Eq. (18) in another way. We
decompose ’ðxÞ in Eq. (18) as

’ðxÞ ¼ ’FSðxÞ þ ~’ðxÞ: (B7)

Then by Eqs. (B4) and (B5), Eq. (18) can be rewritten as

@�@� ~’ðxÞ ¼ ~F ; ~F ¼ @�A
�
phys: (B8)

Here A�
phys is given by Eq. (B5). This equation has the

same structure as Eq. (19). It can be solved by the ansatz
Eq. (20), that is,

~’ðxÞ ¼ X1
s¼0

X½s2�
n¼0

as;nðx	x	Þnþ1x�1 � � � x�s�2n@�1
� � � @�s�2n

� ð@�@�Þn ~F : (B9)

In the Abelian case, ~F is apparently gauge invariant by its
definition in Eq. (B8) and by Eq. (B5). So ~’ðxÞ is also
gauge invariant. By the above solutions, A

�
pure can be

written as

A
�
pureðxÞ¼@�’¼@�’FSþ@� ~’¼A�

pureþ ~A
�
pure

¼A�ðxÞ�1

2
x�F

��ðxÞþ1

6
x�1

x�2
@�1F�2�ðxÞ

þ1

8
x�x�1

@�2
F�1�2ðxÞþ 1

16
x	x	@�F

��ðxÞþ��� :
(B10)
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From the above, we saw that the pure gauge field is

decomposed into two parts: A�
pure and ~A�

pure. The part

A�
pure is determined by the Fock-Schwinger gauge condi-

tion, and it has a very concise expression (B4). The part
~A�
pure is determined by Eq. (B9), which depends on A�

phys

in Eq. (B5); that is, the above decomposition makes the
solution (B10) possible. Here we only write out the terms
of two derivatives, albeit an expression of all orders is also
manifest by the above constructions. This new formulation
makes the gauge transformation of the pure gauge field
transparent.

APPENDIX C: ANOTHER EXPRESSION
OF THE PURE GAUGE FIELD:

NON-ABELIAN CASE

1. Fock-Schwinger gauge in non-Abelian case

Similar to the discussion of the Fock-Schwinger gauge
condition in the Abelian case, for non-Abelian cases, we
need to solve the equation

x�
�
A�� i

g
V�1
FS @�VFS

�
¼0; VFSðxÞ¼ exp�ig�FSðxÞ;

(C1)

where �FSðxÞ ¼ �a
FSðxÞTa taking values in the Lie algebra

of SUðNÞ. Expanded as a series, the pure gauge field is

A�
pure ¼ i

g
V�1
FS @

�VFS

¼ @��FS � i

2
g½@��FS; �FS�

� 1

6
g2½½@��FS; �FS�; �FS� þ � � � : (C2)

Because of its nonlinearity, we attempt to solve
Eq. (C1) perturbatively. We suppose Eq. (C1) has a series
solution

�FS ¼ �ð0Þ
FS þ g�ð1Þ

FS þ g2�ð2Þ
FS þ � � � : (C3)

Then Eq. (C1) can be solved by setting terms of the same
power of the coupling g to be zero. For the term indepen-
dent of g, we obtain

x�½A� � @��
ð0Þ
FS� ¼ 0: (C4)

This equation has the same structure as Eq. (B1). Sowe can
solve it by the ansatz (B2). The solution is

�ð0Þ
FSðxÞ¼b1x

�A�ðxÞþ
X1
n¼2

bnx
�1 ���x�n@�1

���@�n�1
A�n

ðxÞ;

(C5)

with �ð0Þ
FS and A�ðxÞ taking values in the Lie algebra of

SUðNÞ, and the coefficients bn given by Eq. (B3). For the
term of g of power one in Eq. (C1), we obtain

x�½Að1Þ
� � @��

ð1Þ
FS� ¼ 0; (C6)

i

2
½@��ð0Þ

FS ; �
ð0Þ
FS� ¼ Að1Þ

� : (C7)

Að1Þ
� is known because �ð0Þ

FS is given by Eq. (C5). This

equation also has the same structure as Eq. (B1). We can

solve it by the ansatz (B2) with A� replaced by Að1Þ
� . The

solution is

�ð1Þ
FSðxÞ¼b1x

�Að1Þ
� ðxÞ

þX1
n¼2

bnx
�1 ���x�n@�1

���@�n�1
Að1Þ

�n
ðxÞ: (C8)

For the coefficient of g2 in Eq. (C1), we obtain

x�½Að2Þ
� � @��

ð2Þ
FS� ¼ 0; (C9)

i

2
½@��ð0Þ

FS ; �
ð1Þ
FS� þ

i

2
½@��ð1Þ

FS ; �
ð0Þ
FS�

þ 1

6
½½@��ð0Þ

FS ; �
ð0Þ
FS�; �ð0Þ

FS� ¼ Að2Þ
� : (C10)

This equation can be solved as above. The solution is

�ð2Þ
FSðxÞ ¼ b1x

�Að2Þ
� ðxÞ

þ X1
n¼2

bnx
�1 � � � x�n@�1

� � � @�n�1
Að2Þ

�n
ðxÞ:

(C11)

By the foregoing recursive procedure, a solution of
Eq. (C1) can be derived for non-Abelian cases. We saw
that the solution of �FS has a very complicated formula-
tion. However, the expressions for A�

pure and A�
phys are

very concise. They are straightforward generalizations of
Eqs. (B4) and (B5), and we have

A�
pure¼ i

g
V�1
FS @�VFS

¼A�ðxÞ�1

2
x�F

��ðxÞþ1

6
x�1

x�2
D�1F�2�ðxÞþ��� ;

(C12)
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A �
phys ¼ A� �A�

pure

¼ 1

2
x�F

��ðxÞ � 1

6
x�1

x�2
D�1F�2�ðxÞ þ � � � ;

(C13)

where F��ðxÞ ¼ @�A�ðxÞ � @�A�ðxÞ � ig½A�ðxÞ; A�ðxÞ�
is the non-Abelian field strength and D� ¼ @� �
ig½A�ðxÞ; ��. The physical field here also satisfies the
Fock-Schwinger gauge condition.

2. Expression of the pure gauge field in
non-Abelian case

In this appendix, we try to solve Eq. (31) in another way;
similar to the Abelian case, we decompose �ðxÞ as

�ðxÞ ¼ �FSðxÞ þ ~�ðxÞ: (C14)

In the series formulation, it is

�ð0ÞðxÞ ¼ �ð0Þ
FSðxÞ þ ~�ð0ÞðxÞ;

�ð1ÞðxÞ ¼ �ð1Þ
FSðxÞ þ ~�ð1ÞðxÞ;

�ð2ÞðxÞ ¼ �ð2Þ
FSðxÞ þ ~�ð2ÞðxÞ; � � � :

(C15)

Then another solution of Eq. (31) can be derived
through the similar procedures in Appendix B 2 and
Sec. III B.
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