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Phenomenological Tsallis fits to the CMS, ATLAS, and ALICE transverse momentum spectra

of hadrons for pp collisions at LHC were recently found to extend over a large range of the transverse

momentum. We investigate whether the few degrees of freedom in the Tsallis parametrization may

arise from the relativistic parton-parton hard-scattering and related processes. The effects of the

multiple hard-scattering and parton showering processes on the power law are discussed. We find

empirically that whereas the transverse spectra of both hadrons and jets exhibit power-law behavior

of 1=pn
T at high pT , the power indices n for hadrons are systematically greater than those for jets, for

which n� 4–5.
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I. INTRODUCTION

The transverse momentum distributions of produced
particles in hadron and nuclear collisions provide useful
information on the dynamics of the colliding system. The
low-pT part of the spectra falls within the realm of soft
nonperturbative QCD physics and may involve the parton
wave functions in a flux tube [1], the thermodynamics1

and the recombination of partons [2–13], or the fragmen-
tation of a QCD string [14]. On the other hand, the
high-pT part is usually considered to arise from a pertur-
bative QCD hard scattering between a parton of one
hadron and a parton of the other hadron [15–22]. The
borderline between the soft-pT nonperturbative region
and the high-pT perturbative region is not well deter-
mined. A very different scheme to partition the pT spec-
trum into soft and hard components has also been
suggested [23,24] and will be discussed at the end of
this paper.

In recent RHIC and LHC experiments, the transverse
momentum spectra of charged hadrons for pp and nucleus-
nucleus collisions have been measured at very high ener-
gies [25–30]. These spectra are often described by the
Tsallis distribution [6],

hqðpTÞ ¼ Cq

�
1� ð1� qÞpT

T

� 1
1�q
; (1)

with a normalization constant Cq, a ‘‘temperature’’ T, and

a dimensionless nonextensivity parameter q (with q > 1).
The Tsallis distribution can be regarded as a nonextensive
generalization of the usual exponential (Boltzmann-Gibbs)
distribution, and converges to it when the parameter q
tends to unity,

hðpTÞ���!q!1
C1 exp

�
�pT

T

�
: (2)

It has been very successful in describing very different
physical systems in terms of a statistical approach,
including multiparticle production processes at lower
energies [7–13].
On the other hand, a long time ago Hagedorn proposed

the QCD inspired empirical formula to describe experi-
mental hadron production data as a function of pT over a
wide range [2]:

E
d3�

d3p
¼C

�
1þpT

p0

��n!
8><
>:
exp

�
�npT

p0

�
forpT !0;�

p0

pT

�
n

forpT !1;
(3)

where C, p0, and n are fitting parameters. This becomes a
purely exponential function for small pT and a purely
power-law function for large pT values.2 It coincides
with Eq. (1) for

n ¼ 1

q� 1
and p0 ¼ T

q� 1
: (4)

Usually both formulas are treated as equivalent from the
point of view of phenomenological fits and are often used
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1The usual (extensive) thermodynamics with the Boltzmann-

Gibbs distribution have been described in [2–4] and applied
extensively for multiparticle production in [5]. Its non-
extensive generalization with the Tsallis distribution with a
new nonextensivity parameter q has been given in [6]. The
nonextensive statistical approach has been very successful
in describing many different physical systems, including
multiparticle production processes at lower energies. See
Refs. [7–13] for a summary of earlier attempts to use Tsallis
fits and detailed explanations of the possible meaning of the
q parameter.

2Actually the QCD formula was inspired by related work in
[15–18] and proposed earlier in [31,32].
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interchangeably [25–30]. It is worth stressing that both
Eqs. (1) and (3) describe data in the whole region of
transverse momenta, not only for large pT .

For phenomenological as well as theoretical interests, it
is expected that as the low-pT region and the high-pT

region arise from different mechanisms, there can be a
change of the systematics for the description of the
low-pT nonperturbative QCD region and the high-pT per-
turbative QCD region. It is therefore useful to explore
where the Tsallis fit begins to fail at higher and higher
pT in the recent high-pT data of CMS [27,28], ATLAS
[29], and ALICE Collaborations [30] for pp collisions at
the LHC. An excellent fit to the pT hadron spectra was
earlier obtained there with the Tsallis and/or Hagedorn
distributions for pT from 0.5 GeV up to 6 GeV, in pp
collisions at

ffiffiffi
s

p ¼ 7 TeV [27]. It was however a surprise
to find that the phenomenological Tsallis fits to the CMS
and ATLAS charged particle transverse spectra extends
from pT ¼ 0:5 to 181 GeV=c in pp collisions at

ffiffiffi
s

p ¼
7 TeV, and from pT ¼ 0:5 to 31 GeV=c at

ffiffiffi
s

p ¼ 0:9 TeV
[33]. The simplicity of the Tsallis parametrization with
only three parameters and the large range of the fitting
transverse momentum raise questions on the physical
meaning of the degrees of freedom that enter into the
high-pT distribution.

As the magnitude of the transverse momenta in these
high-pT data are much greater than the mean transverse
momentum of the distribution, concepts such as statistical
mechanics that depend on thermodynamical equilibrium or
quasiequilibrium may be subject to question. The asym-
metry between the transverse and the longitudinal degrees
of freedom also poses additional difficulties in a statistical
explanation of the full three-dimensional momentum
distribution.3

To describe the transverse momentum distribution
in the high pT region, a more natural description would
be to employ the relativistic hard-scattering model in
perturbative QCD. We wish to investigate whether the
few degrees of freedom in the transverse momentum
Tsallis distribution may arise from the basic parton-parton
scattering and the accompanying multiple collision and
showering processes.

The relativistic hard-scattering model has been used
previously to examine inclusive particle production in
hadron-hadron collisions [15–22]. It was found earlier on
that the observed experimental hadron transverse differen-
tial cross section appears to differ from what one expects
from naive point parton collisions. In the basic quark
model, the high-pT differential cross section in an
ab ! cd exclusive process can be inferred from the count-
ing rule of Brodsky, Farrar, Matveev et al. [36,37], which

states that the invariant cross section for the exclusive
process at high-pT behaves as the power law, with power
index n,

Ec

d�ðab ! cdÞ
dc3

/ 1

cnT
; (5)

where n¼2�fðnumber of active participantsÞ�2g. The
counting of the number of active participants includes
constituents in the initial ab and the final cd states. (For
a pedagogical discussion of the counting rule, see [19].)
The counting rule of Brodsky, Farrar, Matveev et al.
[36,37] has been found to give a power index n that agrees
reasonably with experimental data for exclusive ab ! cd
processes [38]. If one assumes that the dominant basic
high-pT parton-parton hard-scattering process in a pp
collision comes from qq ! qq (or other 2 ! 2 processes),
then the counting rule gives a transverse momentum de-
pendence of d�=dt� 1=pn

T with n ¼ 4. However, the
observed experimental power index n of the hadron trans-
verse spectrum is about 7 (even at the highest LHC energy
and for very large transverse momenta measured [33]).
If one assumes that the basic process is qþmeson !
qþmeson, then the counting rule gives n ¼ 8 which is
close to the observed value. Blankenbecler, Brodsky, and
Gunion therefore proposed that the power index of n� 8
may be related to the scattering of a parton with a meson
[16–18]. For pp collisions at the LHC, a modified proposal
with the direct meson production in the basic reaction
gþ q ! mesonþ q has been suggested recently, involv-
ing five active participants and n ¼ 6 for the power
index [21,22].
We will however not work with mesons as elementary

participant constituents as in [16–18,21,22] but will work
within the conventional parton model of quarks and gluons.
The collision of hadrons (or nuclei) consists of the colli-
sions of partons either in parallel or in series. For example,
in the PYTHIA Monte Carlo program, the multiple hard
scattering of partons in parallel is an important ingredient
and the number of hard-scattering interactions per inelastic
event may be greater than unity [20]. The other process of
multiple scattering of partons in series has been examined
in great detail previously [39–48]. Remarkably, a simple
picture emerges from these studies to indicate that as a
result of the multiple scattering, the sum of the multiple
collision series in a minimum-biased sampling at high pT

is dominated by the differential cross section for the single
parton-parton scattering. As a result of shadowing cancel-
lations, the high-pT scattering appears as though it arises
from a single scattering with a 1=p4

T distribution, plus
logarithmic residue terms. This remarkable result was
shown in [46], using an auxiliary generating functional.
We would like to follow and extend the multiple hard-
scattering results of [46], in order to obtain an explicit
form of the multiple scattering power law and logarithmic
residue terms, the dependence on the number of partons,

3However, it should be remembered that the statistical ap-
proach is not the only known source of Tsallis distribution in
Eq. (1). There are numerous dynamical mechanisms leading to
it, see [8,34,35].
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the dependence on the number of scatterers, and the
dependence on the centrality of the collision. These new
results may find applications in the multiple hard-
scattering processes in hadron-hadron as well as nucleus-
nucleus collisions.

Whereas the theoretical analyses of [39–48] indicate
that the multiple scattering process involving partons will
not significantly modify the 1=p4

T distribution of the
high-pT transverse differential cross section with n ¼ 4,
the PYTHIA program with properly tuned sets of parameters
in a relativistic hard-scattering model, with the additional
processes of parton showering and radiations, can describe
quite well the transverse momentum distribution of pro-
duced hadrons in pp collisions at LHC energies [27]
with n� 7 [33]. What is the origin of such a difference
in the power indices n? Could the additional process of
parton showering and hadronization affect the power
index n?

The possibility that parton showering and hadronization
may influence the power index n is revealed by the mea-
surements of the transverse differential cross section of
hadron and photon jets for p �p collisions at Fermilab by the
CDF and D0 collaborations [49–53]. In these measure-
ments, the power indices n are found to be close to n ¼
4–5 (see Fig. 2 of [21]), as predicted from perturbative
QCD. A hadron jet in these measurements corresponds
to a collection of hadrons in calorimeter cells contained
within a cone of opening angle R, and it represents a parton
after a parton-parton collision but before its fragmentation
and hadronization. Its transverse momentum differential
cross section retains the main features of the power law of
1=p4

T of the basic parton-parton hard scattering. Thus, the
difference between the power index of n� 4–5 from the
jet transverse differential cross section and n� 7 from
the hadron spectra is likely related to the subsequent
showering and hadronization of the parton jets to hadron

fragments of lower transverse momenta. We would like to
examine here how the additional process of parton frag-
mentation and parton showering may influence the power
index of the transverse differential cross section.
This paper is organized as follows. In Sec. II, we review

the relativistic hard-scattering model to express the scat-
tering cross section for high-pT processes in terms of the
basic parton-parton differential cross sections. An approxi-
mate analytical expression is obtained by carrying out the
hard-scattering integral analytically. In Sec. III, we study
the effects of multiple hard scattering of partons on the
differential cross sections. In Sec. IV, we include the
effects of the additional dependence of the parton thickness
function TðbÞ on the parton differential cross sections. In
Sec. V, we analyze the experimental results of jet trans-
verse differential cross sections with the relativistic hard-
scattering model and find the approximate validity of the
relativistic hard-scattering (rhs) model for jet production.
In Sec. VI, we examine the effect of fragmentation on the
hadron differential cross section. In Sec. VII, we study the
effects of showering and its effects on the power index. In
Sec. VIII, we fit the experimental CMS, ATLAS, and
ALICE data to the hard-scattering model and extract the
power index from data. In Sec. IX, we present our discus-
sions and conclusions.

II. RELATIVISTIC HARD SCATTERING MODEL

We review some of the earlier results in the relativistic
hard scattering model [15–19,54]. We consider the process
of Aþ B ! cþ X with the production of parton c around
�� 0 in the center-of-mass frame of the A-B system. We
shall later consider the fragmentation of the parton c in
Sec. V and the showering process in Sec. VI. The differ-
ential cross section for this process is given in the parton
model by

Ec

d3�ðAB ! cXÞ
dc3

¼ X
ab

Z
dxadaTdxbdbTGa=Aðxa;aTÞGb=Bðxb; bTÞEc

d3�ðab ! cX0Þ
dc3

: (6)

We consider the basic process to be the lowest-order elastic
parton-parton collisions in which the parton-parton invari-
ant cross section is related to d�=dt by

Ec

d3�ðab!cX0Þ
dc3

¼ ŝ

�

d�ðab!cX0Þ
dt

�ðŝþ t̂þ ûÞ; (7)

where we have neglected the rest masses and we have
introduced

ŝ ¼ ðaþ bÞ2; t̂ ¼ ða� bÞ2; û ¼ ðb� cÞ2:
Wewrite out the momenta in the infinite momentum frame,
with

ffiffiffi
s

p
the center-of-mass energy of the A-B system,

a ¼
�
xa

ffiffiffi
s

p
2

þ a2T
2xa

ffiffiffi
s

p ;aT; xa

ffiffiffi
s

p
2

� a2T
2xa

ffiffiffi
s

p
�
;

b ¼
�
xb

ffiffiffi
s

p
2

þ b2T
2xb

ffiffiffi
s

p ; bT;�xb

ffiffiffi
s

p
2

þ b2T
2xb

ffiffiffi
s

p
�
;

c ¼
�
xc

ffiffiffi
s

p
2

þ c2T
2xc

ffiffiffi
s

p ; cT; xc

ffiffiffi
s

p
2

� c2T
2xc

ffiffiffi
s

p
�
:

The light-cone variable xc of the produced parton c is

xc ¼ c0 þ czffiffiffi
s

p : (8)

The Mandelstam variables are
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ŝ ¼ ðaþ bÞ2 ¼ xaxbsþ a2Tb
2
T

xaxbs
� 2aT � bT;

t̂ ¼ ða� cÞ2 ¼ � xac
2
T

xc
� xca

2
T

xa
þ 2aT � cT;

û ¼ ðb� cÞ2 ¼ �xbxcs� b2Tc
2
T

xbxcs
þ 2bT � cT:

The relation of ŝþ t̂þ û ¼ 0 gives

xaxbsþ a2Tb
2
T

xaxbs
� xac

2
T

xc
� xca

2
T

xa
� xbxcs� b2Tc

2
T

xbxcs

¼ �a2T � b2T � c2T þ ðcT � aT þ bTÞ2: (9)

Because the intrinsic aT and bT are small compared with
the magnitudes of az, bz, and cT , we can therefore neglect
terms with aT and bT in the evaluation of ŝ, t̂, and û. We get

ŝ ¼ xaxbs; t̂ ¼ � xac
2
T

xc
; û ¼ �xbxcs: (10)

The constraint of ŝþ t̂þ û ¼ 0 gives

xaðxbÞ ¼ xc þ c2T

ðxb � c2T
xcs
Þs
: (11)

In the special case of particle c coming out at �c ¼ 90� in
the center-of-mass frame of the A-B system,

xc ¼ cTffiffiffi
s

p ; xaðxbÞ ¼ xc þ x2c
xb � xc

; (12)

and

xa ¼ xb ¼ 2xc: (13)

The constraint in Eq. (7) can be written as a constraint
in xa,

�ðŝþ t̂þ ûÞ ¼ �ðxa � xaðxbÞÞ
j @ðŝþt̂þûÞ

@xa
j : (14)

On the other hand,

@ðŝþ t̂þ ûÞ
@xa

¼ s

�
xb � c2T

xcs

�
: (15)

We have therefore

Ec

d3�ðab ! cX0Þ
dc3

¼ d�ðab ! cXÞ
dt

xaxb�ðxa � xaðxbÞÞ
�ðxb � c2T=xcsÞ

;

(16)

and

Ec

d3�ðAB ! cXÞ
dc3

¼ X
ab

Z
daTdbTdxbdxa

�Ga=Aðxa;aTÞGb=Bðxb;bTÞ

� xaxb�ðxa � xaðxbÞÞ
�ðxb � c2T=xcsÞ

d�ðab ! cX0Þ
dt

: (17)

We consider an approximate structure function of the form

Ga=Aðxa;aTÞ ¼ Aa

xa
ð1� xaÞgaDaðaTÞ;

Gb=Bðxb; bTÞ ¼ Ab

xb
ð1� xbÞgbDbðbTÞ:

The integral in Eq. (17) becomes

Ec

d3�ðAB ! cXÞ
dc3

¼ X
ab

AaAb

Z
daTdbTDaðaTÞDbðbTÞ

� dxbdxað1� xaÞgað1� xbÞgb

� �ðxa � xaðxbÞÞ
�ðxb � c2T=xcsÞ

d�ðab ! cX0Þ
dt

:

We integrate over xa, and we get

EC

d3�ðAB ! cXÞ
dc3

¼ X
ab

AaAb

Z
daTdbTDaðaTÞDbðbTÞ

� dxb
ð1� xaÞgað1� xbÞgb
�ðxb � c2T=xcsÞ

� d�ðab ! cX0Þ
dt

:

As the transverse momentum we are considering is con-
siderably larger than the intrinsic pT [54], we can take the
intrinsic momentum distribution to be quite narrow so that
the integration of

R
daDaðaTÞ ¼

R
dbDbðbTÞ ¼ 1 and we

obtain

EC

d3�ðAB!cXÞ
dc3

¼X
ab

AaAb

Z
dxb

ð1�xaÞgað1�xbÞgb
�ðxb��2cÞ

�d�ðab!cX0Þ
dt

; (18)

where we have introduced

�2c ¼ c2T
s
: (19)

We use the saddle point integration method [54] and get
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EC

d3�ðAB ! cXÞ
dc3

¼ X
ab

AaAb

Z
dxb

efðxbÞ

�ðxb � �2c=xcÞ

� d�ðab ! cX0Þ
dt

; (20)

with

fðxbÞ ¼ ga ln ð1� xaÞ þ gb ln ð1� xbÞ:
Consider ga ¼ gb ¼ g and expand fðxbÞ as a function of
xb about the minimum located at

xb0 ¼ �2c
xc

þ �c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2c=xc
1� xc

s
: (21)

The quantity xa at this minimum is

xa0 ¼ xc þ �c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xc

1� �2c=xc

s
: (22)

From the second derivative of fðxbÞ with respect to xb, we
obtain

Ec

d3�ðAB!cXÞ
dc3

�X
ab

AaAbffiffiffiffiffiffiffiffiffi
�ga

p ð1�xa0Þgað1�xb0Þga 1ffiffiffiffiffi
�c

p
	

1�xc
1��2c=xc



1=4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1�xb0Þ2
½1�ðxb0þ�2c=xcÞ=2�

s
d�ðab!cX0Þ

dt

��������xa0;xb0

:

(23)

In the neighborhood of �c � 90� in the A-B center-of-mass
system, the ratios in the square-root factor and the factor
involving the power 1=4 are approximately equal to 1.
Thus, the analytical integration of the hard-scattering
integral leads to the following invariant differential cross
section in an analytical form,

Ec

d3�ðAB!cXÞ
dc3

�X
ab

AaAbffiffiffiffiffiffiffiffiffi
�ga

p ð1�xa0Þgað1�xb0Þga

� 1ffiffiffiffiffi
�c

p d�ðcT;ab!cX0Þ
dt

��������xa0;xb0

: (24)

As an example, we can consider the basic ab ! cX0
process to be gg ! gg. The cross section as given by
Gastman and Wu [55] (page 403) is

d�ðgg ! ggÞ
dt

¼ 9��2
ŝ

8

ðŝ4 þ t̂4 þ û4Þððŝ2 þ t̂2 þ û2Þ
ŝ4 t̂2û2

:

At �� 90�, we have

d�ðgg ! ggÞ
dt

¼ 9��2
s

16c4T

�
1þ

�
c2T

xcxbs

�
2 þ

�
xc
xa

�
2
�
3

� 9��2
s

16c4T

�
3

2

�
3
: (25)

If one considers the qq0 ! qq0 process, then

d�ðqq0 ! qq0Þ
dt

¼ 4��2
s

9

ŝ2 þ û2

ŝ2t̂2
: (26)

At �c � 90�, we have xa¼2xc, and we have for qq
0 ! qq0

d�ðqq0 ! qq0Þ
dt

¼ 4��2
s

9c4T

5

16
: (27)

In either case, the differential cross section varies as
d�ðab ! cX0Þ=dt� �2

s=c
4
T .

III. EFFECTS OF MULTIPLE SCATTERING OF
PARTONS ON DIFFERENTIAL CROSS SECTIONS

Hadrons are composite objects containing a number of
partons. The collision of hadrons involves the soft and
hard collisions of partons. We separate the total parton-
parton cross section �in into soft and hard parts,
�inðparton-partonÞ ¼ �s þ �H, where �s involves soft
processes at low-pT in the fragmentation of partons in a
flux tube or a string. The hard cross section �H involves
infrared singularities at small momentum transfer which
can be regulated by a minimum momentum transfer cutoff
p0 that delimits the boundary between soft and hard pro-
cesses. The parton-parton hard cross section includes the
cross section for the production of high-pT particles and
mini-jets.
With increasing collision energies, we probe regions of

smaller x, where the parton density increases rapidly. The
number of partons and the total hard-scattering cross sec-
tion in pp collisions increases with increasing collision
energies. The total pp hard-scattering cross section may
exceed the inelastic pp total cross section at high energies
[20]. The average number of parton-parton interactions
above a minimum p0 may be greater than unity.
The presence of a large number of partons in the collid-

ing system leads to parton multiple scattering in which a
projectile parton may make multiple hard scattering with
target partons (also called the rescattering of partons).
Furthermore, in a hadron-nucleus collision, there are par-
tons in nucleons along the incident parton trajectory, and
multiple hard scattering of the incident parton with many
target partons may occur.
We consider the scattering from an incident parton a to

the final parton c after colliding with two hard scatterers
b1, and b2 in the process

aþ ðb1 þ b2Þ ! cþ ðd1 þ d2Þ; (28)

as represented by the Feynman diagram in Fig. 1. For
simplicity, we neglect intrinsic pT and rest masses so that
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aT ¼ bT1 ¼ bT2 ¼ 0. We are interested in hard-scattering
processes and consider the collision to take place in the
center-of-mass system of a and the partons ðb1 þ b2Þ so
that the incident a comes along the longitudinal z axis and
comes out as the final particle c in the transverse direction
at �c � 90�. We shall examine here the influence of the
multiple hard-scattering process on the differential cross
section from parton a to parton c.

The scattering between a and bi in Fig. 1, with i ¼ 1, 2,
is individually a hard scattering process with the transfer
of a substantial amount of the transverse momentum
qTið¼ dTiÞ. The transverse coherence time ℏ=ðjqTijcÞ,
which is also the hard-scattering transverse collision
time, is quite short (of the order of 0:01–0:1 fm=c). On
the other hand, at high energies the total hard-scattering
cross section is of the order of the pp inelastic cross
section. The mean-free path � between parton hard-
scattering collisions is of the order of the transverse radius
of the proton. Therefore, in a multiple hard-scattering
process, the mean-free time �=c between hard-scattering
collisions is much greater than the transverse hard-
collision time ℏ=ðjqTijcÞ.

As a consequence, the sequence of hard-scattering col-
lisions of the incident parton awith scatterers b1 and b2 are
incoherent collisions. The hard-scattering process aþ
b1 ! a0 þ d1 has been completed before the other hard-
scattering process a0 þ b2 ! cþ d2 begins. This implies
that the hard-scattering process aþ b1 ! a0 þ d1 and the
other hard-scattering process a0 þ b2 ! cþ d2 in Fig. 1
are separately successive two-body hard-scattering pro-
cesses with the intermediate particle a0 essentially on the
mass shell. These successive hard scatterings can be
represented by scattering laws d�ðab1 ! a0d1Þ=dqTi /
�2
s=ðq 2

TiÞ2 and d�ða0b2 ! cd2Þ=dqT2 / �2
s=ðq2T2Þ2, with

the differential elements ddTi ¼ dqTi. The differential
cross section after the multiple hard-scattering collisions
with partons in the other hadron is therefore

d�ð2Þ
H ðaþ ðb1 þ b2Þ ! cþ ðd1 þ d2ÞÞ

/ dcT�
2
sdqT1�

2
sdqT2

ðq2T1Þ2ðq2T2Þ2
�ðcT þ qT1 þ qT2Þ; (29)

where the factor �4
s=½ðq2T1Þ2ðq2T2Þ2� comes from the the two

gluon propagators in Fig. 1. The hard-scattering cross

section from a to c, d�ð2Þ
H ða ! cÞ, can be obtained from

the above by integrating over qT1 and qT2, regulated by a
minimum momentum transfer cutoff p0.
We can generalize the above result for the scattering of

the parton a into the parton c after making a multiple hard
scattering with N hard scatterers as shown in the Feynman
diagram in Fig. 2,

aþ ðb1 þ b2 þ � � � þ bNÞ ! cþ ðd1 þ d2 þ � � � þ dNÞ:
(30)

Using arguments similar to those leading to Eq. (29), the
differential cross section for the multiple hard scattering of
a to c after colliding with N hard scatterers in the other
hadron is

d�ðNÞ
H ðaþ ðb1 þ � � � þ bNÞÞ ! cþ ðd1 þ � � � þ dNÞÞ

/ dcT
YN
i¼1

�
�2
sdqTi
ðq2TiÞ2

�
�ðcT þ qT1 þ � � � þ qTNÞ; (31)

where the factor �2N
s =½ðq2T1Þ2 � � � ðq2TNÞ2� comes from theN

gluon propagators in Fig. 2. The hard-scattering cross

section from a to c, d�ðNÞ
H ða ! cÞ, can be obtained from

the above by integrating over qT1; . . . ; qTN , regulated by a
minimum momentum transfer cutoff of p0.

IV. EFFECTS OF THE MULTIPLE SCATTERING
AND TðbÞ ON THE TRANSVERSE DIFFERENTIAL

CROSS SECTION

The discussions in the last section pertain to the differ-
ential cross section in the scattering of a parton with N
parton scatterers. A hadron-hadron collision consists of a
weighted sum of parton-parton collision with different
number of scatterersN, depending on the transverse profile
of the composite target system and the selection of the
centrality of the collision events.
From the earlier studies of multiple hard-scattering pro-

cesses [39–48], a simple picture emerges to indicate that
for high pT in minimum-biased events without centrality
selection, the sum of the multiple collision series over
different number of scatterers is dominated by the single
scattering differential cross section with the 1=p4

T depen-
dency. There are in addition interesting shadowing cancel-
lations to give logarithmic residual terms. We would like to
extend the multiple hard-scattering results of [46] to obtain
the explicit power law and logarithmic dependence of the
multiple scattering cross section on target scatterer number

FIG. 2. The Feynman diagram for the hard scatterings process
aþ ðb1 þ b2 þ � � � þ bNÞ ! cþ ðd1 þ d2 þ � � � þ dNÞ, with
the exchange of N gluons q1; q2; . . . ; qN .

FIG. 1. The Feynman diagram for the multiple hard scattering
process, aþ ðb1 þ b2Þ ! cþ ðd1 þ d2Þ, with the exchange of
gluons q1 and q2.
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N, the dependence on target parton number A, as well as on
the centrality of the collision.

The parton-parton hard-scattering cross section �H will
shadow hard scattering of the colliding partons. Thus, for
the collision of a parton a on the object b with A partons,
the probability forN hard-scattering collisions at an impact
parameter b is [56]

PðN;bÞ¼ A!

N!ðA�NÞ!½TðbÞ�H�N½1�TðbÞ�H�A�N: (32)

The total hard-scattering cross section for the scattering of
a on N partons is

�ðtotÞ
H ðaþ A ! cXÞ

¼
Z

db
XA
N¼1

A!

N!ðA� NÞ! ½TðbÞ�H�N½1� TðbÞ�H�A�N:

(33)

Thus, the total differential cross section is

d�ðtotÞ
H ðaþA!cXÞ

dcT

¼
Z
db

XA
N¼1

A!

N!ðA�NÞ!½TðbÞ�
N d�

ðNÞ
H

dcT
½1�TðbÞ�H�A�N;

(34)

where the superscript (N) stands for the incident parton
making N collisions with target partons. From Eq. (31), we
have

d�ðNÞ
H

dcT
ðcTÞ ¼

Z Yn
i¼1

�
�2
sdqiT
q4iT

�
�

�
cT �XN

i¼1

qiT

�
: (35)

In the sum in Eq. (34), d�ðNÞ
H =dcT is of order �2N

s . The
absorption part is represented by the term ð1� T�HÞA�N.
We can expand the absorption part ½1� TðbÞ�H�A�N as a
power series, and we obtain

d�ðtotÞ
H ðaþ A ! cXÞ

dcT
¼

Z
dbATðbÞ d�

ð1Þ
H

dcT

	
f1� ðA� 1Þ½TðbÞ�H� þ ðA� 1ÞðA� 2Þ

2
½TðbÞ�H�2




þ
Z

db
AðAþ 1Þ=

2
½TðbÞ�2 d�

ð2Þ
H

dcT
f1� ðA� 2Þ½TðbÞ�H�g

þ
Z

db
AðAþ 1ÞðAþ 2Þ

6
½TðbÞ�3 d�

ð3Þ
H

dcT
þ � � � : (36)

After expanding the absorption term ½1� TðbÞ�H�A�N, we
can collect all terms of the same order in �2N

s to resum
Eq. (34) in the form

d�ðtotÞ
H ðaþ A ! cXÞ

dcT

¼
Z

db
XN
n¼1

A!

A!ðA� NÞ! ½TðbÞ�
N d~�ðNÞ

H

dcT
; (37)

where d~�ðNÞ
H =dcT is of order �2N

s given by

d~�ð1Þ
H

dcT
¼ d�ð1Þ

H

dcT
; (38a)

d~�ð2Þ
H

dcT
¼ d�ð2Þ

H

dcT
� 2ðA� 1Þ

Aþ 1

d�ð1Þ
H

dcT
�H; (38b)

d~�ð3Þ
H

dcT
¼ d�ð3Þ

H

dcT
� 3ðA� 2Þ

ðAþ 2Þ
d�ð2Þ

H

dcT
�H

þ 3ðA� 1ÞðA� 2Þ
ðAþ 1ÞðAþ 2Þ

d�ð1Þ
H

dcT
�2

H: (38c)

The last term in Eq. (38b) and the last terms in Eq. (38c)
represent shadowing corrections due to the absorption

factor ½1� TðbÞ�H�A�N . The basic parton-parton collision
gives

d~�ð1Þ
H

dcT
ðcTÞ � �2

s

c4T
; (39)

where for simplicity a constant coefficient that depends on
the nature of the partons as in Eqs. (25) and (27) has been
understood. The integrated cross section with a cutoff at p0

gives

�ð1Þ
H � ��2

s

p2
0

: (40)

We consider the case with A � 1 in Eq. (38), and we
obtain

d~�ð2Þ
H ða!cÞ
dcT

¼2

	
�4
s

Z cT=2

p0

�
dq1T

q41TðcT�q1TÞ4
�
�d�ð1Þ

H

dcT
�H



:

(41)

In the integration in the above sum, the dominant contri-
bution comes from the region around q1T � 0. We expand
1=ðcT � q1TÞ4 about q1T � 0. As a result of the shadowing
cancellation in Eqs. (38b) or (39), the singular terms
proportional to 1=p6

0 cancel out and only a logarithmic
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term remains [46]. We find that d~�ð2Þ
H =dcT is given

explicitly by

d~�ð2Þ
H ða ! cÞ
dcT

¼ 16��4
s

c6T
ln

	
cT
2p0



; (42)

which has a power law 1=c6T multiplied by a mild logarithm
term. Next, we need to study N ¼ 3,

d~�ð3Þ
H ða ! cÞ
dcT

¼
	
d�ð3Þ

H

dcT
� 3

d�ð1Þ
H

dcT
�2

H




� 3

	
d�ð2Þ

H

dcT
� 2

d�ð1Þ
H

dcT
�H



�H: (43)

We expand 1=ðcT � qiTÞ4 again about qiT � 0. Similarly,
the singular terms proportional to 1=p8

0 cancel out, and
only the logarithmic term remains. We find that d~�ð3Þ

H =dcT
is given by

d~�ð3Þ
H ða ! cÞ
dcT

¼ 3�2�6
s

c8T
� 312

�
ln

cT
3p0

�
2
: (44)

Equations (39), (42), and (44) give explicitly the differen-
tial cross sections of a parton after multiple scattering with
N scatterer partons as

d~�ðNÞ
H ða ! cÞ
dcT

/ �2N
s

c2þ2N
T

�
ln

cT
Np0

�
N�1

; (45)

which states that the differential cross section for multiple
parton scattering obeys a power law with the power
index (2þ 2N), multiplied by a logarithm function
½ln ðcT=Np0Þ�N�1. For the scattering of a parton with one
scatterer, it gives �2

s=p
4
T , with two scatterers it gives

�4
s ln ðpT=2p0Þ=p6

T , and with three scatterers it gives
�6
s½ln ðpT=3p0Þ�2=p8

T .
Collecting the terms together, we obtain the differential

cross section for the collision of a parton with a composite
system with A partons and a thickness function TðbÞ
given by

d�ðtotÞ
H ða ! cÞ
dcT

¼ A
�2
s

c4T

Z
dbTðbÞ þ AðA� 1Þ

2

16��4
s

c6T
ln

	
cT
2p0




�
Z

db½TðbÞ�2 þ AðA� 1ÞðA� 2Þ
6

936�2�6
s

c8T

�
�
ln

cT
3p0

�
2 Z

db½TðbÞ�3: (46)

Depending on the limits of the impact parameter integra-
tion, the above result gives the differential cross section
for collisions with different centrality selections. For
minimum-biased events without an impact parameter
selection, one sums over the whole range of impact

parameters. We can consider a thickness function TðbÞ in
the form of a Gaussian given by [19]

TðbÞ ¼ exp f�b2=2	2g
2�	2

; (47)

where 	 ¼ r0=
ffiffiffi
3

p
. (For a proton, r0 � 0:7 fm [19].) We

then have Z
db½TðbÞ�N ¼ 1

Nð2�	2ÞN�1
; (48)

and the minimum-biased differential cross section is

d�ðtotÞ
H ða!cÞ
dcT

¼A
�2
s

c4T
þAðA�1Þ

2

1

2ð2�	2Þ
16��4

s

c6T
ln

	
cT=2

p0




þAðA�1ÞðA�2Þ
6

312

3ð2�	2Þ2
3�2�6

s

c8T

�
�
ln

cT
3p0

�
2
: (49)

For another sharp-cutoff thickness function TðbÞ given
by [19],

TðbÞ ¼ 3

2�R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2

p
�ðR� bÞ; (50)

we obtain

Z
db½TðbÞ�N ¼ 3N

ðN þ 2Þ2N�1�N�1R2N�2
; (51)

and the minimum-biased differential cross section is

d�ðtotÞ
H ða!cÞ
dcT

¼ A
�2
s

c4T
þAðA�1Þ

2

32

4�2�R2

16��4
s

c6T

� ln

	
cT=2

p0



þAðA�1ÞðA�2Þ

6

33312

5�22�2R4

�3�2�6
s

c8T

�
ln

cT
3p0

�
2
: (52)

Because the power index increases with N as 2þ 2N, the
minimum-biased differential cross section at high cT in
Eqs. (49) or (52) will be dominated by the differential cross
section for a single parton-parton N ¼ 1 collision, varying
as �2

s=p
4
T .

It should however be recognized that even though the
lowest order �s=c

4
T dominates at the highest cT region,

contributions of higher order in �s begin to enter into play
under certain circumstances. For example, as the trans-
verse momentum is lowered below the highest cT region,
there will be values of cT when contributions with higher
power index such as 1=c6T and 1=c8T in the above series in
Eq. (49) or Eq. (52) begin to be important, depending on
the value of A, 	 (or R), and �s. In another example, as the
cone radius R in jet measurements increases, the cone
region will contain parton-parton processes with a greater
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number of interacting vertices, and it may become neces-
sary to include higher and higher order contributions where
contributions of order �2N

s arising from multiple scattering
will have a power index 2þ 2N.

We note in passing that Eq. (47) also gives the centrality
dependence of the differential cross section,

d�ðtotÞ
H ða!cÞ
dc2Tdb

ðcT;bÞ

¼A
�2
s

c4T
TðbÞþAðA�1Þ

2

16��4
s

c6T
ln

	
cT
2p0



½TðbÞ�2

þAðA�1ÞðA�2Þ
6

936�2�6
s

c8T

�
ln

cT
3p0

�
2½TðbÞ�3: (53)

The above result indicates that one can alter the weights of
the different number of scatterers and the power index n,
by an impact parameter selection. The number of partons A
in a hadron or a nucleus is a dynamical quantity that may
depend on the probing transverse momentum and the target
nucleus mass number, and it is not yet a well-determined
quantity. It is an interesting experimental question whether
the numbers of partons A may be so large in some phase
space regions or some collision energies as to make it
possible to alter the power law behavior of the transverse
differential cross section for selected centralities, over
different pT regions. One expects that as the centrality
becomes more and more central, contributions with a
greater number of multiple parton collisions gains in im-
portance. As a consequence, the power index n is expected
to become greater when we select more central collisions.

V. COMPARISON OFA RELATIVISTIC
HARD-SCATTERING MODELWITH
EXPERIMENTAL JET TRANSVERSE
DIFFERENTIAL CROSS SECTIONS

The results in the last section show that without central-
ity selection in minimum-biased events, the differential
cross section for the production of partons at high-pT

will be dominated by the contribution from a single
parton-parton scattering that behaves as �2

s=c
4
T ,

d�ðtotÞ
H ða ! cÞ
dcT

/ �2
s

c4T
; (54)

in line with previous analyses on the multiple scattering
process in [39–48]. Multiple scatterings with N > 1 scat-
terers contribute to terms of order �2N

s and involve a power
law ½ln ðCT=Np0Þ�N�1=c2þ2N

T .
We now consider the lowest order result of Eq. (54).

From Eqs. (24) and (54), the relativistic hard scattering
cross section of Eq. (24) for the collision of hadrons A and
B when a parton a of one of the hadron makes a hard
scattering with a partons in the other hadron to produce the
parton c is

Ep

d3�ðAB ! cXÞ
dc3

¼ d3�ðAB ! cXÞ
dydcT

/ �2
sðQ2ðc2TÞÞð1� xa0ðcTÞÞgað1� xb0ðcTÞÞga

c4T½cT=
ffiffiffi
s

p �1=2 : (55)

Different factors in the above equation (55) reveal the
physical origins and the associated degrees of freedom.
The power law �2

s=c
4
T arises from parton-parton hard scat-

tering. The additional c1=2T in the denominator comes
from the 1=

ffiffiffiffiffi
�c

p
factor in Eq. (24) and it arises from the

integration of the momentum fraction of the other colliding
parton xb. The structure function factor ð1� xa0ðcTÞÞga �
ð1� xb0ðcTÞÞga comes from the probability for the occur-
rence of the momentum fractions of the colliding partons.
The quantities xa0ðcTÞ and xb0ðcTÞ are functions of cT as
given in Eqs. (21) and (22), respectively. The argument cT
inside the structure function factor is the transverse
momentum of the scattered parton c, prior to its fragmen-
tation. The exponential indices ga and gb come from the
structure functions. They can also be estimated from the
spectator counting rule of Blankenbecler and Brodsky [15]
as given by gfa;bg ¼ 2ns � 1, where ns is the number of

spectators of the composite hadron system a or b in the
hard-scattering collision. This is essentially the form of the
cross section as first suggested by Blankenbecler, Brodsky,
and collaborators [15–19].
The results of Eq. (55) can be compared directly with the

transverse differential cross sections for hadron jet and
isolated photon production. Previously, Arleo et al. [21]
have presented a method to obtain an ‘‘experimental’’ local
power index nexp ðxcÞ. Specifically, referring to Eq. (55)
and representing the power index of cT by n, the lowest
order theoretical result of Eq. (55) predicts n ¼ 4þ 1=2.
One focuses attention at a fixed xcð¼ cT=

ffiffiffi
s

p Þ at � ¼ 0 for
which xa0 ¼ xb0 ¼ 2xc. Upon neglecting the

ffiffiffi
s

p
depen-

dence of �2
s , one extracts an experimental power index

nðxcÞ as a function of xc by comparing the invariant cross
sections at a fixed xc at different collision energies [21],

nðxcÞ �
ln ½�invð ffiffiffiffiffi

s1
p

; xcÞ=�invð ffiffiffiffiffi
s2

p
; xcÞ�

ln ½ ffiffiffiffiffi
s2

p
=

ffiffiffiffiffi
s1

p � þ 1

2
; (56)

which is related to the quantity nexp ðxcÞ of Arleo et al. [21]
by nðxcÞ ¼ nexp ðxcÞ þ 1=2. Table I summarizes the aver-
age experimental power index hnexp i extracted by Arleo
et al. [21] from the D0 and CDF photon and hadron jet
transverse differential cross sections [49–53]. The power
indices have the values of hni ¼ hnexp i þ 1=2 ¼ 4:8–5:2.
The local power indices as a function of xc are also shown
in Fig. 2 of Arleo et al. [21]. These power indices are in
approximate agreement with the power index n ¼ 4:5 in
Eq. (55) obtained in the relativistic hard-scattering model
in perturbative QCD.
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As an example to provide a complementary comparison,
we focus our attention at a fixed collision energy and
express the differential jet cross section d3�ðAB ! pXÞ=
dydcT in Eq. (55) as

d3�ðAB ! cXÞ
dydcT

¼ A
�2
sðQ2ðcTÞÞð1� xa0ðcTÞÞgað1� xb0ðcTÞÞga

cnT
; (57)

where cT � ET , dcT ¼ 2�ETdET . We also use the symbol
pT for the jet transverse momentum cT . The coupling
constant �s is a function of Q2, which will be identified
as p2

T . We use the running QCD coupling constant [57],

�sðpTÞ ¼ 12�

27 ln ðp2
T=�

2
QCDÞ

; (58)

where �QCD ¼ 0:25 GeV has been chosen such that

�sðM2
ZÞ ¼ 0:1184. We infer from Eq. (57)

n ¼ � d

d logpT

	
log

d�

d�pTdpT

� log ½�2
sðpTÞð1� xa0ðpTÞÞgað1� xb0ðcTÞÞga�



: (59)

In the region where pT � ffiffiffi
s

p
and the variation of �s with

pT is not large, the quantity log ðd�=dypTdpTÞ will be
approximately a linear function of logpT . The log-log plot
of log ðd�=dypTdpTÞ as a function of logpT should
appear nearly as a straight line, with the power index n
given by the magnitude of the slope of the line. In Figs. 3
and 4, the straight lines in the lower ET regions exhibit
such a linear behavior.

We use Eq. (57) to search for the parameters A and n to
fit the hadron jet transverse differential cross section as a
function of ETð�pTÞ at �� 0 in p �p collisions at Fermilab.
The exponential index ga ¼ gb for the structure function
of a gluon varies from 6 to 10 in different structure func-
tions [58–60]. We shall take ga ¼ 6 from [58]. The experi-
mental D0 hadron jet data of d�=d�ETdET at j�j< 0:5
for p �p collision at

ffiffiffi
s

p ¼ 1:8 TeV [50] can be fitted
with n ¼ 4:60 and 2�A ¼ 2:29� 1015 fbGeV�2, as
shown in Fig. 3. The experimental D0 hadron jet data of

d�=d�ETdET for p �p collision at
ffiffiffi
s

p ¼ 0:630 TeV [50]
can be fitted with n ¼ 4:64 and 2�A ¼ 1:64�
109 fbGeV�2, as shown in Fig. 4. These power indices
are in approximate agreement with the value of n ¼ 4:5 in
Eq. (55), indicating the approximate validity of the hard-
scattering model description for jet production in hadron-
hadron collisions, with the predominant �2

s=c
4
T parton-parton

TABLE I. The mean power index hnexp i extracted from ex-
perimental transverse differential cross sections for hadron and
photon jet productions in p �p collisions at Fermilab as obtained
in [21] by comparing the invariant cross sections at different
energies.

Collaboration References Particles
ffiffiffi
s

p
(TeV) hnexp i

CDF [49] Hadrons 0.546, 1.8 4:3	 0:09
D0 [50] Hadrons 0.630, 1.8 4:5	 0:04
CDF [51,52] Photons 0.630, 1.8 4:7	 0:09
D0 [53] Photons 0.630, 1.8 4:5	 0:12
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FIG. 3 (color online). Comparison of the experimental
d�=d�ETdET data from the D0 collaboration [50] for the
distribution of hadron jet transverse energy ET at j�j< 0:5, in
p �p collision at

ffiffiffi
s

p ¼ 1:8 TeV, with the relativistic hard-
scattering model result in Eq. (57).
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FIG. 4 (color online). Comparison of the experimental
d�=d�ETdET data from the D0 collaboration [50] for the
distribution of hadron jet transverse energy ET at j�j< 0:5, in
p �p collision at

ffiffiffi
s

p ¼ 0:630 TeV, with the relativistic hard-
scattering model result in Eq. (57).
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differential cross section. These power indices extracted
from the differential cross section are also in approximate
agreement with those in Table I extracted by comparing
cross sections at two different energies [21].

In another comparison of the jet production data with the
hard-scattering model, we examine in Fig. 5 the jet differ-
ential cross section d�=d�pTdpT in pp collisions at

ffiffiffi
s

p ¼
2:76 TeV at the LHC obtained by the ALICE collaboration
at �< 0:5 with R ¼ 0:4 and 0.2 [61]. The log-log plot of
log ½d�=d�pTdpT� versus logpT gives nearly a straight
line with the slope �n. The jet differential cross section
can be fitted with the power index n ¼ 5:0	 0:2 and an
overall magnitude of 2�A ¼ 2080 mbGeV�2 for R ¼ 0:4
and n ¼ 4:8	 0:2 and an overall magnitude of 2�A ¼
535 mbGeV�2. These power indices are close to the value
of n ¼ 4:5 expected in Eq. (55) in the hard-scattering
model.

In another comparison, we show in Fig. 6 the jet differ-
ential cross section d�=d�pTdpT in pp collisions at

ffiffiffi
s

p ¼
7 TeV at the LHC obtained by the CMS collaboration at
�< 0:5 with R ¼ 0:5 [27]. The jet differential cross sec-
tion can be fitted with the power index n ¼ 5:44	 0:1 and
of 2�A ¼ 5:05� 1014 mbGeV�2 as shown in Fig. 7.
The value of n is slightly greater than the expected value
of n ¼ 4:5.

We note in the last few examples that the power index n
increases slightly as the cone radius R increases. An
increase in the cone radius allows the sampling of events
with a greater number of the parton-parton interaction
vertices inside the cone, and each interaction vertex brings
in a power of �2

s . A greater cone radius has greater con-
tributions from processes that are higher order in �s. Thus,

among many high next-to-leading order and next-to-next-
to-leading order contributions, some of the �4

s=p
6
T contri-

butions of the multiple scattering processes discussed in
Eqs. (49) and (52) in Secs. III and IV may also need to be
included. Because of the limited number of cases, more
measurements will be needed to confirm whether the
increase in the power index with increasing R is a general
phenomenon.

p
T
  (GeV)

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

〈 d
3 σ /

 d
η

p T
dp

T
〉 η   

  (
m

b 
G

eV
-2

)

 ALICE data, R = 0.4

 ALICE data, R = 0.2

Theoretical fit for R = 0.4, n=5.0

Theoretical fit for R = 0.2, n=4.8

15020 30 40 50 60 80

Aα
s

2
(1-x

a0
)
g
(1-x

b0
)
g

p
T
n

dN
=

dydpT

70 90 100

ALICE jet p
T
 Data, PLB772, 262(13)

pp collisions at √
⎯
s = 2.76 TeV, |η| < 0.5

FIG. 5 (color online). Comparison of the experimental
d�=d�pTdpT data from the ALICE collaboration [61] for the
transverse momentum distribution of hadron jets d�=d�pTdpT
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p ¼ 2:76 TeV, with the rela-
tivistic hard-scattering model result in Eq. (57).
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model result in Eq. (57).
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We conclude from these comparisons of the transverse
differential cross sections of hadron jets in both p �p and pp
collisions at high energies that the data supports the rela-
tivistic hard-scattering description of the collision process,
with a basic parton-parton differential cross section behav-
ing approximately as �2

s=p
4
T with some tentative evidence

of an increase in the power index as R increases.
It is interesting to note that when the structure function

information is known from other measurements, the had-
ron jet spectra differential cross section can be reasonably
described with only a single power index n and an overall
magnitude parameter A. The shape of the transverse dif-
ferential cross section of hadron jets has only a very small
number of the degrees of freedom.

VI. EFFECTS OF FRAGMENTATION ON
TRANSVERSE DIFFERENTIAL CROSS SECTION

Experimentally, we detect hadrons and the construction
of a hadron jet is inferred from a correlated cone of
hadrons. Experimental measurements also give hadron
spectra at high transverse momenta without reconstructing
jets. The analyses of the power indices n give n� 7 for
hadron transverse spectra [33] but n ¼ 4:5–5 for jet trans-
verse differential cross sections as shown in the last sec-
tion. The difference between the power indices is likely to
arise from the subsequent evolution of the parton.

Other pieces of evidence that the parton-to-hadron final-
state evolution may lead to a change in the power index
show up when we compare the experimental local power
indices for jets and for hadrons [21]. In Fig. 2 of Ref. [21],
the local power indices nexp as a function of x? ¼ 2xc
cluster around nexp � 4:5 for jets but nexp � 5–9 for had-
rons. Furthermore, Table I of [21] gives hnexp i for jets that
are substantially smaller than hnexp i for hadrons. We need
to consider the difference between jets and hadrons and the
fragmentation and showering of jets (representing partons)
to become hadrons.

We shall view the parton fragmentation and the accom-
panying showering as equivalently final-state processes
and speak of them interchangeably to emphasize different
aspects of the parton final-state evolution. In the remaining
sections, we shall consistently use the symbol c to label a
parton and its momentum and the symbol p to label a
hadron and its momentum.

In the showering of a parton c, a large number of hadrons
comes out nearly collinearly with the parton c in a cone
along the c direction. In the present study of high-pT

particles in the central rapidity region, the parton c is
predominantly along the transverse direction, and the
shower of the produced hadrons will also be along the
transverse direction. For the study of the high-pT spectra
as a result of the showering of a parton c, it suffices to focus
attention on the leading hadron p of the cone of shower
particles, because of the rapid falloff of the transverse
momentum distribution as a function of increasing cT .

The leading hadron fragment with transverse momentum
pT contributes significantly to the final spectra at that pT

whereas nonleading hadron fragments of the shower con-
tribute only insignificantly to the spectra at their corre-
sponding pT values. Thus, for the examination of the
high-pT hadron spectra after parton fragmentation and
showering, each parent parton c with a momentum cT
can be viewed as fragmenting into a single leading hadron
p with momentum pT by the showering process.
The showering of the partons will go over many gener-

ations of branching and each branching will degrade the
momentum of the showering parton by a momentum frac-
tion 
 . We can consider the transverse momentum pT of the
leading hadron as arising from the�th branching generation
of the shower. The 4-momentum of the leading hadron p
and the 4-momentum of the parent parton c are related by

p ¼ 
�c: (60)

We relabel the cumulative product 
� by the momentum
fraction z,

z ¼ 
�; (61)

to relate p with c,

p ¼ zc: (62)

The probability for the fragmentation of the parton c into
the hadron p is specified phenomenologically by the frag-
mentation function Dp=cðzÞ, which depends on the QCD

momentum transfer scale.
We shall consider first the simplest case of showering

and fragmentation in which the momentum fraction z is
independent of the magnitude of the parton transverse
momentum cT . We shall consider a more sophisticated
showering algorithm in the next section. In this case with
z independent of cT , the hadron transverse momentum
pT is a linear function of the parton transverse momentum
cT in Eq. (62). Under the fragmentation from the parton
c to the hadron p, the differential cross sections
d�ðAB ! pXÞ=dp4 and d�ðAB ! cXÞ=dc4 are related by
d�ðAB!pXÞ

dp4
¼
Z
dzDp=cðzÞ

�
Z
dc4

d�ðAB!cXÞ
dc4

�ð4Þðp�zcÞ: (63)

We therefore have

Ep

d�ðAB!pXÞ
dp3

¼ d�ðAB!pXÞ
dydpT

/
Z dz

z2
Dp=cðzÞz4þ1=2

��2
sðcTÞð1�xa0ðcTÞÞgað1�xb0ðcTÞÞga

p4þ1=2
T

;

(64)
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where the arguments cT in xa0 and xb0 are evaluated at
cT ¼ pT=z. We can expand the factor �sðcTÞ�
ð1� xa0ðcTÞÞga ð1� xb0ðcTÞÞga about �cT in the above equa-
tion as a power series of cT ,

fðcTÞ ¼ �sðcTÞðð1� xa0ðcTÞÞgað1� xb0ðcTÞÞgb

¼ fð �cTÞ þ ðcT � �cTÞf0ðcTÞ þ ðcT � �cTÞ2
2

f00ðcTÞ:
(65)

The error in the first order is minimized if �cT is defined as

�c T ¼
�
pT

z



¼ pT

�
1

z



; (66)

where �
1

z



¼

R
dz 1

z2
Dp=cðzÞz4þ1=2 1

zR
dz 1

z2
Dp=cðzÞz4þ1=2

: (67)

We can obtain the magnitude of h1=zi by using the frag-
mentation function from Ref. [62] for a parton to fragment
into a pion for Q2

0 ¼ 2 GeV2,

D�=qðzÞ¼0:551z�1ð1�zÞ1:2; D�=gðzÞ¼3:77ð1�zÞ2:
We find

�cT ¼ pT

�
1

z



¼

	
2:2pT; for a gluon parton;

2:46pT; for a quark parton:
(68)

For our numerical work, we shall use the average value for
gluon and quark partons,

�c T ¼ pT

�
1

z



¼ 2:33pT: (69)

The differential cross section d�ðAB ! pXÞ=dydpT of
Eq. (64) for the hard scattering of hadrons A and B after
fragmenting (and showering) to hadron p can be approxi-
mated by

d�ðAB!pXÞ
dydpT

/�2
sð �cTÞð1�xa0ð �cTÞÞgað1�xb0ð �cTÞÞga

p4þ1=2
T

;

(70)

where �cT is given by Eq. (69).

VII. PARTON SHOWERING AND
THE POWER INDEX n

The results of the last section indicate that with a frag-
mentation fraction z that is independent of the fragmenta-
tion parton momentum cT in the showering process, the
power law and the power index are unchanged, and the
power index nþ 1=2 for the produced hadrons should be
approximately 4.5 as given by Eq. (55) or Eq. (70). On the
other hand, the transverse spectra of produced hadrons in
high-energy pp collisions at the LHC gives a power index
n� 7 [21,27–30,33]. Theoretically, the PYTHIA program

with additional parton showering and radiations can de-
scribe quite well the transverse momentum distributions of
produced hadrons in pp collisions at LHC energies [27],
which are associated with a power index n� 7 [33]. The
difference between the power index of n� 4–5 from the
transverse differential cross sections of hadron and photon
jets and n� 7 from the transverse spectra of hadrons is
likely to arise from the subsequent showering of the parton
jets to hadron fragments of lower transverse momenta.
It should be realized that the showering mechanism

presented in the last section may not contain sufficient
degrees of freedom to describe properly theQCDshowering
process. In addition to the kinematic decrease of the mag-
nitude of the transversemomentumas governed byEq. (62),

pT

cT
¼ 
�; (71)

the showering is governed by an additional criterion on the
virtuality, which measures the degree of the off-the-
mass-shell property of the parton. There are three different
parton showering schemes: the PYTHIA [63], the HERWIG

[64], and the ARIADNE [65]. The general picture is that the
initial parton with a large initial virtuality Q decreases its
virtuality by showering until a limit of Q0 is reached. Each
of the three schemes uses a different relation between the
virtuality and the attributes of the showering parton, and
each with a different evolution variable and a different
virtuality limit. Their kinematical schemes, the treatments
of soft gluon interference, and the hadronization schemes
are also different.
We can abstract from these different parton showering

schemes to infer that there is approximately a one-to-one
mapping of the initial virtuality Q with the transverse
momentum cT of the evolving parton as showering pro-
ceeds. The initial virtuality Q scales with, and maps into,
the initial transverse cT of the showering parton, and the
cutoff virtualityQ0 scales with, and maps into, a transverse
momentum pT0 of the parton. In each successive
generation of the showering, the virtuality decreases by a
virtuality fraction which corresponds, in terms of the cor-
responding mapped parton transverse momentum, to a

decrease by a transverse momentum fraction ~
 . The show-
ering will end in � generations such that

pT0

cT
¼ a~
�; (72)

where a is a constant relating the scales of virtuality and
transverse momentum. Thus, the showering process
depends on the magnitude of cT and the limiting virtuality
Q0, which corresponds to a parton momentum pT0. The
greater the value of cT , the greater the number of gener-
ations �. We can infer an approximate relation between cT
and the number of generations �,

� ¼ ln
pT0

acT
= ln ~
: (73)
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On the other hand, kinematically, the showering processes
degrade the transverse momentum of the parton cT to that
of the hadron pT as given by Eq. (71), depending on the
number of generations �. The magnitude of the hadron
transverse momentum pT is related (on the average) to the
parton transverse momentum cT by

pT

cT
¼ 
� ¼ 


ln
pT0
acT

= ln ~

: (74)

We can solve the above equation for pT as a function of cT ,

pT

pT0
¼

�
cT
pT0

�
1��

a��; (75)

and alternatively for cT as a function of pT ,

cT
pT0

¼
�
pT

pT0

�
1=ð1��Þ

a
�

1��; (76)

where

� ¼ ln 
= ln ~
 > 0; (77)

and� is a parameter that can be searched to fit the data. As
a result of the virtuality ordering and virtuality cutoff, the
hadron fragment transverse momentum pT is related to the
parton momentum cT by an exponent 1��.

After the fragmentation and showering of the parton c to
hadron p, the hard-scattering cross section for the scatter-
ing in terms of hadron momentum pT becomes

d3�ðAB!pXÞ
dydpT

¼d3�ðAB!cXÞ
dydcT

dcT
dpT

/�2
sð �cTÞð1�xa0ð �cTÞÞgað1�xb0ð �cTÞÞga

c4þ1=2
T

dcT
dpT

:

(78)

From the relation between the parent parton moment cT
and the leading hadron pT in Eq. (76), we get

dcT
dpT

¼ 1

1��

�
pT

pT0

� 2�
1��

a
2�
1��: (79)

Therefore under the fragmentation from c to p, the hard-
scattering cross section for AB ! pX becomes

d3�ðAB ! pXÞ
dydpT

/ �2
sð �cTÞð1� xa0ð �cTÞÞgað1� xb0ð �cTÞÞga

pn0
T

;

(80)

where

n0 ¼ n� 2�

1��
; with n ¼ 4þ 1

2
: (81)

Thus, from Eqs. (76)–(79), the parton showering process
with limiting virtuality may modify the power law index in
the transverse differential cross section from n to n0. The
parameter � is related to n and n0 by

� ¼ n0 � n

n0 � 2
: (82)

VIII. PHENOMENOLOGICAL MODIFICATIONS
OF THE HARD-SCATTERING CROSS SECTION

In the last section we give qualitative arguments to show
that the power index may be modified from n to n0 by the
process of showering. A quantitative evaluation of the
changes in the power index from fundamental QCD prin-
ciples is difficult, because the showering and the subse-
quent hadronization processes are complicated and contain
unknown nonperturbative elements. It suffices to verify
that there is indeed a systematic change of the power index
from partons (or their equivalent representative jets) to
hadrons, by finding the empirical values of power index
n for hadron production. For such a purpose, we shall
modify the differential cross section d3�ðAB ! pXÞ=
dydpT in (80), for an incident parton a scattering into c
after a relativistic hard scattering, showering, and hadro-
nization to be

d3�ðAB ! pXÞ
dydpT

/ �2
sð �cTÞð1� xa0ð �cTÞÞgað1� xb0ð �cTÞÞga

½1þmT=mT0�n ;

(83)

where mT is the transverse mass
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

T

q
of the detected

hadron p, and m is the hadron mass taken to be the pion
mass. The transverse massmT0 has been introduced both to
regulate the behavior of the cross section in the region of
small pT and to represent the average transverse mass
of the detected hadron in the hard-scattering process.
Experiments measure the differential yield in nonsingle-
diffractive events, which is related to the differential cross
section by

Ep

d3NðAB ! pXÞ
dp3

¼ Ep

d3�ðAB ! pXÞ
�NSDdp

3
; (84)

where �NSD is the nonsingle-diffractive cross section.
We also need to transcribe the invariant cross section in
terms of d�=d�dpT . We have then the produced particle
distribution

d3NðAB ! pXÞ
d�dpT

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

m2
Tcosh

2y

s
A
�2
sð �cTÞð1� xa0ð �cTÞÞgað1� xb0ð �cTÞÞgb

½1þmT=mT0�n ; (85)
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where A is a constant fitting parameter. We shall use the
above formula, Eq. (85), to search for the power index n for
hadron production by fitting the hadron transverse momen-
tum distributions in pp collisions at the LHC from the
CMS [28], ATLAS [29], and ALICE collaborations [30],
within the experimental pseudorapidity windows. We shall
again take ga ¼ gb ¼ 6 [58]. In Fig. 6, we compare the fits
to the experimental hadron transverse spectra. We find
that for pp collisions at

ffiffiffi
s

p ¼ 7 TeV, the parameters are
n ¼ 5:73,mT0 ¼ 0:869 GeV, and A ¼ 194 GeV�2 c3, and
for pp collisions at

ffiffiffi
s

p ¼ 0:9 TeV, the parameters are
n ¼ 5:96, and mT0 ¼ 0:715 GeV, A ¼ 236 GeV�2 c3.

Note that if we introduce

q ¼ 1þ 1

n
and T ¼ mT0

q� 1
; (86)

then we get

d3NðAB ! pXÞ
d�dpT

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

m2
Tcosh

2y

s
A�2

sð �cTÞð1� xa0ð �cTÞÞga

� ð1� xb0ð �cTÞÞgb
�
1� ð1� qÞmT

T

� 1
1�q
; (87)

which is in the form of the Tsallis distribution of
Eq. (1) (now with a clear meaning of the ‘‘nonextensivity
parameter’’q and the ‘‘temperature’’T as given inEq. (86)).
The difference is the additional pT dependencies
of �2

sð �cTÞ, xa0ð �cTÞ, xb0ð �cTÞ as well as the square-root pre-
factor. What needs to be stressed is that the real active
number of degrees of freedom remains quite small, similar
to Eq. (1).
Equation (83) is not the only way we can parametrize

the hard-scattering results. The gluon exchange propagator
in the Feynman diagrams of Figs. 1 and 2 and Eqs. (31) and
(35) involve the quantities q2Ti. We can alternatively
modify the basic differential cross section d3�ðAB!pXÞ=
dydpT for the scattering of a to p in the quadratic m2

T

form,

d3�ðAB ! pXÞ
dydpT

/ �2
sð �cTÞð1� xa0ð �cTÞÞgað1� xb0ð �cTÞÞga

½1þm2
T=m

2
T0�n=2

:

(88)

With such an effective representation of the basic a ! p
scattering, Eq. (80) is altered to become

d3NðAB ! pXÞ
d�dpT

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

m2
Tcosh

2y

s
A
�2
sð �cTÞð1� xa0ð �cTÞÞgað1� xb0ð �cTÞÞgb

½1þm2
T=m

2
T0�n=2

: (89)

We use the above equation with the quadratic m2
T

dependence in the transverse distribution to search the
power index n by fitting the experimental hadron trans-
verse momentum distribution hEpd

3N=dp3i� in pp colli-

sions from the CMS [28], ATLAS [29], and ALICE
collaborations [30]. The data for pT * 0:5 GeV=c agree
with the theoretical fits as shown in Fig. 8. The parameters
for pp collisions at

ffiffiffi
s

p ¼ 7 TeV are n ¼ 5:83, mT0 ¼
0:856 GeV, and A ¼ 3:58 GeV�2 c3, and for pp collisions
at

ffiffiffi
s

p ¼ 0:9 TeV, the parameters are n ¼ 5:97, mT0 ¼
0:685 GeV, and A ¼ 4:58 GeV�2 c3. We give the fitting
parameters that describe the pT contributions from spectra
at the two different energies in Table II.
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FIG. 8 (color online). Comparison of the experimental hadron
transverse momentum distribution hEpd

3N=dp3i� of hadrons

in pp collisions with the relativistic hard-scattering model,
Eq. (85), assuming a quadratic mT dependence of the regulating
function.

TABLE II. Fitting parameters n, mT0, and A for the transverse
momentum distribution of hadrons in pp collisions.

Linear mT Eq. (85) Quadratic m2
T Eq. (89)ffiffiffi

s
p ¼ 7
TeV

ffiffiffi
s

p ¼ 0:9
TeV

ffiffiffi
s

p ¼ 7
TeV

ffiffiffi
s

p ¼ 0:9
TeV

n 5.73 5.96 5.48 5.55

mT0 (GeV) 0.869 0.715 1.14 0.896

A (GeV�2 c3) 194 236 12.8 13.8
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Comparing the results from the two different ways of

expressing the power-law behaviors, we find that the agree-

ments of the data with the theoretical curves are nearly the

same above pT * 3 GeV=c, but the theoretical results for
the linear case with the mT dependence of Eq. (85) are less

than the experimental ALICE data for pT � 2 GeV=c but

greater than the experimental data for pT & 0:5 GeV=c.
On the other hand, the quadraticm2

T expression of Eq. (89),

that is a more natural from field theory point of view

involving gluon propagators, leads to a better agreement

in the lower pT region.

For pp collisions at the LHC, the above comparisons

indicate that the power index extracted from hadron spectra

has the value of n� 6. The power index is systematically

larger than the power index of n� 4–5 extracted from jet

transverse differential cross sections. Considering the dif-

ference of a jet and hadrons, we can infer that the process

of fragmentation and showering increases the value of the

power index n of the transverse spectra.
It should be noted that the hard-scattering model results

in the low-pT region will be slightly modified with the
introduction of the intrinsic pT of the partons [54]. There
will also be modifications due to the recombination of
partons [5]. Nevertheless, the extrapolation of the hard-
scattering results to the low-pT region as obtained here
indicates indeed that the hard-scattering process can con-
tribute substantially to the production of particles at the
low-pT region4 as has been suggested by Trainor and
collaborators [24].

IX. DISCUSSIONS AND CONCLUSIONS

We have been stimulated by the good agreement of the

Tsallis distribution with the transverse momentum distri-

bution of produced hadrons over a large range of the

transverse memorandum in pp collisions at LHC energies.

The simplicity of the Tsallis distributions raises questions

on the physical meaning of the few degrees of freedom

entering into the Tsallis distribution.

As the magnitude of the transverse momentum in this

high-pT region is much greater than the mean transverse

momentum, concepts such as statistical mechanics that

depend on thermodynamical equilibrium or quasiequili-

brium may be subject to question. The asymmetry between

the transverse and the longitudinal degrees of freedom also

poses additional difficulties in a statistical explanation of

the full three-dimensional momentum distribution in this

high-pT region.
We therefore attempt to understand the results of a

simple Tsallis fit of the transverse momentum distribution
in pp collisions within the relativistic hard-scattering

model. The relativistic hard-scattering model however
predicts that the differential cross section for the produc-
tion of high-pT particles should vary as 1=pn

T with n ¼ 4
if the basic process consists of elementary parton-parton
2 ! 2 processes. The Tsallis fit to the LHC data gives a
power index for hadrons of n� 7 that is substantially
greater.
Our reexamination of the relativistic hard-scattering

model reveals that for minimum biased events without a
centrality selection, the differential cross section at high pT

is dominated by the contribution from a single parton-
parton collision with the �2

s=c
4
T behavior. The multiple

scattering process leads to contributions of higher power
indices that will not modify significantly the �2

s=c
4
T behav-

ior at high pT . The power index n should be approximately
4þ 1=2 where the additional power of 1=2 arises from
the integration of the structure function. Indeed, compari-
son with the experimental power indices in the transverse
differential cross sections for jet production supports
the approximate validity of a basic �2

s=c
4
T behavior for

parton-parton collisions in relativistic hard-scattering
processes.
As a hadron jet or a photon jet corresponds to the state of

a parton after a parton-parton collision but before the final-
state showering, we now understand that the systematic
difference between the power index of n� 4–5 for jets
[21,49–53,61], and n� 6–7 for hadrons [33] may be
attributed to the subsequent showering and hadronization
of the parton jet to hadron fragments of lower transverse
momenta. Another part of the increase of the power index
arises from the pT dependence of the structure function
factor ð1� xa0Þgð1� xb0Þg and the running coupling
constant.
While we examine here the contributions of the hard

processes, there can also be contributions of the produced
particles from soft processes in the low-pT region. These
contributions relative to those from hard processes will
certainly diminish as the collision energy increases. It is
therefore entirely possible that the borderline between soft
and hard processes moves to the lower pT region as the
collision energy increases. How the borderline between the
two processes can be determined will require much more
future work.
Many relevant questions on the borderline between the

high-pT and the low-pT regions will need to be settled in
the future. First, it is expected that hard-scattering pro-
cesses will be accompanied by collisional correlations
different from those from soft processes. A careful analysis
of the two-particle correlations in the low-pT region may
provide a way of separating out the soft process contribu-
tions from the hard-scattering collisional contributions
in the low-pT region [24]. Second, while we apply the
relativistic hard-scattering model to the low-pT region of
pT & 2 GeV=c, the approximations we have used may
not have its range of validity down to such regions.

4Note that, for example, for q � 1 the normalization of the
rapidity distribution given by Eq. (87) depends on q.
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The establishment of the low-pT limit of validity of the
relativistic hard-scattering model will be both an experi-
mental and theoretical question. Processes such as
parton intrinsic transverse momentum [54] and parton
recombination [5] will add complexity to the transverse
momentum distribution in the low-pT region. Third,
the separation of the soft process contribution and the
knowledge of the borderline between the soft processes
and the hard processes may also provide information
whether the basic collision law should be represented by
a linear form of mT in Eq. (85) or a quadratic form of
m2

T in Eq. (89).
The low-pT region is conventionally associated with

soft nonperturbative processes and the high-pT region
with perturbative hard-scattering processes. A very differ-
ent two-component model (TCM) scheme for partitioning
the soft and hard components has been proposed [23,24].
Measurements of the STAR collaboration [23] on the
transverse distribution d3N=d�dp2

T around �� 0, as a
function of the event multiplicity classes, reveal that the
distribution d3N=d�dp2

T can be approximately written as
the sum of a term linear in multiplicity, nchS0ðpTÞ, and a
term quadratic in multiplicity, n2chH0ðpTÞ [23]. Under the
hypothesis that the multiplicity of hard collisions nh is
proportional to n2ch while the multiplicity of soft collisions

ns is linear in nch, the S0ðpTÞ contribution, parametrized
in the Levy form or the equivalent Tsallis form as a
function of pT , S0ðpTÞ � 1=½1þ ðmT �m0Þ=nT�n, is
identified in the TCM scheme as the TCM ‘‘soft’’ com-
ponent, and the H0ðpTÞ contribution, parametrized as a
Gaussian in shifted yT ¼ ln ½ðmT þ pTÞ=m�, is identified
as the TCM ‘‘hard’’ component [23,24]. As a result of
such a partition, the TCM soft component remains sig-
nificant even at very high pT and contains a power law
1=pn

T behavior, which however occurs only in the con-
ventional hard component of the relativistic hard-
scattering model. On the other hand, the TCM hard
component is a Gaussian distribution in shifted yT cen-
tered at pT � 1:4 GeV and it does not have the power-law
behavior of the relativistic hard scattering model at high
pT . The TCM partitions are in variance with those in our
physical, and conventional partitions. As there are many
different ways of partitioning the spectrum, the theoreti-
cal, physical, and mathematical basis for the two-
component model partition in the form as presented as
soft and hard in [23,24] may need to be further
investigated.

Returning to the Tsallis distribution which motivates
the present investigation, we can conclude that the suc-
cesses of representing the transverse spectra at high-pT

by a Tsallis distribution arise from (i) the simple power-
law behavior of the parton-parton scattering cross sec-
tion, �2

s=c
4
T , with a power index of 4, and (ii) the few

number of the degrees of freedom in the hard-scattering
model. The power index of 4 has been found experimen-
tally to be approximately valid by examining the differ-
ential cross sections of hadron jets and photon jets. It has
also been found theoretically to be approximately valid
by examining the multiple scattering process. The power
index is not significantly modified by the multiple scat-
tering process in minimum biased measurements. The
�2
s=p

4
T power law lays the foundation for Tsallis/

Hegedorn-type transverse momentum distributions, and
the few degrees of freedom in the Tsallis distribution is a
reflection of the few degrees of freedom in the under-
lying hard-scattering model. There is additional pT

dependence due to the parton structure function, the
running coupling constant, and the parton momentum
integration, which lead to a slightly larger power index.
Furthermore, in going from the parton measurements in
terms of jets to hadron measurements in terms of frag-
mented hadron products, there are additional showering
and fragmentation processes which give rise to a greater
value of the power index. The Tsallis distribution is
flexible enough to adjust the power index to accommo-
date the different and changing environment, yielding a
nonstatistical description of the distribution.
Because of its nonstatistical nature, the parameters in a

Tsallis distribution can only be supplied and suggested
from nonstatistical means, such as the QCD basic parton-
parton scattering power index and the QCD multiple
scattering shadowing effects. It also is limited in its
application to the transverse degree of freedom, as there
is no way to generalize the Tsallis parameters across the
three-dimensional space from transverse to longitudinal
coordinates. For a more fundamental description, it is
necessary to turn to the basic parton model for answers.
For example, the relativistic hard scattering can be
applied to collision to other longitudinal regions of
pseudorapidities where in the forward rapidity region,
the additional mechanism of direct fragmentation [66]
should also be included. The underlying relativistic
hard-scattering model has a greater range of applications
and a stronger theoretical foundation.
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299 (2009); M. Rybczyński, Z. Włodarczyk, and G. Wilk,
J. Phys. G 39, 095004 (2012).

[10] T. Wibig, J. Phys. G 37, 115009 (2010).
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